3464

Изучение свободных колебаний пружинного маятника

Лабораторная работа

Физика

Изучение свободных колебаний пружинного маятника. Цель работы: на примере пружинного маятника изучить основные законы колебательного движения, проверить формулу периода колебаний пружинного маятника, определить основные характеристики его затухающих...

Русский

2012-11-01

177.5 KB

53 чел.

Изучение свободных колебаний пружинного маятника.

Цель работы: на примере пружинного маятника изучить основные законы колебательного движения, проверить формулу периода колебаний пружинного маятника, определить основные характеристики его затухающих колебаний.

Свободные колебания.

   Периодические или почти периодические во времени движения или процессы, протекающие в ограниченной области пространства, называются колебаниями. Колебания широко распространены в природе и технике и играют большую роль в разнообразных явлениях.

   В зависимости от характера воздействия на колеблющуюся систему различают свободные (собственные) колебания, вынужденные колебания, автоколебания и параметрические колебания.

   Колебания в системе, на которую не действуют переменные внешние силы, а возникающие в результате начального отклонения этой системы от состояния устойчивого равновесия называются свободными. Если в системе отсутствуют диссипативные силы (силы трения), то при колебаниях не происходит потерь энергии. Такие свободные колебания будут незатухающими.

   Рассмотрим основные черты свободных незатухающих колебаний на примере пружинного маятника. В этом случае колебания возникают только под действием сил упругости. Уравнение движения колеблющегося тела (груза на пружине) имеет вид

                          (1)

где m – масса, - мгновенное ускорение, х – смещение тела из положения равновесия в момент времени t, k – жесткость пружины.

   Уравнение (1) можно переписать в иной форме

                                           (2)

   Тогда решение уравнения (2) удобно искать в виде функции

         (3)

   Дважды продифференцировав выражение (3) по времени получаем

         (4)

   Подставив (4) в (2) убеждаемся, что функция (3) будет являться решением уравнения движения (2), если

                          (5)

   Таким образом колебания груза на пружине можно описать функциями

       (6)

или

          (7)

где А0 – амплитуда колебаний, - циклическая частота,  - фаза, I0 и I – начальные фазы колебаний.

   Колебания, совершаемые по закону косинуса или синуса, принято называть гармоническими.

   По известному значению циклической частоты  (5) нетрудно получить формулу для периода свободных колебаний пружинного маятника

       (8)

   В реальных колебательных системах всегда присутствуют силы трения. Их наличие приводит к рассеянию энергии, занесенной в системе и, как следствие, к уменьшению амплитуды колебаний. Такие колебания называют затухающими и не являются гармоническими.

   Рассмотрим затухающие колебания пружинного маятника. Во многих случаях с достаточной степенью точности можно считать, что силы трения пропорциональны скорости движения. Тогда вместо уравнения (1) имеем

            (9)

где  - сила трения,  - коэффициент пропорциональности, постоянный для данной системы.

   Перепишем (9) в иной форме

                      (10)

здесь введены обозначения

               и     (11)

Решение уравнения (10) имеет вид

                                                                (12)

   Выражение (12) описывает затухающие колебания. График затухающих колебаний изображен на рисунке 1. Величину  принимают за амплитуду затухающих колебаний.

   С течением времени она уменьшается по экспоненциальному закону (пунктирные кривые на рис.1). Частота затухающих колебаний  меньше частоты соответствующих свободных колебаний и с течением времени остается неизменной.

Рис.1

   Затухающие колебания не являются периодическими и гармоническими. Однако, для их описания удобно сохранить понятие условного периода , понимая под ним удвоенный  промежуток времени между двумя последовательными прохождениями системой положения равновесия (см. рис.1).

   Для характеристики затухающих колебаний вводят следующие величины:

  1.  Время затухания (релаксации) . Это время, в течении которого амплитуда А уменьшается в е=2.71 раза

   откуда  или   (13)

              Большим значениям соответствует меньшее время           

             затухания . Поэтому  называют коэффициентом

             затухания.

  1.  Логарифмический декремент затухания æ. Это натуральный логарифм отношения двух последующих амплитуд, разделенных промежутком времени равным периоду             (14)
  2.  Число колебаний за время затухания                                                          (15)         Для характеристики колебательной системы вводят понятие добротности. Добротность Q, с точностью до коэффициента 2 равна отношению энергии Е, запасенной в колебательной системе, к энергии, рассеиваемой за период Ер                                     (16) Можно показать, что добротность                                                           (17)

Описание установки.

          

Работа выполняется на установке, изображенной на рис.2. В качестве колеблющейся системы взят пружинный маятник, представляющий собой вертикально расположенную пружину 1, на которую подвешена платформа 2. Масса платформы m0=(75,0±0,5)г. На платформу 2 можно помещать грузы 3 различной массы. Амплитуда колебаний измеряется по шкале 4.

 Рис.2

Выполнение работы.

Упражнение 1. Проверка формулы периода колебаний пружинного маятника.

   Для маятников с массами m1 и m2 согласно (8) будем иметь

                           и   

откуда следует равенство

                                       (18)

Соотношение (18) и проверяется в данном упражнении. Для более определения периода колебаний измеряют время t , за которое совершается N полных колебаний и используют формулу

   (19)

  1.  Поместить на платформу груз массой m´. Тогда масса маятника m1 = m´+m0, где m0 масса платформы.
  2.  Вывести маятник из положения равновесия на 40-70мм и измерить время, в течении которого совершается 10-15 полных колебаний. Опыт проделать не менее 5 раз. Результаты измерений занести в таблицу и по формуле (19) определить период колебаний.
  3.  Поместить на платформу груз иной массы m и снова выполнить пункт 2.
  4.  Вычислить  и  и проверить справедливость равенства (18).
  5.  По указанию преподавателя пункты 1-4 проделать для другой пары грузов.

Упражнение 2: Определение основных характеристик затухающих колебаний пружинного маятника.

  1.  Положить на платформу несколько грузов и определить период Т колебаний маятника, как указано в упражнении 1.
  2.  Вывести тело из положения равновесия на А0 и определить время t0 за которое амплитуда колебаний уменьшится да значения An (за величину конечной амплитуды An удобно взять значение примерно в 10 раз меньше А0. При отсчете амплитуды колебаний луч зрения должен быть перпендикулярен к плоскости шкалы). Измерения повторить не менее 5 раз. Результаты занести в таблицу (составить самостоятельно).
  3.  По формуле  определить логарифмический декремент затухания.
  4.  Используя формулы (13-17) вычислить коэффициент затухания , время затухания , число колебаний за время затухания Ne и добротность Q системы. Сделать выводы.

Контрольные вопросы.

  1.  Свободные колебания. Физические величины их характеризующие. Графики зависимости амплитуды, скорости и ускорения от времени для свободных гармонических колебаний.
  2.  Затухающие колебания. Физические величины, используемые для описания затухающих колебаний. Их физический смысл.
  3.  Апериодическое движение тел. Условие его возникновения.


 

А также другие работы, которые могут Вас заинтересовать

828. Исследование одиночных усилительных каскадов 156 KB
  Основные характеристики усилительных каскадов на биполярных транзисторах в диапазоне частот до десятков килогерц, включенных по схеме общий эмиттер (ОЭ), общая база (ОБ) и общий коллектор (ОК).
829. Участок по переработки ПЭТФ литьем под давлением 462.5 KB
  Описание изделия, его назначение и условия эксплуатации. Анализ производственного процесса на предприятии и рекомендации по его совершенствованию. Описание основных стадий производственного процесса. Расчет материального баланса на калькуляционную единицу. Выбор основного технологического оборудования.
830. Технология озвучивания и монтаж рекламного ролика ИЭиУ СПбГУКиТ в условиях формата изображения 35 мм 199.5 KB
  Экспликация рекламного ролика института экономики и управления СПбГУКиТ. Описание технологии изображения 35-мм (традиционный вариант). Выбор оборудования, обзор возможностей и технических характеристик выбранного оборудования. Программа Nuendo 2.0.
831. Проектирование водопровода и канализации жилого здания 195 KB
  Проектирование системы холодного водоснабжения. Гидравлический расчёт системы холодного водоснабжения. Определение требуемого напора на вводе, подбор насоса. Гидравлический расчёт внутриквартальной хозяйственно-бытовой канализации. Конструирование внутридомовой канализационной сети. Гидравлический расчёт внутриквартальной ливневой канализации.
832. Особенности понятия материя 219.5 KB
  Бытие, как предельно общая абстракция. Формы движения материи. Их качественная специфика и взаимосвязь. Реляционная и субстанциальная концепции пространства и времени. • Качественное многообразие форм пространства-времени в неживой природе. Реляционная и субстанцианальная концепции пространства и времени.
833. Централизованное специализированное предприятие для текущего ремонта автомобилей 363 KB
  План организации рельефа, подсчёт красных и чёрных точек. Объемно-планировочное решение здания. Отделка фасада. Внутренняя отделка помещений. Санитарно-техническое и инженерное оборудование. Колонны каркаса и фахверка.
834. Визначення основних параметрів та режимів роботи валкової жатки 3.57 MB
  Характеристика умов роботи валкової жатки. Існуючі технології схеми валкових жаток. Висота встановлення осі мотовила над різальним апаратом. Винос мотовила відносно різального апарата.
835. Стандартизация свойств. Физические, механические, физико-химические свойства 81.93 KB
  Стандартизация свойств. Марки материалов. Физическое состояние строительных материалов. Свойства материалов по отношению к различным физическим воздействиям. Способность материала поглощать водяные пары из воздуха. Коэффициент линейного температурного расширения (КЛТР).
836. Корреляционная зависимость между реальной заработной платой и безработицей в России с июля 2008-2009 годов 250.5 KB
  Социально-экономическое явление, предполагающее отсутствие работы у людей, составляющих экономически активное население. Влияние реальной заработной платы получаемой россиянами на безработицу в России за промежуток времени равный одному году с июля 2008 года по июнь 2009 года.