3405

Теплотехнический расчет теплопередач

Курсовая

Производство и промышленные технологии

Задача №1. Расчет теплопередачи через плоскую многослойную стенку Плоская стальная стенка толщиной. Определить коэффициент теплопередачи k от газов к воде, плотность теплового потока q и температуры обеих поверхностей стенки, если известны коэффициенты теплоотдачи от газа к стенке α1 и от стенки к воде α2, коэффициент теплопроводности стали λ....

Русский

2012-10-31

58.57 KB

276 чел.

Задача №1. Расчет теплопередачи через плоскую многослойную стенку

Плоская стальная стенка толщиной δс омывается с одной стороны горячими газами с температурой , а с другой стороны – водой с температурой .

Определить коэффициент теплопередачи k от газов к воде, плотность теплового потока q и температуры обеих поверхностей стенки, если известны коэффициенты теплоотдачи от газа к стенке α1 и от стенки к воде α2, коэффициент теплопроводности стали λ.

Определить также все указанные выше величины, если стенка со стороны воды покроется слоем накипи толщиной δн; коэффициент теплопроводности накипи .

Построить температурные графики в R,t и x,t - координатах.

Объяснить, в чем состоит вред отложения накипи на стальных поверхностях нагрева.

Исходные данные:

Решение

Выполним расчет для двух случаев:

  1.  при отсутствии накипи;
  2.  при наличии накипи.

  1.  Первый случай – чистая стальная стенка
  2.  Коэффициент теплопередачи:

  1.  Плотность теплового потока:

  1.  Температуры поверхностей:

Для определения температуры стенок и составим уравнения для плотности теплового потока. Так как тепловой поток один и тот же во всех  процессах, то получим следующие выражения:

  1.  плотность теплового потока от горячего газа к стенке по формуле    Ньютона – Рихмана:

  1.  Плотность теплового потока, обусловленная теплопроводностью через твёрдую стенку по закону Фурье:

  1.  плотность теплового потока от поверхности стенки к воде описывается законом Ньютона – Рихмана:

Из этих уравнений найдем соответствующие размерности температур:

Отсюда,

температура стенки со стороны газов:

температура стенки со стороны воды:


  1.  Второй случай – стальная стенка покрытая слоем накипи
  2.  Коэффициент теплопередачи:

  1.  Плотность теплового потока:

  1.  Температуры поверхностей:

Для определения температуры стенок  и составим уравнения для плотности теплового потока. Так как тепловой поток один и тот же во всех трёх процессах, то получим следующие выражения:

  1.  плотность теплового потока от горячего газа к стенке по формуле    Ньютона – Рихмана:

  1.  плотность теплового потока, обусловленная теплопроводностью через твёрдую стенку по закону Фурье:

  1.  плотность теплового потока, обусловленная теплопроводностью через слой накипи по закону Фурье:

  1.  плотность теплового потока от поверхности стенки к воде по формуле    Ньютона – Рихмана:

Из этих уравнений найдем соответствующие размерности температур:

Отсюда, температура стенки со стороны газов:

температура стенки со стороны накипи:

температура стенки со стороны воды:

  1.  Термическое сопротивление:

а) от газа к поверхности стенки:

б) стенки:

в) накипи:

г) от накипи к жидкости

Ответ:


Заключение

Теплопроводность накипи в десятки, а зачастую в сотни раз меньше теплопроводности стали, из которой изготовляют теплообменники. Поэтому даже тончайший слой накипи создаёт большое термическое сопротивление и может привести к такому перегреву труб паровых котлов и пароперегревателей, что в них образуются отдулины и свищи, часто вызывающие разрыв труб.

В решении задачи отражено, что температура стальной стенки со стороны газов, имеющая слой накипи толщиной 1 мм, нагревается на 4 градуса больше, чем чистая стальная стенка.


Задача №2. Расчет теплопередачи через

цилиндрическую многослойную стенку

Паропровод с наружным диаметром  и внутренним  покрыт двумя слоями тепловой изоляции с наружными диаметрами  и . Внутренний слой выполнен из материала с коэффициентом теплопроводности ; наружный – из материала с . Коэффициент теплопроводности стенки паропровода . Температура пара  и окружающего воздуха . Коэффициенты теплоотдачи от пара к стенке ; от стенки к воздуху - .

Определить линейный коэффициент теплопередачи  линейную плотность теплового потока , общее линейное термическое сопротивление теплопередачи и температуры всех поверхностей.

Построить температурный график в d,t и R,t – координатах.

Примечание: задачу решать при условии, что длина паропровода значительно больше его толщины; лучистым теплообменом пренебречь.

Объяснить физический смысл коэффициентов теплоотдачи и теплопередачи. От каких факторов зависит их величина.

Исходные данные:

Решение

  1.  Коэффициент теплопередачи:

  1.  Линейная плотность теплового потока:

  1.  Полное термическое сопротивление

  1.  Температуры поверхностей:

Температуры поверхностей соприкосновения паропровода со слоями изоляции найдем из уравнений плотности теплового потока:

  1.  от пара к внутренней поверхности паропровода по закону Ньютона -Рихмана:

  1.  от внутренней к наружной поверхности паропровода, обусловленная теплопроводностью по закону Фурье:

  1.  от наружной поверхности паропровода к первому слою изоляции по закону Фурье:

  1.  от первого слоя изоляции ко второму по закону Фурье:

Отсюда необходимые значения температур равны:

  1.  Термическое сопротивление:

а) от газа к поверхности трубы:

б) стенки:

в) первого изолятора:

г) второго изолятора:

д) от второго изолятора к окружающей среде:

Ответ:


Заключение

Коэффициент теплоотдачи α характеризует процесс передачи тепла от некоторого теплоносителя (жидкость или газ) к твердой стенке. Определяется параметрами данного теплоносителя (режим течения, скорость, теплофизические характеристики типа плотности, вязкости и теплопроводности), а также характеристиками той части стенки, которая омывается данным теплоносителем (характерный размер, наличие оребрения и т.д.).

Коэффициент теплопередачи k характеризует процесс передачи тепла между двумя теплоносителями через разделяющую их твердую стенку. Определяется коэффициентами теплоотдачи обоих теплоносителей и параметрами теплопередающей стенки (ее толщина и теплопроводность).

Разница между теплоотдачей α и теплопередачей k состоит в следующем. Суммарный перенос тепла складывается из нескольких стадий: стадия теплопереноса в первой среде, стадия теплопереноса от первой среды к стенке, стадия теплопереноса в самой стенке, стадия теплопереноса от стенки ко второй среде, стадия теплопереноса во второй среде. Коэффициенты теплоотдачи описывают отдельные стадии этого суммарного теплопереноса на стадии среда-стенка. А коэффициент теплопередачи описывает суммарный теплоперенос в целом со всеми его стадиями. По этой причине вначале всегда рассчитываются коэффициенты теплоотдачи α, а затем через них рассчитывается коэффициент теплопередачи k.


ЛИТЕРАТУРА

  1.  Кузовлев В. А.  Техническая термодинамика и основы теплопередачи. – М.: Высшая школа, 1983.
  2.  Луканин В. Н., Шатров М. Г., Камфер Г.М.  Теплотехника. – М.: Высшая школа, 1999.
  3.  Михеев М. А., Михеева И. М. Основы теплопередачи. – М.: Энергия, 1977.
  4.  Чепикова Т.П., Теплотехника. Расчет и анализ газового цикла - Методическое пособие по теплотехнике: ЧТИ ИжГТУ, 2010.
  5.  Чепикова Т.П., Теплотехника. Основы теплообмена - Методическое пособие по теплотехнике: ЧТИ ИжГТУ, 2005.

 

А также другие работы, которые могут Вас заинтересовать

1147. Реализация программного продукта Система покупки билетов онлайн 460.5 KB
  Описание состава команды, и выполненные работы по ролям. ER-диаграмма базы данных с подробным описанием. Блок-схема одного из алгоритма данного программного продукта. Описание процесса тестирования: сценарий тестирования, входные данные тестов, выходные данные тестов.
1148. Разработка информационно аналитической системы Театр с использованием технологии объектно-ориентированного программирования 451.5 KB
  Данная программа реализует режимы учета спектаклей и участвующих в них актеров в зависимости от вида, стоимости билетов, количества оставшихся и проданных билетов, даты, анализа спектаклей и концертов по популярности.
1149. Выявление особенностей финансово-экономического развития ЗАО Аргументы и факты 348 KB
  Общая информация об организации и анализ внутренней среды ЗАО Аргументы и факты. Анализ внешней макросреды. Конъюнктура рынка. Анализ финансово-экономического положения ЗАО Аргументы и факты Анализ внешнего микроокружения ЗАО Аргументы и факты
1150. Табулирование трансцендентных функций 460 KB
  Изучение и сравнение различных способов приближенного вычисления заданной функции. Вычисление погрешности интерполирования. Корни полинома Чебышева. Построение графиков погрешностей. Вычисление интегралов с помощью формулы трапеций.
1151. Субмаринная разрузка пресных подземных вод 285 KB
  Технические средства системы поиска субмаринных источников. Технические средства системы управления волновой энергоустановки. Описание алгоритма поиска субмаринных источников. Волнонасос поршневого типа. Гидротурбина с радиально-осевым приводом.
1152. Преобразование Хартли и Габора, косинусное преобразование 74 KB
  Непрерывное и дискретное преобразование Хартли. Непрерывное преобразование Габора. Непрерывное и дискретное косинусное преобразование.
1153. Расчёт смесительного каскада 249.5 KB
  Найдем частоту гетеродина и расположим частоты каналов приёма в линейном режиме преобразования частоты и, соблюдая масштаб, сделаем график спектра. Проходная ВАХ транзистора КТ321В. Рассчитаем значения амплитуды первой гармоники тока коллектора. Методом пяти точек вычисляют шумовые параметры транзистора в смесительном режиме.
1154. Изучение основных принципов языка Delphi и C++ 436.5 KB
  Разработка приложений с графическим интерфейсом пользователя. Изучение принципов процедурного программирования. Сравнение языков С++ и Delphi. Объявление класса и инкапсуляция, наследование. Графическая среда Delphi. Сравнение графических оболочек и текстовых редакторов Visual Studio и Delphi 7.
1155. Основы электроники 1.27 MB
  Изучением физических принципов функционирования электронных элементов. Изучением принципов построения, особенностью действия, основ характеристик электронных устройств и систем. Теоретическим и экспериментальным исследованием элементов, устройств и систем.