34375

Закон рационалистического развития технологических процессов

Доклад

Производство и промышленные технологии

развития технологического процесса происходит прямая замена живого труда прошлым. При этом каждое последующее увеличение производительности труда требует все больших затрат прошлого труда на единицу прироста производительности совокупного труда. Достигнутый уровень затрат прошлого труда это техн. Годовые затраты прошлого труда сумма годовых амортизационных отчислений от стоимости оборудования и всех остальных годовых затрат за исключением затрат на предмет труда обозначим через Фт руб год.

Русский

2013-09-08

24.5 KB

12 чел.

11.Закон рационалистического развития  технологических процессов.

В ходе рац. развития технологического процесса происходит прямая замена живого труда прошлым. При этом каждое последующее увеличение  производительности  труда требует все больших затрат прошлого труда на единицу  прироста  производительности совокупного труда. Достигнутый уровень затрат прошлого труда- это техн. вооруженность. Годовые затраты прошлого труда (сумма годовых амортизационных  отчислений от стоимости  оборудования  и всех остальных годовых затрат за исключением затрат  на предмет труда)  обозначим  через Фт, руб/год. Если отнести эти затраты к  1 работнику, то получим удельную характеристику,  характеризуется  способностью технологического процесса выпускать продукцию с наименьшими затратами. Уровень технологии (У) при рационалистическом пути развития технологического процесса, когда в ходе его совершенствования не изменяется сущность технологического процесса, остается неизменным.

Определим У из функции рационалистического развития процесса:

dL=K*dB/Lm   ,      L  = √У.В,   У = L2 / В .   

Учитывая, что  L = Q/n, а  В = Фт/п , получим:

У = Q  /п . п/Фт = Q/n . Q/Фт = Lж . Lп

Таким образом, уровень технологии определяется произведением производительности живого и прошлого труда и представляет собой обобщенную эффективность технологического процесса с точки зрения независимо осуществляемого переноса живого и прошлого труда. При выборе из двух и более процессов, производящих одинаковую продукцию (на стадии разработки) следует выбирать тот технологический процесс, в котором общие затраты живого и прошлого меньше ( Тс = Тж + Тп min), а уровень технологии больше (У  mах).

Оценка по уровню технологии более точно определяет перспективу (преимущества) развития, то есть  динамику изменения технологического процесса, когда на начальном этапе внедрения преимущества новой технологии не очевидно или даже пока хуже, чем старой технологии.

Уровень технологии позволяет сравнивать любые технологические процессы.

Так, по уровню технологии можно сравнить степень совершенства технологии производства тракторов и сукна, а также любой продукции не зависимо от того в какой отрасли промышленности он используется.  Это открывает новые возможности в управлении развитием народного хозяйства, особенно в условиях самостоятельного хозяйствования.

Уровень технологии представляет собой универсальную оценку  любого технологического процесса, образующегося произведением удельных показателей производительности (эффективности)затрат живого и прошлого труда (в любом технологическом процессе есть затраты живого и прошлого труда).


 

А также другие работы, которые могут Вас заинтересовать

69309. Сегментація пам’яті. Сторінкова організація пам’яті 101 KB
  У кожного сегмента є ім’я і довжина (для зручності реалізації поряд з іменами використовують номери). Логічна адреса складається з номера сегмента і зсуву всередині сегмента; з такими адресами працює прикладна програма. Компілятори часто створюють окремі сегменти для різних даних програми
69310. Поняття файла і файлової системи 34 KB
  Логічний визначає відображення файлової системи призначене для прикладних програм і користувачів фізичний особливості розташування структур даних системи на диску й алгоритми які використовують під час доступу до інформації.
69311. Організація інформації у файловій системі 61.5 KB
  У сучасних ОС файли у файловій системі не прийнято зберігати одним невпорядкованим списком (зазначимо, що можливі винятки, наприклад, для вбудованих систем). Десятки гігабайтів даних, що зберігаються зараз на дисках, вимагають упорядкування, файли, в яких перебувають ці дані...
69312. Методи розв’язування систем нелінійних рівнянь 146 KB
  Методи розвязування систем нелінійних рівнянь Нехай маємо деяку систему нелінійних рівнянь 6.54 де Для розвязку нелінійної системи 6. Якщо при k→∞ xik→αi i = 12n то кажуть що метод сходиться до деякого розвязку.
69313. Методи розв’язування алгебраїчних рівнянь 85 KB
  Описана процедура повторюється n раз, поки не будуть виключені всі корені. Однак часто поліноми мають комплексно–спряжені корені. У цьому випадку початкове значення вибирається також комплексно–спряженим zk = xk + jyk і після визначення пари таких коренів виключається...
69314. Однокрокові методи розв’язування диференційних рівнянь 802.5 KB
  Методи чисельного інтегрування диференціальних рівнянь у залежності від числа використовуваних у формулі (8.8) попередніх значень функції чи її похідної підрозділяються на однокрокові (коли використовується інформація тільки про одну попередню точку)...
69315. БАГАТОКРОКОВІ МЕТОДИ РОЗВ’ЯЗУВАННЯ ДИФЕРЕНЦІЙНИХ РІВНЯНЬ 555 KB
  В главі 8 було розглянуто однокрокові алгоритми обчислення наближеного розв’язку в точці tn + 1 з використанням інформації про розв’язувану задачу тільки на відрізку (tn,tn + 1) завдовжки в один крок. Логічно припустити, що можна підвищити точність методу...
69316. ЧИСЕЛЬНЕ ІНТЕГРУВАННЯ ЖОРСТКИХ СИСТЕМ ДИФЕРЕНЦІЙНИХ РІВНЯНЬ. ЧИСЕЛЬНІ МЕТОДИ РОЗВ’ЯЗУВАННЯ КРАЄВИХ ЗАДАЧ 1.14 MB
  При побудові і дослідженні математичних моделей об’єктів для підвищення їх точності й адекватності необхідно враховувати велику кількість факторів і явищ, що неминуче приводить до явища жорсткості і описуючих його жорстких рівнянь.
69317. ОБЧИСЛЮВАЛЬНИЙ ЕКСПЕРИМЕНТ ТА ЙОГО ЕТАПИ 308 KB
  В результаті розміри і складність математичних моделей істотно зростають а їх розвязок в аналітичному вигляді стає неможливим. розвязок системи лінійних в загальному випадку лінеаризованих рівнянь; 2. розвязок нелінійних алгебраїчних рівнянь...