3405

Теплотехнический расчет теплопередач

Курсовая

Производство и промышленные технологии

Задача №1. Расчет теплопередачи через плоскую многослойную стенку Плоская стальная стенка толщиной. Определить коэффициент теплопередачи k от газов к воде, плотность теплового потока q и температуры обеих поверхностей стенки, если известны коэффициенты теплоотдачи от газа к стенке α1 и от стенки к воде α2, коэффициент теплопроводности стали λ....

Русский

2012-10-31

58.57 KB

274 чел.

Задача №1. Расчет теплопередачи через плоскую многослойную стенку

Плоская стальная стенка толщиной δс омывается с одной стороны горячими газами с температурой , а с другой стороны – водой с температурой .

Определить коэффициент теплопередачи k от газов к воде, плотность теплового потока q и температуры обеих поверхностей стенки, если известны коэффициенты теплоотдачи от газа к стенке α1 и от стенки к воде α2, коэффициент теплопроводности стали λ.

Определить также все указанные выше величины, если стенка со стороны воды покроется слоем накипи толщиной δн; коэффициент теплопроводности накипи .

Построить температурные графики в R,t и x,t - координатах.

Объяснить, в чем состоит вред отложения накипи на стальных поверхностях нагрева.

Исходные данные:

Решение

Выполним расчет для двух случаев:

  1.  при отсутствии накипи;
  2.  при наличии накипи.

  1.  Первый случай – чистая стальная стенка
  2.  Коэффициент теплопередачи:

  1.  Плотность теплового потока:

  1.  Температуры поверхностей:

Для определения температуры стенок и составим уравнения для плотности теплового потока. Так как тепловой поток один и тот же во всех  процессах, то получим следующие выражения:

  1.  плотность теплового потока от горячего газа к стенке по формуле    Ньютона – Рихмана:

  1.  Плотность теплового потока, обусловленная теплопроводностью через твёрдую стенку по закону Фурье:

  1.  плотность теплового потока от поверхности стенки к воде описывается законом Ньютона – Рихмана:

Из этих уравнений найдем соответствующие размерности температур:

Отсюда,

температура стенки со стороны газов:

температура стенки со стороны воды:


  1.  Второй случай – стальная стенка покрытая слоем накипи
  2.  Коэффициент теплопередачи:

  1.  Плотность теплового потока:

  1.  Температуры поверхностей:

Для определения температуры стенок  и составим уравнения для плотности теплового потока. Так как тепловой поток один и тот же во всех трёх процессах, то получим следующие выражения:

  1.  плотность теплового потока от горячего газа к стенке по формуле    Ньютона – Рихмана:

  1.  плотность теплового потока, обусловленная теплопроводностью через твёрдую стенку по закону Фурье:

  1.  плотность теплового потока, обусловленная теплопроводностью через слой накипи по закону Фурье:

  1.  плотность теплового потока от поверхности стенки к воде по формуле    Ньютона – Рихмана:

Из этих уравнений найдем соответствующие размерности температур:

Отсюда, температура стенки со стороны газов:

температура стенки со стороны накипи:

температура стенки со стороны воды:

  1.  Термическое сопротивление:

а) от газа к поверхности стенки:

б) стенки:

в) накипи:

г) от накипи к жидкости

Ответ:


Заключение

Теплопроводность накипи в десятки, а зачастую в сотни раз меньше теплопроводности стали, из которой изготовляют теплообменники. Поэтому даже тончайший слой накипи создаёт большое термическое сопротивление и может привести к такому перегреву труб паровых котлов и пароперегревателей, что в них образуются отдулины и свищи, часто вызывающие разрыв труб.

В решении задачи отражено, что температура стальной стенки со стороны газов, имеющая слой накипи толщиной 1 мм, нагревается на 4 градуса больше, чем чистая стальная стенка.


Задача №2. Расчет теплопередачи через

цилиндрическую многослойную стенку

Паропровод с наружным диаметром  и внутренним  покрыт двумя слоями тепловой изоляции с наружными диаметрами  и . Внутренний слой выполнен из материала с коэффициентом теплопроводности ; наружный – из материала с . Коэффициент теплопроводности стенки паропровода . Температура пара  и окружающего воздуха . Коэффициенты теплоотдачи от пара к стенке ; от стенки к воздуху - .

Определить линейный коэффициент теплопередачи  линейную плотность теплового потока , общее линейное термическое сопротивление теплопередачи и температуры всех поверхностей.

Построить температурный график в d,t и R,t – координатах.

Примечание: задачу решать при условии, что длина паропровода значительно больше его толщины; лучистым теплообменом пренебречь.

Объяснить физический смысл коэффициентов теплоотдачи и теплопередачи. От каких факторов зависит их величина.

Исходные данные:

Решение

  1.  Коэффициент теплопередачи:

  1.  Линейная плотность теплового потока:

  1.  Полное термическое сопротивление

  1.  Температуры поверхностей:

Температуры поверхностей соприкосновения паропровода со слоями изоляции найдем из уравнений плотности теплового потока:

  1.  от пара к внутренней поверхности паропровода по закону Ньютона -Рихмана:

  1.  от внутренней к наружной поверхности паропровода, обусловленная теплопроводностью по закону Фурье:

  1.  от наружной поверхности паропровода к первому слою изоляции по закону Фурье:

  1.  от первого слоя изоляции ко второму по закону Фурье:

Отсюда необходимые значения температур равны:

  1.  Термическое сопротивление:

а) от газа к поверхности трубы:

б) стенки:

в) первого изолятора:

г) второго изолятора:

д) от второго изолятора к окружающей среде:

Ответ:


Заключение

Коэффициент теплоотдачи α характеризует процесс передачи тепла от некоторого теплоносителя (жидкость или газ) к твердой стенке. Определяется параметрами данного теплоносителя (режим течения, скорость, теплофизические характеристики типа плотности, вязкости и теплопроводности), а также характеристиками той части стенки, которая омывается данным теплоносителем (характерный размер, наличие оребрения и т.д.).

Коэффициент теплопередачи k характеризует процесс передачи тепла между двумя теплоносителями через разделяющую их твердую стенку. Определяется коэффициентами теплоотдачи обоих теплоносителей и параметрами теплопередающей стенки (ее толщина и теплопроводность).

Разница между теплоотдачей α и теплопередачей k состоит в следующем. Суммарный перенос тепла складывается из нескольких стадий: стадия теплопереноса в первой среде, стадия теплопереноса от первой среды к стенке, стадия теплопереноса в самой стенке, стадия теплопереноса от стенки ко второй среде, стадия теплопереноса во второй среде. Коэффициенты теплоотдачи описывают отдельные стадии этого суммарного теплопереноса на стадии среда-стенка. А коэффициент теплопередачи описывает суммарный теплоперенос в целом со всеми его стадиями. По этой причине вначале всегда рассчитываются коэффициенты теплоотдачи α, а затем через них рассчитывается коэффициент теплопередачи k.


ЛИТЕРАТУРА

  1.  Кузовлев В. А.  Техническая термодинамика и основы теплопередачи. – М.: Высшая школа, 1983.
  2.  Луканин В. Н., Шатров М. Г., Камфер Г.М.  Теплотехника. – М.: Высшая школа, 1999.
  3.  Михеев М. А., Михеева И. М. Основы теплопередачи. – М.: Энергия, 1977.
  4.  Чепикова Т.П., Теплотехника. Расчет и анализ газового цикла - Методическое пособие по теплотехнике: ЧТИ ИжГТУ, 2010.
  5.  Чепикова Т.П., Теплотехника. Основы теплообмена - Методическое пособие по теплотехнике: ЧТИ ИжГТУ, 2005.

 

А также другие работы, которые могут Вас заинтересовать

32781. Определение коэффициентов восстановления скорости и энергии шаров 150.23 KB
  Схема лабораторной установки схема проведения эксперимента Установка включает в свой состав: 1 основание; 2 вертикальную стойку; 3 верхний кронштейн; 4 корпус; 5 электромагнит; 6 нити для подвески металлических шаров; 7 провода для обеспечения электрического контакта шаров с клеммами 10. Основание снабжено тремя регулируемыми опорами 8 и зажимом 9 для фиксации вертикальной стойки 2 выполненной из металлической трубы ; на верхнем кронштейне 3 предназначенном для подвески шаров расположены узлы регулировки обеспечивающие...
32782. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ЖИДКОСТИ ПРИ ПОМОЩИ КАТЕТОМЕТРА 1.2 MB
  ЦЕЛЬ И МЕТОД РАБОТЫ научиться работать с катетометром В 630; определить плотность жидкости с помощью катетометра используя метод сообщающихся сосудов. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ Плотность жидкости можно определить с помощью сообщающихся сосудов. 1 поверх жидкости известной плотности  наливают в оба колена исследуемую жидкость неизвестной плотности .
32783. ОПРЕДЕЛЕНИЕ УНИВЕРСАЛЬНОЙ ГАЗОВОЙ ПОСТОЯННОЙ 532 KB
  ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ На базе экспериментальных законов БойляМариотта ГейЛюссака Шарля Клапейрон установил что для разреженных газов выполняется соотношение 1 где P – давление газа Па V – объем газа м3 T – абсолютная температура К C – газовая постоянная зависящая от массы газа.=1013105 Па и T=273 К один моль любого газа занимает один и тот же объем равный =224 литра=224102 м3 поэтому для одного моля газа из соотношения 1 получаем: или 2 где величина R=831 одинакова для всех...
32784. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЁМКОСТЕЙ ДЛЯ ВОЗДУХА 256.5 KB
  Избыток давления воздуха в Рис. Пусть при состоянии 1 в баллоне объемом V масса воздуха равна m. Масса воздуха m занимала перед открытием крана К2 объем V1 где V1 V.
32785. Определение ускорения свободного падения при помощи машины Атвуда 569.5 KB
  Северодвинске Факультет: № 4 Кафедра: № 12 Лабораторная работа Определение ускорения свободного падения при помощи машины Атвуда г. Северодвинск 2007 Лабораторная работа ФМ 11 Определение ускорения свободного падения при помощи машины Атвуда 1. Цель и метод: С помощью машины Атвуда исследовать законы кинематики и научиться экспериментально определять ускорение свободного падения. Законы свободного падения тел открыл итальянский физик Галилео Галилей 1564 ― 1642.
32786. Изучение законов колебания математического и физического маятников 251.5 KB
  Определить положение центра масс физического маятника. Отклонение маятника от положения равновесия будем характеризовать углом образованным нитью с вертикалью рис. При отклонении маятника от положения равновесия возникает вращательный момент силы тяжести равный по модулю произведению силы mg на её плечо = l sin : M = mgl sin где m масса; l длина маятника. 1 Напишем для маятника уравнение динамики вращательного движения обозначив угловое...
32787. Происхождение, сущность и социальные функции науки 15.93 KB
  Наука – исторически сложившаяся форма духовнопрактического освоения мира направленная на познание и преобразование объективной действительности. Понятие наука имеет несколько аспектов: 1 система знаний 2 их духовное производство 3 практическая деятельность на их основе4 социальный институт. Этот аспект подчеркивает социальную сущность науки: наука как социальный институт представляет собой систему взаимосвязей между научными коллективами организациями членами научных сообществ а также систему норм и ценностей. Наука прошла...
32788. Особенности научного познания 14.79 KB
  Особенности научного познания. Цель научного познания – открытие объективных законов природы общества мышления постижение сущности изучаемых явлений. Объективность – адекватное отражение действительности не зависящее от субъекта познания. Наличие методологии познания.
32789. Уровни и методы научного познания 14.54 KB
  Уровни и методы научного познания. В научном познании используются разнообразные методы. Метод греч. Учение о методах – методология ее предметом является обоснование методов исследование их эффективности особенностей применения в различных областях знания.