3411

Быстрорежущие стали

Контрольная

Производство и промышленные технологии

Классификация быстрорежущих сталей Быстрорежущие стали широко применяют для изготовления режущего инструмента, работающего в условиях значительного силового нагружения и нагрева (до 600–640 °С) режущих кромок. К этой группе сталей относятся...

Русский

2012-10-31

65.05 KB

57 чел.


1.1 Классификация быстрорежущих сталей

Быстрорежущие стали широко применяют для изготовления режущего инструмента, работающего в условиях значительного силового нагружения и нагрева (до 600–640 °С) режущих кромок. К этой группе сталей относятся высоколегированные вольфрамом совместно с другими карбидообразующими элементами (молибден, хром, ванадий) стали, приобретающие высокие твердость, прочность, тепло- и износоустойчивость в результате двойного упрочнения: а) мартенситного при закалке; б) дисперсионного твердения при относительно высоком отпуске (500–620 °С), вызывающего выделение упрочняющих фаз.

1.2 Свойства и марки быстрорежущих сталей

Наиболее высокую теплостойкость (до 700–720 °С) имеют высоколегированные сплавы системы Fe—Co—W—Mo с интерметаллидным упрочнением (марки В4М12К23 и В11М7К23). После окончательной термообработки структура этих сплавов состоит из безуглеродистого (или малоуглеродистого) мартенсита с невысокой твердостью (30–40 HRCЭ) и мелкодисперсных интерметаллидов (Fe,Co)7(W,Mo)6, Fe3W2(Fe3Mo2), (Fe,Co,Ni)7 (W,Mo)6.

Таблица 1.1 - Марки и химический состав быстрорежущих сталей (ГОСТ 19265–73)

Марка
стали

Углерод

Хром

Вольфрам

Ванадий

Кобальт

Молибден

Азот

Ниобий

1

2

3

4

5

6

7

8

9

Стали нормальной производительности

Р18

0,73–0,83

3,80–4,40

17,00–18,50

1,00–1,40

 0,50

 1,0

Р9

0,85–0,95

3,80–4,40

8,50–9,50

2,30–2,70

 0,50

 1,0

Р6М5

0,82–0,90

3,80–4,40

5,50–6,50

1,70–2,10

 0,50

4,80–5,30

11Р3АМ3Ф2

1,02–1,12

3,80–4,30

2,50–3,30

2,30–2,70

 0,50

2,50–3,00

0,05–0,10

0,05–0,20

1

2

3

4

5

6

7

8

9

Стали повышенной производительности

Р6М5Ф3

0,95–1,05

3,80–4,30

5,70–6,70

2,30–2,70

 0,50

4,80–5,30

Р12Ф3

0,95–1,05

3,80–4,30

12,00–13,00

2,50–3,00

 0,50

 1,00

Р18К5Ф2

0,85–0,95

3,80–4,40

17,00–18,50

1,80–2,20

4,70–5,20

 1,00

Р9К5

0,90–1,00

3,80–4,40

9,00–10,00

2,30–2,70

5,00–6,00

 1,00

Р6М5К5

0,84–0,92

3,80–4,30

5,70–6,70

1,70–2,10

4,70–5,20

4,80–5,30

Стали высокой производительности

Р9М4К8

1,00–1,10

3,00–3,60

8,50–9,50

2,30–2,70

7,50–8,50

3,80–4,30

Р2АМ9К5

1,00–1,10

3,80–4,40

1,50–2,00

1,70–2,10

4,70–5,20

8,00–9,00

0,05–010

0,10–0,30

В11М7К23*

0,05–0,15

 0,5

10,5–12,5

0,4–0,8

22,5–24,0

7,00–8,00

В4М12К23*

0,05–0,15

 0,5

3,8–4,4

0,4–0,8

22,5–24,0

12,00–13,00

Примечания:

  1.  В марках стали буквы и цифры означают: Р — быстрорежущая; цифра, следующая за буквой, — среднюю массовую долю вольфрама, М — молибден, Ф — ванадий, К — кобальт, А — азот; цифры следующие за буквами, означают соответственно массовую долю молибдена, ванадия и кобальта.

В обозначениях марок стали не указывают массовую долю: хрома — при любой массовой доле; молибдена — до 1 % включительно; ванадия — в стали марок Р18, Р9, Р6М5, Р9К5, Р6М5К5, Р9М4К8 и Р2АМ9К5; азота — в стали марок 11Р3АМ3Ф2 и Р2АМ9К5.

  1.  По требованию потребителя допускается изготовление стали марок Р6М5 и Р6М5Ф3 с легированием азотом (массовая доля азота 0,05–0,10 %). В этом случае наименование марок — Р6АМ5 и Р6АМ5Ф3.

* Состав указан по ТУ.

Быстрорежущие стали обозначаются буквами, соответствующими карбидообразующим и легирующим элементам: Р - вольфрам, М - молибден, Ф - ванадий, А - азот, К - кобальт, Т - титан, Ц - цирконий). За буквой следует цифра, обозначающая среднее массовое содержание элемента в процентах (содержание хрома около 4 процентов в обозначении марок не указывается).

Цифра, стоящая в начале обозначения стали, указывает содержание углерода в десятых долях процента (например, сталь 11Р3АМ3Ф2 содержит около 1,1 % С; 3 % W; 3 % Мо и 2 % V). Режущие свойства быстрорежущих сталей определяются объемом основных карбидообразующих элементов: вольфрама, молибдена, ванадия и легирующих элементов- кобальта, азота. Ванадий в связи с малым массовым содержанием (до 3 % ) обычно не учитывается, и режущие свойства сталей определяются, как правило, вольфрамовым эквивалентом, равным (W+2Mo)%. В прейскурантах на быстрорежущие стали выделяют три группы сталей: стали 1-й группы с вольфрамовым эквивалентом до 16 % без кобальта, стали 2-й группы- до 18 % и содержанием кобальта около 5 %,  2ста 0ли 3-й группы- до 20 % и содержанием кобальта 5-10 %. Соответственно, различаются и режущие свойства этих групп сталей.

1.3 Область применения быстрорежущих сталей

Область применения быстрорежущих сталей показана в таблице 1.2

Таблица 1.2 - Рекомендуемые области применения основных марок быстрорежущих сталей

Обрабатываемый материал

Виды инструментов

Резцы

Сверла

Развертки, зенкеры

Метчики,

плашки

Протяжки,

прошивки

Фрезы

Зуборезный инструмент

Ножовочные полотна, пилы

Концевые, дисковые

Насадные, торцевые

Углеродистые и низколегированные стали

Р6М5Ф3

Р6М5К5*1

Р9К5

Р6М5

11РЗАМ3Ф2

Р6М5Ф3

Р12Ф3

Р6М5

Р6М5Ф3

Р6М5К5*1

Р6М5

11РЗАМ3Ф2

Р6М5Ф3

Р6М5Ф3

Р6М5

Р6М5

Р6М5Ф3*1

Р6М5К5

Р6М5

Р6М5Ф3

Р6М5К5*1

Р6М5

Р6М5Ф3

Р6М5К5*1

Р9М4К8*1

11Р3АМ3Ф2

Р6М5

Р9

Высоколегированные конструкционные, нержавеющие и легированные улучшенные стали

Р9К5

Р12Ф4К5

Р6М5К5

Р6М5Ф3

Р12Ф3

Р6М5К5

Р18

Р6М5Ф3

Р6М5К5

Р9М4К8

Р18

Р6М5

Р6М5Ф3

Р6М5К5

Р18

Р6М5Ф3

Р6М5К5

Р9К5

Р6М5К5

Р9М4К8

Р9К5

Р6М5К5

Р9К5

Р6М5К5

Р9М4К8

11Р3АМ3Ф2

Р6М5

Р9

Жаропрочные стали и сплавы, высокопрочные стали

Р18К5Ф2

Р12Ф4К5*2

Р6М5К5

В4М12К23

Р6М5К5

Р9М4К8

Р18К5Ф2

Р12Ф4К5

Р6М5К5

Р9К5

Р6М5Ф3

Р6М5К5

Р18

Р6М5Ф3

Р6М5К5

Р18К5Ф2

Р9М4К8

Р6М5К5

В11М7К23

Р18К5Ф2

Р12Ф4К5*2

Р6М5К5

В4М12К23

Р9М4К8

Р6М5К5

Р6М5

Примечание. Выделены наиболее предпочтительные марки стали.

*1 При работе на повышенных скоростях резания.

*2 Для инструментов простой формы.

Кроме стандартных, применяются и специальные быстрорежущие стали, содержащие, например, карбонитриды титана. Однако высокая твердость заготовок этих сталей, сложность механической обработки не способствующих широкому распространению. При обработке труднообрабатываемых материалов находят применение порошковые быстрорежущие стали Р6М5-П и Р6М5К5-П. Высокие режущие свойства этих сталей определяются особой мелкозернистой структурой, способствующей повышению прочности, уменьшению радиуса скругления режущей кромки, улучшенной обрабатываемости резанием и в особенности шлифованием. В настоящие время проходят промышленные испытания безвольфрамовые быстрорежущие стали с повышенным содержанием различных легирующих элементов, в том числе алюминия, малибдена, никеля и других

Один из существенных недостатков быстрорежущих сталей связан с карбидной неоднородностью, т.е. с неравномерным распределением карбидов по сечению заготовки, что приводит, в свою очередь, к неравномерной твердости режущего лезвия инструмента и его износа. Этот недостаток отсутствует у порошковых и мартенситно-стареющих (с содержанием углерода менее 0,03%) быстрорежущих сталей.

2 Развертки

Развертки предназначены для изготовления точных отверстий и обеспечивают высокое качество обработанной поверхности. Различают развертки машинные и ручные, а по форме обрабатываемого отверстия - цилиндрические и конические. Развертки имеют 6-16 зубьев, распределяемых по окружности, как правило, неравномерно, что обеспечивает более высокое качество обработанной поверхности. Развертки могут быть с цилиндрическим или коническим хвостовиком.

Развертки:

Рисунок 2.1

а) - ручная с цилиндрическим хвостовиком, б) - машинная цельная с коническим хвостовиком, в) - машинная цельная насадная, г) - машинная сборная со вставными ножами, оснащенными пластинами из твердого сплава

Ручная цельная развертка с цилиндрическим хвостовиком (смотри рисунок) состоит из рабочей части, шейки и хвостовика. Рабочая часть включает в себя направляющий конус с углом при вершине 90 градусов, режущую, калибрующую часть и обратный конус. Режущая часть выполняет основную работу резания. У ручных разверток длину режущей части делают значительно большей, чем у машинных. Угол режущей части развертки составляет 2φ. При обработке сквозных отверстий φ=0,5-1,5 градуса У ручных разверток, φ=12-15 градусов у машинных разверток и разверток, оснащенных пластинами из твердых сплавов, φ=30-45 градусов. При обработке глухих отверстий φ=45 градусов у ручных разверток, φ=60 градусов у машинных разверток и φ=75 градусов у твердосплавных разверток. Калибрующая часть служит для направления развертки при резании и калибровании отверстия. Обратный конус уменьшает трение развертки об обработанную поверхность и снижает величину разбивки отверстия. У ручных разверток диаметр около шейки меньше калибрующего на 0,005-0,008 мм, у машинных - на 0,04-0,08 мм. Передний угол γ=0 градусов у чистовых разверток из быстрорежущих сталей, γ=5-10 градусов у черновых разверток из быстрорежущих сталей и γ=0-5 градусов у твердосплавных разверток. Задний угол на режущей и калибрующей частях разверток γ=6-10 градусов.

Для   уменьшения   разбивки   обрабатываемого   отверстия    развертку

рекомендуется закреплять в плавающем патроне.

    При резании развертка снимает очень маленькие припуски:  порядка  0,4-

0,6 мм. Поэтому сила резания невелика и зубья развертки  испытывают  весьма

малые нагрузки. Тепловыделения в зоне резания также незначительны.  Однако,

применять СОЖ необходимо для уменьшения износа режущей и калибрующей частей

развертки.

    Развертки работают с малыми толщинами среза и на  относительно  низких

скоростях  резания,  поэтому  они  изнашиваются   в   основном   по   задней

поверхности и уголку; захватывается при этом и ленточка. Развертка  является

чистовым  (отделочным)  инструментом,  а  потому  за  критерий   ее   износа

принимается технологический износ. Максимально  допустимая  величина  износа

по задней поверхности для разверток из инструментальных сталей h3 =  0,5-0,8

мм; для разверток с пластинками из твердых сплавов h3 = 0,4-0,7 мм.

     При работе изношенной  разверткой  отверстие  может  быть  меньше  или

больше номинального размера развертки. Последнее объясняется тем, что зубья

развертки изнашиваются неравномерно. Мелкая стружка и  металлическая  пыль,

образующиеся при развертывании,  заклиниваясь  между  стенкой  отверстия  и

изношенным  в  большей  степени  зубом,  отжимают  развертку  на  некоторую

величину.  Противоположный  зуб  начинает  срезать  слой  большей  глубины,

увеличивая диаметр отверстия. Заклиненная мелкая стружка царапает при  этом

обработанную поверхность, увеличивая ее шероховатость.

3 Шпоночные протяжки

Протягивание является одним из наиболее высокопроизводительных  процессов обработки деталей резанием. Высокая производительность процесса протягивания объясняется тем, что одновременно находится в работе несколько зубьев инструмента с большой суммарной длиной режущих кромок.

Протяжка - многозубый инструмент, которому в отличие от резца, придается определенное движение подачи на глубину резания; у протяжки эта подача осуществляется в самой конструкции, так как каждый последующий зуб выше предыдущего. Движение резания прямолинейное.

Протяжки позволяют получать поверхности  высокой точности (7-8 квалитет) и низкой шероховатости.

При правильной эксплуатации протяжки имеют высокую стойкость и долговечность. Однако протяжки - это сложный и дорогостоящий многолезвийный инструмент. Он узко специализирован для обработки одной или группы деталей с определенным контуром обрабатываемой поверхности, поэтому его применяют главным образом в массовом и крупносерийном производстве. В мелкосерийном производстве протяжки используют лишь тогда, когда другим способом нельзя получить необходимую точность обработанной поверхности детали, например, многошпоночных и многошлицевых отверстий. Другой случай рентабельного применения протяжек в мелкосерийном производстве, когда формы обрабатываемых поверхностей и их размеры нормализованы.

Для некоторых видов поверхностей, таких как эвольвентные, шлицевые, винтовые отверстия, протягивание является единственным методом их формообразования. Протягивание инструментами из быстрорежущей стали производится при сравнительно низких скоростях резания 3-8 м/мин, получаемых в результате поступательного или вращательного движения протяжки. Исключением является обработка деталей тел вращения, когда окружная скорость вращения деталей 25-35 м/мин.

Протяжка обычно закрепляется в ползуне станка и перемещается вместе с ним. При работе круглой протяжкой это перемещение осуществляется вдоль оси отверстия. Постепенно увеличивающиеся в размерах зубья протяжки срезают слои металла, увеличивая при этом размеры отверстия.

По конструкции протяжки бывают цельные и сборные. По схемам резания они различаются на одинарные (обычные) и групповые (протяжки переменного резания). Протяжки чаще всего делают комбинированными, выполняющими черновую и чистовую окончательную обработку. Однако в некоторых случаях протяжки изготовляют только с режущими или только с калибрующими зубьями. Первые удаляют основной припуск под протягивание. Вторые имеют несколько чистовых и калибрующих зубьев, которые окончательно обрабатывают отверстие.

Рисунок 3.1

Протяжка (рисунок 3.1) состоит из следующих частей:

  1.  Хвостовик, служит для закрепления протяжки в патроне станка.
  2.  Шейка, является вспомогательным элементом, связывающий хвостовик с направляющей и рабочей частями протяжки.
  3.  Переходный конус, облегчает направление детали или протяжки в момент входа направляющей части  в отверстие.
  4.  Направляющая часть, служит для центрирования обрабатываемого отверстия относительно оси протяжки, а также исключает перекос детали на протяжке.
  5.  Режущая часть, является основной, которая срезает необходимый металл в заготовке.
  6.  Калибрующая часть, доводит поверхность обрабатываемой детали до нужной чистоты и размеров.
  7.  Задняя часть, служит для крепления суппорта станка.

Библиографический список

  1.  Иноземцев Г.Г. //Проектирование металлорежущих инструментов// Учеб. пособие для втузов по специальности « Технология машиностроения, металлорежущие станки и инструменты». – М.: Машиностроение, 1984. – 272 с., ил.
  2.  Кожевников Д.В., Гречишников В.А., Кирсанов С.В., Кокарев в,и,, Схиртладзе А.Г. //Режущий инструмент// Учебник для вузов [Текст] / Под редакцией С.В. Кирсанова. – М.: Машиностроение, 2004. 512 с., ил.
  3.  Справочник конструктора-инструментальщика// Под общ. Редакцией В.И. Баранчикова. – М.: Машиностроение, 1994. – 560 с., ил. – (Библиотека конструктора)
  4.  Резание металлов и режущий инструмент. – В.А.Аршинов, Г.А.Алексеев. -  М.: Машиностроение, 19



 

А также другие работы, которые могут Вас заинтересовать

42878. Графы и алгоритмы на графах. Решение обыкновенных дифференциальных уравнений. Разработка программы для решения системы ОДУ, описывающей простейшую модель экосистемы (модель Лотка-Вольтерра). Методы оптимизации 1.58 MB
  Оптимизация как раздел математики существует достаточно давно. Оптимизация - это выбор, т.е. то, чем постоянно приходится заниматься в повседневной жизни. Термином "оптимизация" в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего или "оптимального" решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. По этому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.
42879. Создания простейшей экспертной системы 69.17 KB
  Если реакция системы не понятна пользователю то он может потребовать объяснения: CLIPS Первоначально аббревиатура CLIPS была названием языка С Lnguge Integrted Production System язык С интегрированный с продукционными системами удобного для разработки баз знаний и макетов экспертных систем. Теперь CLIPS представляет собой современный инструмент предназначенный для создания экспертных систем expert system tool. CLIPS состоит из интерактивной среды экспертной оболочки со своим способом представления знаний гибкого и мощного...
42880. Состояния международного туризма на современном этапе 84.24 KB
  Туризм – явление, известное каждому. Во все времена нашу планету пересекали многочисленные путешественники и первопроходцы. Но лишь недавно туризм возник как специфическая форма деятельности людей. Каждый из нас представляет себе туризм как отрасль, более или менее известную, поскольку все мы куда-то ездили и проводили отпуска вдали от дома. Туризм - сравнительно молодой феномен, имеющий, однако, корни, уходящие в древние времена.
42881. Поняття туризму. Класифікація, види і форми туризму 59.48 KB
  Термін туризм (tourism) першим вжив В. Жекмо в 1830 р. Слово «туризм» походить від французького «tour», що означає «прогулянка». До недавнього часу в різних країнах поняття «туризм», «турист» розумілися неоднаково. З розвитком туризму в сучасному світі, особливо міжнародного і з створенням міжнародних туристичних організацій, стало необхідним дати загальноприйняте визначення поняття «турист» і відповідно «туризм».
42882. SMS-Flooder 284.94 KB
  При атаках автоматизированных систем достаточно сложно определить предсказать уровень ущерба и риска который они могут предоставить. На основе вышеизложенного рассмотрим момент риска по формуле: Отсюда среднее значение ущерба для кривой риска будет равно Далее получим центральный момент риска: Откуда мы можем выразить второй центральный момент риска: Тогда среднеквадратичное отклонение будет иметь вид: Также оно может быть найдено относительно моды риска . Она может выражаться через решение следующего уравнения: Чтобы оценить ассиметрию...
42883. Химическая металлизация печатных плат 1.32 MB
  И так как вытравливается только этот минимальный слой около 3 мкм то величина подтравов минимальна до 2 мкм что позволяет воспроизводить проводники малой ширины. Поэтому в методе необходимо применять фоторезист толщиной около 30 мкм. Затяжкой Тентинг метод с общей металлизацией поверхности заготовки Слои 1 2 3 4 5 18 мкм 18 мкм 18 мкм Фольга 3 мкм 6 мкм 35 мкм Общая металлизация поверхности 30 мкм 40 мкм 40 мкм 50 мкм Фоторезист 25 мкм 35 мкм 35 мкм Металлизация рисунка 15 мкм 15 мкм Металлорезист 3 мкм 18 мкм 24 мкм 53 мкм Глубина...
42884. Разработка программы для построения графика временной функции в реальном и машинном времени 439 KB
  Создание MS-DOS QuickBASIC (сокращенное обозначение – QB) в середине 80-х годов произвело настоящую революцию в мире BASIC, результатом которой было то, что впервые этот язык занял достаточно прочные позиции среди средств разработки серьезных прикладных систем. В QuickBASIC в достаточно полной мере реализованы идеи структурного и модульного программирования, возможности использования процедур и функций.
42885. Разработка обучающей программы по планированию перемещения артиллерии при заданных рубежах: готовности; начала перемещения; выхода в атаку 247.06 KB
  После запуска следует выбрать какие рубежи заданы Для примера в варианте расчета при заданном рубеже начала перемещения дана схема отображающая перемещения войск в зависимости от введенных данных.