3432

Методы решения нелинейного уравнения

Лабораторная работа

Математика и математический анализ

Данное руководство предназначено для студентов, изучающих предмет «Численные методы» и выполняющих лабораторные работы по курсу «Информатика». В методических указаниях рассмотрены ряд методов нахождения корней нелинейного ура...

Русский

2012-10-31

43.57 KB

7 чел.

Данное руководство предназначено для студентов,  изучающих предмет «Численные методы»  и выполняющих лабораторные работы по курсу   «Информатика». В методических указаниях рассмотрены ряд методов нахождения корней нелинейного уравнения и приведены примеры решения задач на языке программирования и в среде Mathcad.


ПОСТАНОВКА ЗАДАЧИ. ОТДЕЛЕНИЕ КОРНЕЙ.

Множество значений переменной х, при которых уравнение F(x)=0 является тождеством, называется решением уравнения. При этом каждое значение х из этого множества называется корнем этого уравнения. Нахождение точных значений корней возможно, как правило, только в исключительных случаях. Поэтому большое значение имеют методы приближенного решение уравнения с заданной точностью. При этом решение задачи можно разбить на два этапа:

!) отделение корней т.е выделение промежутков внутри которых содержится только один корень уравнения;

2) вычисление корня, принадлежащего выделенному промежутку с заданной точностью.

Решение задачи отделения корней для непрерывной функции основано на том, что, если функция на концах отрезка [a,b] имеет значения разных знаков, то внутри этого отрезка функция проходит через нуль, т. е  содержится корень уравнения. Таким образом, чтобы произвести отделение корней необходимо разбить область предполагаемого нахождения корней на равные отрезки длиной h и вычислить значение функции на концах отрезка. Если будет выполнятся условие F(x)*F(x+h)<=0, то корень внутри отрезка [x,x+h]. Величина шага разбиения подбирается интуитивно; при большом шаге разбиения возможно пропустить корень; при маленьком – увеличивается время вычислений.

Ниже приведена программа на языке Паскаль, решающая задачу отделения корней для произвольной функции. ( В программе рассматривается уравнение: x3 +2*x2 – 6*x+1=0 ).

uses crt;

const m=100; {отрезок [-m,m]}

     h=0.1;  {шаг разбиения }

var x:real;

function f(x:real):real;

{функция, задающая решаемое уравнение }

begin

 f:=x*x*x+2*x*x-6*x+1;

end;

{-------------------------------------------------------------------}

begin { main }

 clrscr;

 x:=-m;

 while x<m do

   begin

     if f(x)*f(x+h)<=0 then

        begin

          { здесь следует разместить вызов функции уточняющий корень

             на отрезке [x,x+h]  }

           writeln('корень находится внутри отрезка [',x:5:1,x+h:5:1,']');

        end;

      x:=x+h;

   end;

  repeat until keypressed;

 end.

3


МЕТОД ПОЛОВИННОГО ДЕЛЕНИЯ.

Рассмотрим методы нахождения корня уравнения на заданном отрезке. Все методы предполагают, что предварительно произведено отделение корней и на отрезке находится только один корень.

Метод половинного деления состоит в том, что мы уменьшаем длину отрезка так, что корень остается внутри отрезка; процесс продолжается до тех пор, пока длина отрезка не станет меньше заданной точности. Уменьшение длины отрезка производится самым естественным образом: делением отрезка пополам и выбором той половины, внутри которой находится корень( т.е на концах которой функция имеет разный знак.)

Алгоритм:

   WHILE | a-b| > epsi

         Вычисляем середину отрезка x=(a+b)/2;

         Выбираем половину, где корень:

                 Если F(a)*F(x)<=0  то корень в [а,х], поэтому b переносим в x b=x   

                 Если F(b)*F(x)<=0  то корень в [b,х], поэтому a переносим в x a=x

    END

МЕТОД НЬЮТОНА (КАСАТЕЛЬНЫХ).

Суть метода:

 За начальное приближение принимается какая-либо точка заданного отрезка, для которой     ;

 Из этой точки проводится касательная к графику функции F(x). Уравнение касательной  

Точка пересечения касательной с осью 0X (y=0) задает следующее приближение  

 Процесс продолжается до тех пор пока расстояние между двумя последовательными приближениями не станет меньше заданной точности
|xi-1-xi|<epsi

Условия применимости метода:

  В интервале есть корень

  В интервале существуют  

  За начальное приближение принимается точка, в которой

Алгоритм

 X0 – начальное приближение

 X1 – последующее приближение

 F(x) – функция, задающая уравнение

 Fp(x) – производная

 X1=a x2=0 { необходимо для первоначальной проверки условия цикла}

 WHILE |X1-X0|>epsi

     X0=X1

     X1=X0-F(X0)/Fp(X0)

 END.

4


РЕШЕНИЕ ЗАДАЧИ В MATHCAD.

Для решения уравнения необходимо прежде всего построить график функции, задающий уравнение и по графику визуально определить начальное приближение корня.

Уточнение корня производится стандартной функцией

 root(F(x),x),

 где F(x) – функция, задающий уравнение.

        x –  имя переменной, варьируя которую ищется корень; перед использованием переменной обязательно должно быть присвоено начальное значение; для уравнения с несколькими корнями, ищется  корень, наиболее близкий к начальному значению.

Пример решения уравнения x3 +2*x2 – 6*x+1=0

Решение кубического уравнения

   

График

Уточнение графика на интервале 0 ..2

C помощью функции root ( требуется начальное приближение)

   

      

      

5


Примеры написание программ

Метод половинного деления

Метод Ньютона


ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.

Требуется решить уравнение в Mathcadе, написать и отладить программу нахождения всех корней уравнения, предложенным преподавателем методом.

1. 2*x3+12*x2+13*x+15=0

2. 2*x3-3*x2+4*x+9=0

3.  x3-4*x2-4*x-5=0

4. 2*x4+3*x3+8*x2+6*x+5=0  

5. 2*x4-3*x3+2*x2-15*x+14=0

6. 15*x4-4*x3-6*x2-4*x-1=0

7. 2*x4-x3+3*x2-x+1=0

8. x4+3*x3-44*x2+15*x+25=0

9. 6*x4+25*x3+12*x2-25*x+6=0

10. x4-2*x3-11*x2+12*x+36=0

11. 100*x3+45*x2-12*x+2.5=0

12. 10*x3+20*x2-0.1*x-0.2=0

13.  x3+4.05*x2-0.03*x+0.02=0

14.  x3+79.9*x2-1988*x-200=0

15.  x3-4.6*x2-52*x-20=0

16.  x3-0.5*x2-0.5*x=0

17. 200*x3+78*x2-41.2*x+0.42=0

18. 2*x3-0.6*x2+0.06*x-0.002=0

19. 0.5*x3-2.3*x2-26*x-10=0

20. -0.1*x3+0.405*x2+0.003*x-0.002=0

ЛИТЕРАТУРА.

1. Mathcad 6.0 plus. Руководство пользователя. М., Филинъ.1998.

2. Ракитин В. И. , Первушин В.Е. Практическое руководство по методам вычислений. М., Высшая школа 1998.

3. Попов В. Б.  Turbo Pascal 7.0 для школьников

М.; Финансы и статистика, 1996. -464


 

А также другие работы, которые могут Вас заинтересовать

17246. Преднамеренные блокировки 122.5 KB
  Лекция №10 Преднамеренные блокировки Управление блокировками осуществляется из программного обеспечения и осуществляется на уровне пользовательского соединения. Блокировка указывает что пользователь имеет право на использование соответствующего ресурса. К ресур...
17247. Транзакции и восстановление данных 66 KB
  Лекция №11 Транзакции и восстановление данных В данной главе изучаются возможности восстановления данных после сбоев системы т.е. свойство Д – долговечность транзакций. Главное требование долговечности данных транзакций состоит в том что данные зафиксированных
17248. Основы технологии OLAP 132.5 KB
  Лекция №12 Основы технологии OLAP Что такое хранилище данных Что такое OLAP Многомерные кубы Некоторые термины и понятия Заключение OLAP OnLine Analytical Processing технологии многомерного анализа данных. Что такое хранилище данных Устно. Информационные с...
17249. Облік доходів підприємства 31.5 KB
  Облік доходів підприємства. Дохід є надходженням економічних вигод які виникають в результаті діяльності підприємства у вигляді виручки від реалізації продукції товарів робіт послуг гонорарів відсотків дивідендів тощо. В обліку дохід відображається в момент надх
17250. Облік фінансових результатів та використання прибутку 35.5 KB
  Облік фінансових результатів та використання прибутку. Фінансові результати за видами діяльності внаслідок яких вони виникають поділяються на : прибутки збитки від звичайної діяльності операційна основна та інша діяльність інша звичайна інвестиційна та фінансо...
17251. Облік власного капіталу 35 KB
  Облік власного капіталу. Власний капітал підприємства – це частина в активах підприємства яка залишається після вирахування усіх його зобов'язань. Власний капітал складається із статутного пайового додаткового резервного нерозподілених прибутків непокритих збитк...
17252. Облік резервного капіталу 26.5 KB
  Облік резервного капіталу. Резервний капітал – це сума резервів створених відповідно до чинного законодавства і засновницьких документів за рахунок нерозподіленого прибутку підприємства. Він створюється з метою усунення можливих в майбутньому тимчасових фінансових ...
17253. Облік цільового фінансування і цільових надходжень 24.5 KB
  Облік цільового фінансування і цільових надходжень. До цільового фінансування і цільових надходжень належать кошти отримані у вигляді субсидій та асигнувань з бюджету та позабюджетних фондів цільових внесків фізичних та юридичних осіб гуманітарної допомоги тощо. К
17254. Поняття та принципи побудови звітності 54 KB
  Поняття та принципи побудови звітності Підсумкове узагальнення інформації та одержання підсумкових показників що характеризують діяльність підприємства здійснюється шляхом складання звітності за звітний період. Звітним періодом для складання фінансової звітності...