3425

Динамика вращательного движения твердого тела

Лекция

Физика

Динамика вращательного движения твердого тела.  Момент инерции. Момент силы. Основное уравнение динамики вращательного движения. Момент импульса.  Момент инерции. (Рассмотрим опыт со скатывающимися цилиндрами.) При рассмотрении вращательно...

Русский

2012-10-31

200.5 KB

147 чел.

Динамика вращательного движения твердого тела.

  1.  Момент инерции.

Момент силы. Основное уравнение динамики вращательного движения.

Момент импульса.

  1.  Момент инерции.

(Рассмотрим опыт со скатывающимися цилиндрами.)

При рассмотрении вращательного движения необходимо ввести новые физические понятия: момент инерции, момент силы, момент импульса.

Момент инерции является мерой инертности тела при вращательном движении тела вокруг неподвижной оси.

Момент инерции материальной точки относительно неподвижной оси вращения равен произведению её массы на квадрат расстояния до рассматриваемой оси вращения (рис.1):

.

зависит только от массы материальной точки и её положения относительно оси вращения и не зависит от наличия самого вращения.

Момент инерции - скалярная и аддитивная величина

Момент инерции тела равен сумме моментов инерции всех его точек

.

В случае непрерывного распределения массы эта сумма сводится к  интегралу:

,

где - масса малого объема тела ,   плотность тела,  - расстояние от элемента  до оси вращения.

Момент инерции является аналогом массы при вращательном движении. Чем больше момент инерции тела, тем труднее изменить угловую скорость вращаемого тела. Момент инерции имеет смысл только при заданном положении оси вращения.

Бессмысленно говорить просто о “моменте инерции”. Он зависит :

1)от положения оси вращения;

2)от распределения массы тела относительно оси вращения, т.е. от формы тела и его размеров.

Экспериментальным доказательством этого является опыт со скатывающимися цилиндрами.

Произведя интегрирование для некоторых однородных тел, можно получить следующие формулы (ось вращения проходит через центр масс тела):

  1.  Момент инерции обруча (толщиной стенок пренебрегаем) или полого цилиндра:

  1.  Момент инерции диска или сплошного цилиндра радиуса R:

,

где   .

  1.  Момент инерции шара

  1.  Момент инерции стержня

Если для тела известен момент инерции относительно оси, проходящей через центр масс, то момент инерции относительно любой оси, параллельной первой, находится по теореме Штейнера: момент инерции тела относительно произвольной оси равен моменту инерции J0 относительно оси, параллельной данной и проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями.

,

где d расстояние от центра масс до оси вращения.

Центр масс - воображаемая точка, положение которой характеризует распределение массы данного тела. Центр масс тела движется так же, как двигалась бы материальная точка той же массы под действием всех внешних сил, действующих на данное тело.

Понятие момента инерции было введено в механику отечественным ученым Л. Эйлером в середине XVIII века и с тех пор широко используется при решении многих задач динамики твердого тела. Значение момента инерции необходимо знать на практике при расчете различных вращающихся узлов и систем (маховиков, турбин, роторов электродвигателей, гироскопов). Момент инерции входит в уравнения движения тела (корабля, самолета, снаряда, и т.п.). Его определяют, когда хотят узнать параметры вращательного движения летательного аппарата вокруг центра масс при действии внешнего возмущения (порыва ветра и т.п.). Для тел переменной массы (ракеты) с течением времени изменяется масса и момент инерции.

2.Момент силы.

Одна и та же сила может сообщать вращающемуся телу разные угловые ускорения в зависимости от её направления и точки приложения. Для характеристики вращающего действия силы вводят понятие момента силы.

Различают момент силы относительно неподвижной точки и относительно неподвижной оси. Моментом силы относительно точки О (полюса) называется векторная величина, равная векторному произведению радиус-вектора  проведенного из точки О в точку приложения силы, на вектор силы:

Поясняющий это определение рис. 3 выполнен в предположении, что точка О и вектор  лежат в плоскости чертежа, тогда вектор  так же располагается в этой плоскости, а вектор к ней и направлен от нас (как векторное произведение 2-х векторов; по правилу правого буравчика).

Модуль момента силы численно равен произведению силы на плечо:

,

где  - плечо силы относительно точки О, - угол между направлениями  и , .

Плечо - кратчайшее расстояние от центра вращения до линии действия силы.

Вектор момента силы сонаправлен с поступательным движением правого буравчика, если его рукоятку вращать по направлению вращающего действия силы. Момент силы - аксиальный (свободный) вектор, он направлен вдоль оси вращения, не связан с определенной линией действия, его можно переносить в

пространстве параллельно самому себе.

Моментом силы относительно неподвижной оси Z называется проекция вектора  на эту ось (проходящую через точку О).

Если на тело действуют несколько сил, то результирующий момент сил относительно неподвижной оси Z равен алгебраической сумме моментов относительно этой оси всех сил, действующих на тело.

Если сила, приложенная к телу, не лежит в плоскости вращения, её можно разложить на 2 компоненты: лежащую в плоскости вращения  и к ней Fn. Как видно из рисунка 4, Fn вращения не создает, а приводит только к деформации тела; вращение тела обусловлено только составляющей F .

Вращающееся тело можно представить как совокупность материальных точек.

Выберем произвольно некоторую точку с массой mi , на которую действует сила , сообщая точке ускорение  (рис. 5). Поскольку вращение создает только тангенциальная составляющая, для упрощения вывода  направлена перпендикулярно оси вращения.

В этом случае

.

Согласно второму закону Ньютона: . Умножим обе части равенства на ri;

,

,

где  - момент силы, действующей на материальную точку,

- момент инерции материальной точки.

Следовательно, .

Для всего тела: ,

,

,          (1)

т.е. угловое ускорение тела прямо пропорционально моменту действующих на него внешних сил и обратно пропорционально его моменту инерции. Уравнение

(1) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси, или второй закон Ньютона для вращательного движения.

3. Момент импульса.

При сравнении законов вращательного и поступательного движений усматривается аналогия.

.

Аналогом импульса является момент импульса. Понятие момента импульса также можно ввести относительно неподвижной точки и относительно неподвижной оси, однако в большинстве случаев его можно определить следующим образом. Если материальная точка вращается вокруг неподвижной оси, то её момент импульса относительно этой оси по модулю равен

где mi - масса материальной точки,

i - её линейная скорость

ri - расстояние до оси вращения.

Т.к. для вращательного движения

,

,

,

где  - момент инерции материальной точки относительно этой оси.

Момент импульса твердого тела относительно неподвижной оси равен сумме моментов импульсов всех его точек относительно этой оси:

,       (2)

где - момент инерции тела.

Т.о., момент импульса твердого тела относительно неподвижной оси вращения равен произведению его момента инерции относительно этой оси на угловую скорость и сонаправлен с вектором угловой скорости.

Продифференцируем уравнение (2) по времени:

или   .                (3)

Уравнение (3) - ещё одна форма основного уравнения динамики вращательного  движения твердого тела относительно неподвижной оси: производная момента

импульса твердого тела относительно неподвижной оси вращения равна моменту внешних сил относительно той же оси

Это уравнение является одним из важнейших уравнений ракетодинамики. В процессе движения ракеты положение ее центра масс непрерывно изменяется, вследствие чего возникают различные моменты сил: лобового сопротивления, аэродинамической силы, сил создаваемых рулем высоты. Уравнение вращательного движения ракеты под действием всех приложенных к ней моментов сил совместно с уравнениями движения центра масс ракеты и уравнениями кинематики с известными начальными условиями позволяют определить положение ракеты в пространстве в любой момент времени.

Рис. 1

1

2

2

1

Рис.2

R

R

dr

Рис. 3

Рис. 4

Рис. 5

Рис.6


 

А также другие работы, которые могут Вас заинтересовать

53184. Закріплення теми «Креслення в системі прямокутних проекцій» 43 KB
  Получение изображения предмета на чертеже воображаемыми лучами называют проецированием Изображение предмета на плоскости методом проецирования называют проекцией Плоскость на которой получают проекцию называютплоскость проекции Назовите методы проецирования центральное и параллельное. Какой метод проецирования более простой и удобный для получения проекций в черчении Где используется метод центрального проецирования в изобразительном искусстве. Назовите три плоскости проецирования фронтальная горизонтальная...
53185. Застосування різних способів розкладання многочленів на множники 75.5 KB
  Мета: узагальнити й систематизувати знання, вміння і навички учнів; розвивати пізнавальну активність, логічне мислення, увагу; виховувати культуру математичного мовлення, упевненість у своїх силах.
53186. Піраміди гіпотез – домовини фактів 92 KB
  Тема: Піраміди гіпотез домовини фактівâ Мета: систематизувати знання за темою Пірамідаâ; розширити й поглибити пізнавальну активність з допомогою створення проблемних творчих завдань; створити змістовну базу для вивчення інших шкільних дисциплін астрономії фізики біології; сприяти виробленню в учнів бажання і потреби ділового співробітництва взаєморозуміння; розвивати монологічне мовлення учнів загальні трудові уміння. Обладнання: газета Піраміди гіпотез домовини фактівâ; альбом кросвордів за темою...
53187. Решение уравнений. Урок – игра математики в 6 классе 49.5 KB
  Многие задачи из жизни решаются на математическом языке с помощью уравнений. Поэтому очень важно, чтобы ваши знания и умения решать уравнения были прочны. Во время урока вам пригодятся находчивость, смекалка и сообразительность, потому что мы проведём наш урок в виде игры- соревнований.
53189. ГРА НА УРОЦІ АНГЛІЙСЬКОЇ МОВИ ЯК ЗАСІБ ПІДВИЩЕННЯ ПІЗНАВАЛЬНОЇ АКТИВНОСТІ ШКОЛЯРІВ 83 KB
  У школярів молодшого віку переважають ігрові інтереси, довільна поведінка, наочнообразне мислення, практичне ставлення до розвязування завдань. Зважаючи на все це, доцільно у роботі з ними на уроках іноземної мови систематично застосовувати елементи гри у поєднані з бесідою, елементами самостійної роботи.
53190. Інтерактивна ділова гра ток-шоу «Я так думаю» 37.5 KB
  Правила гри: Усі учасники мають рівні права; Кожен учасник має право висловити свою думку; Думка кожного має бути почута врахована та прийнята. Учасники ділової гри: всі педагогічні працівники. Загальний сценарій: учасники обєднуються в чотири групи Батьки Діти Педагоги та Експерти; ведучий розяснює мету гри загальний сценарій та правила гри; групова гра: розігрування ситуації відповідно до обраних ролей; міжгрупова дискусія керована ведучим; підсумок гри за допомогою експертів.
53191. Гра як засіб всебічного розвитку учнів 139.5 KB
  За її допомогою діти пізнають світ. В грі діти перевіряють свою силу і спритність у них виникають бажання фантазувати відкривати таємниці і прагнути чогось прекрасного. Захопившись грою діти не помічають що навчаються до активної діяльності залучаються навіть найпасивніші учні. Захопившись грою діти не помічають що навчаються.