3355

Определение электродвижущей силы элемента методом компенсации

Лабораторная работа

Физика

Определение электродвижущей силы элемента методом компенсации Ознакомление с одним из методов измерения электродвижущей силы (ЭДС) источника тока. Теоретические основы работы Компенсационный метод измерения основан на уравнивании измеряемого напряже...

Русский

2012-10-29

116.5 KB

47 чел.

Определение электродвижущей силы элемента методом компенсации

Ознакомление с одним из методов измерения электродвижущей силы (ЭДС) источника тока.

Теоретические основы работы

Компенсационный метод измерения основан на уравнивании измеряемого напряжения (ЭДС) напряжением, создаваемым на известном сопротивлении током от вспомогательного источника.

Данный метод применяется для источников постоянного тока.

Известно, что электрическим током называется упорядоченное движение электрических зарядов. В металлах носителями тока являются электроны, в электролитах и газах – положительные и отрицательные ионы.

«Свободные электроны» – это сравнительно слабо связанные с ионами кристаллической решетки электроны, способные свободно перемещаться внутри её. В отсутствие электрического поля или других регулярных сил электроны в проводниках движутся беспорядочно, что позволяет говорить о них как о “электронном газе”.

При наличии регулярной силы на беспорядочное движение электронов накладывается систематическое – дрейфовое движение. Можно показать, что через единицу площади сечения проводника за единицу времени переносится заряд

,      (1)

называемый плотностью тока,

где  n – концентрация электронов

 е – заряд электрона

  – средняя дрейфовая скорость электронов.

Для металлов в широких пределах плотность электрического тока  пропорциональна напряженности электрического поля :

.      (2)

Выражение (2) является законом Ома (в дифференциальной форме).

Коэффициент пропорциональности    называется удельной электрической проводимостью.

Для того чтобы напряженность поля , а с ней и плотность электрического тока  оставались постоянными, необходимы какие-то дополнительные силы неэлектрической природы. Эти силы принято называть сторонними. С учетом сторонних сил закон Ома записывается следующим образом:

,     (3)

где   – напряженность поля самих электрических зарядов

  – напряженность поля сторонних сил.

Источником постоянного тока может служить батарея, характеризующаяся электродвижущей силой тока (ЭДС):

,

где интеграл вычисляется для участка цепи длины L.

Электродвижущую силу    можно определить как разность потенциалов между полюсами разомкнутого источника тока.

Компенсационный метод измерения ЭДС источника в настоящее время является одним из основных приемов точных лабо-раторных электричес-ких измерений.

Рис. 1

Точное измерение ЭДС нельзя производить обычным вольтметром, который требует для своей работы наличие тока в цепи. Падение напряжения на внутреннем сопротивлении вольтметра

ведет к погрешностям в измерении ЭДС элемента. Чем большим является внутреннее сопротивление вольтметра, тем меньший ток проходит через него, и тем меньше падение напряжения на нем.

Суть компенсационного метода можно понять, анализируя принципиальную схему измерений, изображенную на рис. 1.

На рис. 1 исследуемый элемент обозначен как , нормальный элемент (эталонная ЭДС) – ,  вспомогательная батарея – ,  гальванометр – Г, ограничительное сопротивление –  R1, реохорд со скользящим контактом –  АВ, переменное сопротивление для установки рабочего тока – R, переключатель – К.

Передвижением скользящего контакта реохорда С нужно добиться отсутствия тока в цепи гальванометра. Это будет возможным в том случае, если ЭДС исследуемого элемента  меньше, чем ЭДС батареи  .

Для замкнутого контура, включающего исследуемый элемент и гальванометр, можно записать второе правило Кирхгофа:  сумма падений напряжений на элементах контура равна сумме ЭДС источников, входящих в этот контур.

,    (5)

где  – внутреннее сопротивление исследуемого элемента

 RAC – сопротивление реохорда на участке АС.

Если ток через гальванометр будет равным нулю I2=0, то выражение (5) упростится

.     (6)

В этом случае падение напряжения на участке реохорда АС, создавемое батареей , равно ЭДС  исследуемого элемента.

Заменим исследуемый элемент нормальным, ЭДС которого  известна.Передвигая подвижный контакт, добьемся такого положения D, чтобы ток через гальванометр опять стал равным нулю. Тогда можно написать выражение, аналогичное (6):

.     (7)

Используя соотношения (6) и (7), получим выражение для ЭДС исследуемого элемента в следующем виде:

= .     (8)

Таким образом, сравнение электродвижущих сил двух элементов может быть практически сведено к сравнению двух сопротивлений, использованных при компенсационных измерениях.

Реохорд АВ является линейным сопротивлением, т.е. его электрическое сопротивление прямо пропорционально длине провода , из которого он сделан. Поэтому отношение сопротивлений в выражении (8) можно заменить через отношение длин участков АС и АВ:

=  .    (9)

Реохорд имеет круговую шкалу, проградуированную в произвольных единицах, что позволяет достаточно просто определять отношение длин участков реохорда.

Компенсационный метод измерения ЭДС имеет существенные достоинства по сравнению с другими методами. Во-первых, если сила тока через используемые элементы близка к нулю, то падения напряжения внутри элемента практически нет. Во-вторых, не играет роли падение напряжения в проводах, соединяющих элемент с измерительной схемой. В-третьих, гальванометр в схеме компенсации работает как «нулевой» прибор, и градуировка его шкалы в результат измерений не входит. Также не влияет на результат и величина ЭДС вспомогательной батареи.

При наличии чувствительного гальванометра компенсационый метод позволяет достичь точности до 0,1% от измеряемой величины.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Лицевая панель стенда показана на рис. 2.

Рис. 2

Реохорд АВ является круговым. Вращением ручки реохорда добиваемся перемещения подвижного контакта С.

Сопротивление R является переменным и служит для установки рабочего тока в цепи, включающей реохорд АВ.

Большое сопротивление R1 (25 кОм) служит защитой гальванометра от больших токов. Ключ К позволяет замыкать и размыкать обе цепи.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Включить стенд. Включить установку.

2. Перевести контакт защитного сопротивления R1 c клеммы «» на клемму «25 кОм».

3. Установить рабочий ток при помощи сопротивления R в соответствии с рекомендациями, приведенными на передней панели установки.

4. Перевести переключатель II в положение «ИСПЫТУЕМЫЙ ЭЛЕМЕНТ».

5. Включить измерительную цепь нажатием кнопки реле (двойной ключ) и, не отпуская кнопки реле, перемещением подвижного контакта реохорда добиться нулевого значения показания гальванометра. Колебание стрелки гальванометра устраняется нажатием «кнопки успокоения».

6. Перевести контакт защитного приспособления в положение «0» (наивысшая чувствительность гальванометра) и более точно найти положение подвижного контакта, соответствующего величине l1 в делениях шкалы реохорда.

7. Перевести контакт защитного сопротивления R1 в положение «25 кОм», не изменяя рабочего тока (не меняя положения R).

8. Перевести переключатель II в положение «НОРМАЛЬНЫЙ ЭЛЕМЕНТ» и произвести измерения, описанные в п.п 5, 6. Записать значения величины l2.

9. Все измерения провести не менее 3-х раз при различных значениях сопротивления R.

10. Вычислить ЭДС испытуемого элемента по формуле (9). Величину ЭДС нормального элемента  принять равной 1,0183 В.

11. Все измеренные и рассчитанные величины записать в таблицу.

Таблица

      №   l1       l2                                  

    п/п

      1

     2

     3

12. Оценить погрешности измерений по приближенной формуле

,

где l1, l2,  cредние значения измеренных величин

l1, l2,  – абсолютные погрешности измеренных величин.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Опишите компенсационный метод измерений.

2. Что такое ЭДС источника, от чего зависит?

3. Что такое электрический ток, электрическая проводимость?

4. От чего зависит электрическая проводимость проводника?

5. Как влияют размеры проводника на его электрическое сопротивление?

6. Напишите формулу связи силы тока и плотности тока.

7. Что такое вольт-амперная характеристика?

8. Напишите закон Ома для участка цепи в интегральной и дифференциальной формах.

9. Напишите закон Ома для полной цепи.

10. Сформулируйте и напишите правила Кирхгофа для цепи постоянного тока.

11. Как изменится ток в цепи, если с эталонным элементом последовательно включить точно такой же? Если включить параллельно?

12. Выведите выражение для определения ЭДС неизвестного источника в компенсационной схеме.

13. Есть ли различия между величиной ЭДС элемента и напряжением на его клеммах при включении в цепь?

14. Как меняется величина ЭДС со временем, с изменением температуры?

15. Что такое элемент Вестона? Его особенности.

16. В чем преимущества компенсационного метода по измерению ЭДС по сравнению с другими методами?

17. Что такое гальванометр? Для чего он нужен в данной схеме?

18. Какой прибор применяется в данной схеме в качестве гальванометра?

19. Как включаются в электрическую цепь амперметр и вольтметр – последовательно или параллельно?

20. Что такое шунтирование приборов, для чего оно применяется?

21. Для чего используется в схеме защитное сопротивление?

22. Объясните устройство реохорда и его применение.

23. Покажите на схеме направления токов при замыкании цепи на нормальный элемент и на исследуемый.

24. Какой величины токи протекают в цепи?

25. В каком интервале может находиться величина ЭДС исследуемого элемента?

26. Почему вспомогательный источник тока должен обладать большей ЭДС, чем испытуемый и нормальный элемент?

27. Какие источники ЭДС следует выбирать для электрических цепей: с большим или малым внутренним сопротивлением?

28. Насколько зависит результат измерения ЭДС от величины переменного сопротивления, находящегося в цепи?

29. Может ли во время работы источник ЭДС разрядиться?

30. Как оценить погрешности данного метода измерений?


 

А также другие работы, которые могут Вас заинтересовать

35485. Процессы. Системные вызовы fork() и exec(). Нити 11.64 KB
  Процесс в Linux как и в UNIX это программа которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе автоматически создается процесс в котором выполняется оболочка shell например bin bash. Linux поддерживает параллельное или квазипараллельного при наличии только одного процессора выполнение процессов пользователя. Каждый процесс выполняется в собственном виртуальном адресном пространстве т.
35486. Режимы ядра и пользователя Windows 73.01 KB
  Windows NT раньше поддерживала несколько архитектур центральных процессоров включая PowerPC и Alpha современные версии Windows NT поддерживают только процессоры компании Intel и совместимые с ними модели например компании AMD. Страницы памяти которые содержат код в отличие от данных могут быть отмечены как предназначенные только для чтения пользовательскими процессами и кодом на уровне ядра Приложения которые выполняются в пользовательском режиме получают доступ к службам ядра Windows NT вызывая специальные инструкции допускающие...
35487. Информационные процессы 256 KB
  Будем различать данные знания и информацию: информацию можно получить после соответствующей обработки знаний или данных.ru : информацию по отраслям статистики; интегрированные базы данных; статистическую информацию первичных отчетов. Государственная система правовой информации включает: комплекс баз данных правовой информации содержащей более 340000 правовых актов; база данных действующего российского законодательства; база данных судебной статистики и т. Централизованное базируется на базах данных МЧС МВД и т.
35488. Информационные системы в экономике. Общая характеристика методов формирования решений 124.5 KB
  Принятие решения это всегда выбор определенного направления деятельности из нескольких возможных. Следует различать два процесса: формирование решения и принятие решения. Формирование решения это подготовка исходных данных и их обработка таким образом что бы было ясно последствия его принятия. Принятие решения это изучение различных вариантов их последствий и утверждение одного из них.
35489. Экономические информационные системы 139.5 KB
  Наиболее распространенными формами такого рода моделей являются: диаграммы потоков данных сети Петри сети управления и планирования модели баз данных модели баз знаний и т. Большинство бизнеспроцессов воспроизводятся с помощью диаграмм потоков данных. В зависимости от целей моделирования внимание может быть сосредоточено либо на процессах бизнеспроцесса либо на объектах либо на потоках данных. Если необходимо воспроизвести объекты и связи между ними то пользуются стандартом IDEF1 а при необходимости моделирования потоков данных ...
35490. Информационные системы. Процесс информатизации 78.5 KB
  Информационный процесс. Характеристика его составляющих Информационный процесс процесс получения создания сбора обработки накопления хранения поиска распространения и использования информации. Базовыми фундаментальными понятиями экономической информатики являются: данные; информация и экономическая информация; информационный процесс; задача и экономическая задача; знания; Данные В повседневной жизни мы сталкиваемся с сообщениями об объектах событиях процессах от различных источников. Информационная система это...
35491. Информационные системы. Шпаргалка 163 KB
  Для информационных систем характерно Многоаспектность Многофункциональность Различные сферы применения Поэтому классифицировать информационные системы сложно. Могут быть системы: автоматизированные слабо автоматизированные и не автоматизированные Уровень интеграции информационных процессов. Могут быть системы: интегрированные процессные информационные системы выполненные на единой информационной базе и обеспечивающие сквозную связь между всеми элементами ИС. Онги поддерживают управление бизнеспроцессами ...
35492. Информационные системы и информационные технологии 93.5 KB
  TPS Транзакционные технологии TPS Trnsctions Processing Systems предназначены для ежедневной обработки поступающих в виде документов сообщений счета акты накладные и т. MIS Технологии поддерживающие управленческие функции MIS Mngement Informtion Systems предназначены для автоматизации планирования деятельности предприятия организации а также для организации контроля над ходом выполнения планов производства и реализации продукции. DSS Технологии аналитической обработки данных DSS Decision Support Systems...
35493. Автоматизированные системы управления (АСУ) 784 KB
  Основные компоненты АСУ ТП предназначена для выработки и реализации управляющего воздействия на ТОУ и представляют собой человекомашинную систему обеспечивающую автоматизированный сбор и обработку информации необходимой для оптимизации управления объектом в соответствии с принятым критерием. Основные компоненты: КТС комплекс технических средств; СПО системное программное обеспечение; ФАУ функциональные алгоритмы управления. Информационное обеспечение информация характеризующая состояние системы управления системы классификации и...