3383

Изучение свободных колебаний математического и пружинного маятников

Лабораторная работа

Физика

Изучение свободных колебаний математического и пружинного маятников Цель работы: изучение физических основ свободных незатухающих колебаний, определение ускорения свободного падения с помощью математического маятника и коэффициента упругости пружины...

Русский

2012-10-30

398.5 KB

110 чел.

Изучение свободных колебаний математического и пружинного маятников

Цель работы: изучение физических основ свободных незатухающих колебаний; определение ускорения свободного падения с помощью математического маятника и коэффициента упругости пружины пружинного маятника.

Приборы и оборудование: нитяной маятник, миллиметровая линейка, секундомер,  пружина, набор грузов известной массы.

1. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

1.1. Гармонический осциллятор

Гармоническим осциллятором называется система, совершающая колебания, описываемые дифференциальным уравнением вида:

     (1)

Решением этого уравнения является выражение:

                                  ,                                          (2)

где  – амплитуда колебаний (максимальное отклонение  колеблющейся величины  от её среднего значения),

– фаза колебания в момент времени , ;

 - круговая (или циклическая) частота, ;

- начальная фаза (т.е. фаза колебания в момент времени с), ;

Период колебаний такого гармонического осциллятора  равен

Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики.

Примерами гармонического осциллятора являются пружинный,  физический и математический маятники при малых амплитудах колебаний и электрический колебательный контур (для токов и напряжений столь малых, при которых элементы контура можно считать линейными).

1.2. Пружинный маятник

Пружинным маятником называется груз массой , укреплённый на абсолютно упругой, невесомой  пружине, совершающий гармонические колебания под действием упругой силы , где  – жесткость пружины.

Рассмотрим свободные колебания горизонтального пружинного маятника (см. рис. 1)

Он состоит из тележки массой , прикреплённой к вертикальной стене пружиной жёсткостью , которая может  практически без трения перемещаться по горизонтальной поверхности. При любых положениях тележки сила тяжести  и сила реакции опоры  уравновешивают друг друга. При смещении тележки из положения равновесия на величину  на неё начинает действовать сила упругости со стороны пружины , под действием которой тележка будет совершать свободные колебания.

Уравнение движения пружинного маятника в проекции на ось Х на основании второго закона Ньютона будет иметь вид:

или    .    (3)

Если ввести обозначение , то уравнение (3) примет вид   .               (4)

Уравнение (4) является дифференциальным уравнением гармонических колебаний. Таким образом, мы получили, что пружинный маятник совершает гармонические колебания по закону   с циклической частотой  и периодом колебаний .

Эти формулы справедливы в пределах выполнения закона Гука, то есть при малых деформациях пружины, а так же при условии, что  масса пружины мала по сравнению с массой тела.

1.3. Математический маятник

Математическим маятником называется идеализированная система, состоящая из материальной точки массой , подвешенной на невесомой нерастяжимой нити и совершающей колебания в вертикальной плоскости под действием силы тяжести.

Материальной точкой называется тело, размерами которого в условиях данной задачи можно пренебречь.

Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити

(см. рис. 2).

В этом случае момент инерции математического маятника можно определить по формуле

,      (5)

где - длина маятника (реально - это расстояние от точки подвеса до центра масс шарика)

Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке - центре масс, то, подставив уравнение (8) в формулу (7), получим выражение для периода малых колебаний математического маятника:

.

Таким образом, математический маятник при небольших отклонениях от вертикалибудет также совершать гармонические колебания по закону

с периодом колебаний      и циклической частотой   .

1.4. Физический маятник

Физическим маятником называется твёрдое тело, совершающее под действием силы тяжести колебания в вертикальной плоскости вокруг неподвижной горизонтальной оси, не проходящей через центр масс тела (см. рис 3). 

Найдём период колебаний физического маятника.

Если силами трения в подвесе маятника можно пренебречь, то момент сил относительно оси качания маятника создает только сила тяжести , действующая на маятник (момент силы реакции опоры равен нулю, так как сила реакции проходит через ось маятника).

При отклонении маятника на угол  эта сила создает момент , стремящийся возвратить маятник в положение равновесия .

Запишем основное уравнение динамики для тела, вращающегося вокруг неподвижной оси.

Так как , где  и , то                           (6)

(знак минус в уравнении (6) обусловлен тем, что знаки величин  и согласно правилу буравчика или правилу правого винта  всегда оказываются противоположными).

В уравнении (6):

- расстояние от центра масс маятника  С до оси качания О, ;

- момент инерции маятника относительно оси качания, ,

- ускорение свободного падения, ; - масса маятника, .

Если маятник отклонить на небольшой угол , то  можно заменить .  В этом случае уравнение (3) примет вид

   .

Если ввести обозначение , то получим дифференциальное уравнение гармонических колебаний

                 ,                             (7)

решением  которого является уравнение вида

                                                        ,                                                                      

где - амплитуда колебаний, ; - начальная фаза колебаний, .

Из уравнения (7) следует, что при малых отклонениях от положения равновесия  физический маятник будет совершать гармонические колебания (т.е. колебания, совершаемые по закону или ) с круговой частотой     и периодом колебаний     ,                                 (7)

где величина  называется  приведенной длиной физического маятника (т.е. это длина такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника, то есть ).


2. ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1. Определение ускорения свободного падения с помощью математического маятника

  1.  Начертить таблицу 1 для занесения результатов измерений и расчетов.

Таблица 1.

№ опыта

Длина нити маятника l1 = … м

Длина нити маятника l2 = … м

Количество полных колебаний N

Время N  полных колебаний  t1, с

Период колебаний Т1, с

Абсолютная погрешность периода колебаний T1, с

Количество полных колебаний N

Время N  полных колебаний  t2, с

Период колебаний Т2, с

Абсолютная погрешность периода колебаний T2, с

1

2

3

4

5

Среднее значение

Среднее значение

  1.  Установить шарик маятника в нижней части на вертикальной прямой и измерить длину нити маятника.
  2.  Заставить маятник качаться, но так, чтобы угол отклонения был достаточно мал (не превышал 4-60). Измерить секундомером время N = (20 - 30) полных колебаний маятника и вычислить период колебаний маятника: .
  3.  Это измерение произвести 4-5 раз для данной длины маятника l1 и каждый раз вычислить Т1. Таким образом, получить несколько значений для Т1, найти их среднеарифметическое значение  и абсолютные погрешности .
  4.  Вычислить среднюю абсолютную погрешность периода  по формуле , где где tkn - коэффициент Стьюдента, зависящий от заданной вероятности k и числа измерении n. Для = 0,95, принятой в студенческом практикуме, коэффициент Стьюдента для различного числа измерения n указан в таблице ниже.

Количество измерений, n

3

4

5

6

7

8

9

10

Коэффициент Стьюдента, tkn

4,3

3,2

2,6

2,4

2,3

2,0

1,8

1,5

  1.  Изменить длину маятника на 10-15 см. Теперь длина l2. Определить период колебания Т2 этого маятника тем же способом, что и первого маятника. Измерения повторить также 4-5 раз, вычислив потом среднеарифметическое значение , абсолютные погрешности  и  среднюю абсолютную погрешность периода .
  2.  Подставив среднее значение периодов , , измеренную разность длины маятников в формулу  вычислить величину ускорения силы тяжести, приняв .
  3.  Вычислить относительную погрешность ускорения свободного падения по формуле: , где принять .
  4.  Вычислить абсолютную погрешность ускорения свободного падения по следующей формуле:
  5.  Записать результат в виде:

2.2. Определение коэффициента упругости пружины пружинного маятника

1. Начертить таблицу 2 для занесения результатов измерений и расчетов.

Таблица 2.

№ опыта

Масса грузов m1 = … кг

Масса грузов m2 = … кг

Количество полных колебаний N

Время N  полных колебаний  t1, с

Период колебаний Т1, с

Абсолютная погрешность периода колебаний T1, с

Количество полных колебаний N

Время N  полных колебаний  t2, с

Период колебаний Т2, с

Абсолютная погрешность периода колебаний T2, с

1

2

3

4

5

Среднее значение

Среднее значение

2. Подвесить на пружине маятника несколько грузов известной массы.

3. Заставить маятник совершать колебания малой амплитуды. Измерить секундомером время N = (20 - 30) полных колебаний маятника и вычислить период колебаний маятника: .

4. Измерения повторить 4-5 раз, вычислив потом среднеарифметическое значение , абсолютные погрешности  и  среднюю абсолютную погрешность периода  аналогично заданию 2.1.

5. Изменить массу грузов, подвесив дополнительно или убрав с пружины несколько грузов. Теперь масса грузов m2. Определить период колебания Т2 этого маятника тем же способом, что и первого маятника. Измерения повторить также 4-5 раз, вычислив потом среднеарифметическое значение , абсолютные погрешности  и  среднюю абсолютную погрешность периода .

6. Подставив среднее значение периодов , , измеренную разность масс грузов в формулу  вычислить величину коэффициента упругости пружины, приняв .

8. Вычислить относительную погрешность коэффициента упругости пружины по формуле: , где принять .

9. Вычислить абсолютную погрешность коэффициента упругости пружины по следующей формуле:

10. Записать результат в виде:

11. Сформулировать вывод работы.

Контрольные вопросы

  1.  Что такое колебания? Какие колебания называются гармоническими? Запишите дифференциальное уравнение гармонических колебаний и его решение. Нарисуйте график гармонических колебаний.
  2.  Дайте определение и раскройте физический смысл следующих понятий: амплитуда, период, частота, фаза.
  3.  Дайте определения пружинного, математического и физического маятников и запишите уравнения для нахождения периодов колебаний этих маятников.
  4.  Что такое приведенная длина физического маятника?
  5.  Выведите уравнение периода колебаний физического маятника.
  6.  Чем отличается математический маятник от физического?
  7.  Как измениться период колебаний маятника, если

а) его перенести с Земли на ее полюс;                                                  

б) его перенести с Земли на Луну?

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

64452. Підвищення ефективності експлуатації відцентрових насосів у системі водопостачання житлово-комунального господарства 2.55 MB
  Частка енергії що споживається приводом насоса за різними джерелами оцінюється від 18 до 22 усієї електроенергії що використовується в господарстві країни. Зменшення енергоспоживання окремого насоса при забезпеченні ним певних значень напору і витрати досягається за рахунок підвищення ККД.
64453. АНТИКРИЗОВА ПОЛІТИКА БАНКІВСЬКОГО СЕКТОРУ КРАЇН ЦЕНТРАЛЬНОЇ ТА СХІДНОЇ ЄВРОПИ 292 KB
  Слабка фінансова система значна зовнішня заборгованість виражена в іноземній валюті недосконалий нагляд та втручання держави в розподіл та оцінку кредитів підсилюють ризики банківських систем таких країн зіштовхнутися з кризами.
64454. МЕТОДИЧНІ ЗАСАДИ МОНІТОРИНГУ ЯКОСТІ ФАХОВОЇ ПІДГОТОВКИ МАЙБУТНІХ УЧИТЕЛІВ ТРУДОВОГО НАВЧАННЯ 219 KB
  Одним із завдань України щодо інтеграції у європейський освітній простір є потреба у суспільно визнаній оцінці якості освіти. Аналіз науковометодичної літератури показав що з огляду на започатковані процеси реформування активізувалися...
64455. МАТЕМАТИЧНІ МОДЕЛІ ТА ОБЧИСЛЮВАЛЬНІ МЕТОДИ РІШЕННЯ ОДНОГО КЛАСУ ЗАДАЧ ДИФРАКЦІЇ ПЛОСКИХ ЛІНІЙНО ПОЛЯРИЗОВАНИХ ЕЛЕКТРОМАГНІТНИХ ХВИЛЬ 1.71 MB
  Явище дифракції плоских лінійно поляризованих електромагнітних хвиль на періодичних гратках широко використовується в техніці зокрема для створення частотних і поляризаційних фільтрів антен діаграмообразуючих пристроїв генераторів дифракційного...
64456. НАУКОВО-ТЕХНОЛОГІЧНІ ОСНОВИ ЛАЗЕРНИХ І ГІБРИДНИХ ПРОЦЕСІВ НАПЛАВЛЕННЯ ТА МОДИФІКАЦІЇ ПОВЕРХОНЬ МЕТАЛЕВИХ ВИРОБІВ 3.93 MB
  Саме до них належать нові гібридні технології спрямовані на розширення можливостей лазерної обробки за рахунок спільного використання лазерного випромінювання з іншими джерелами теплової енергії електричною дугою струменем плазми високочастотним...
64457. ЗАБЕЗПЕЧЕННЯ РАЦІОНАЛЬНОГО ПРИРОДОКОРИСТУВАННЯ ШЛЯХОМ ЗМІНИ КАДРОВОЇ ПОЛІТИКИ СУДНОПЛАВНИХ КОМПАНІЙ УКРАЇНИ 224 KB
  За умови використання сучасних інноваційних підходів у відновлені судноплавної галузі і як результат у зміні кадрової політики судноплавних компаній України стане можливим використання українського флоту збудованого з використанням екологічно безпечних технологій та залучення морських...
64458. ПОЛІПШЕННЯ ЯКОСТІ ВЕДУЧИХ МОСТІВ СІЛЬСЬКОГОСПОДАРСЬКИХ ТРАКТОРІВ ЗАГАЛЬНОГО ПРИЗНАЧЕННЯ 572 KB
  Для досягнення поставленої мети сформульовані наступні задачі: проаналізувати якість роботи основних елементів ведучих мостів сільськогосподарських тракторів загального призначення та з урахуванням аналізу статистичних відмов визначити...
64459. Глибинне шліфування турбінних лопаток з важкооброблюємих матеріалів із застосуванням планетарних шліфувальних головок 911.45 KB
  Підвищення продуктивності обробки при звичайних методах шліфування завжди супроводжується підвищенням температури у зоні різання, що приводить до дефектів у вигляді шліфувальних тріщин та припалинь.
64460. ПОТЕНЦІАЛ ЗЕМЕЛЬНИХ РЕСУРСІВ РЕГІОНАЛЬНОЇ ГОСПОДАРСЬКОЇ СИСТЕМИ ТА НАПРЯМКИ ЙОГО ВИКОРИСТАННЯ 221.5 KB
  Актуальність проблеми просторового формування потенціалу земельних ресурсів регіональної господарської системи обумовлюється тим що у 17 регіонах галузі агропродовольчого комплексу домінують в структурі валової доданої вартості.