3464

Изучение свободных колебаний пружинного маятника

Лабораторная работа

Физика

Изучение свободных колебаний пружинного маятника. Цель работы: на примере пружинного маятника изучить основные законы колебательного движения, проверить формулу периода колебаний пружинного маятника, определить основные характеристики его затухающих...

Русский

2012-11-01

177.5 KB

51 чел.

Изучение свободных колебаний пружинного маятника.

Цель работы: на примере пружинного маятника изучить основные законы колебательного движения, проверить формулу периода колебаний пружинного маятника, определить основные характеристики его затухающих колебаний.

Свободные колебания.

   Периодические или почти периодические во времени движения или процессы, протекающие в ограниченной области пространства, называются колебаниями. Колебания широко распространены в природе и технике и играют большую роль в разнообразных явлениях.

   В зависимости от характера воздействия на колеблющуюся систему различают свободные (собственные) колебания, вынужденные колебания, автоколебания и параметрические колебания.

   Колебания в системе, на которую не действуют переменные внешние силы, а возникающие в результате начального отклонения этой системы от состояния устойчивого равновесия называются свободными. Если в системе отсутствуют диссипативные силы (силы трения), то при колебаниях не происходит потерь энергии. Такие свободные колебания будут незатухающими.

   Рассмотрим основные черты свободных незатухающих колебаний на примере пружинного маятника. В этом случае колебания возникают только под действием сил упругости. Уравнение движения колеблющегося тела (груза на пружине) имеет вид

                          (1)

где m – масса, - мгновенное ускорение, х – смещение тела из положения равновесия в момент времени t, k – жесткость пружины.

   Уравнение (1) можно переписать в иной форме

                                           (2)

   Тогда решение уравнения (2) удобно искать в виде функции

         (3)

   Дважды продифференцировав выражение (3) по времени получаем

         (4)

   Подставив (4) в (2) убеждаемся, что функция (3) будет являться решением уравнения движения (2), если

                          (5)

   Таким образом колебания груза на пружине можно описать функциями

       (6)

или

          (7)

где А0 – амплитуда колебаний, - циклическая частота,  - фаза, I0 и I – начальные фазы колебаний.

   Колебания, совершаемые по закону косинуса или синуса, принято называть гармоническими.

   По известному значению циклической частоты  (5) нетрудно получить формулу для периода свободных колебаний пружинного маятника

       (8)

   В реальных колебательных системах всегда присутствуют силы трения. Их наличие приводит к рассеянию энергии, занесенной в системе и, как следствие, к уменьшению амплитуды колебаний. Такие колебания называют затухающими и не являются гармоническими.

   Рассмотрим затухающие колебания пружинного маятника. Во многих случаях с достаточной степенью точности можно считать, что силы трения пропорциональны скорости движения. Тогда вместо уравнения (1) имеем

            (9)

где  - сила трения,  - коэффициент пропорциональности, постоянный для данной системы.

   Перепишем (9) в иной форме

                      (10)

здесь введены обозначения

               и     (11)

Решение уравнения (10) имеет вид

                                                                (12)

   Выражение (12) описывает затухающие колебания. График затухающих колебаний изображен на рисунке 1. Величину  принимают за амплитуду затухающих колебаний.

   С течением времени она уменьшается по экспоненциальному закону (пунктирные кривые на рис.1). Частота затухающих колебаний  меньше частоты соответствующих свободных колебаний и с течением времени остается неизменной.

Рис.1

   Затухающие колебания не являются периодическими и гармоническими. Однако, для их описания удобно сохранить понятие условного периода , понимая под ним удвоенный  промежуток времени между двумя последовательными прохождениями системой положения равновесия (см. рис.1).

   Для характеристики затухающих колебаний вводят следующие величины:

  1.  Время затухания (релаксации) . Это время, в течении которого амплитуда А уменьшается в е=2.71 раза

   откуда  или   (13)

              Большим значениям соответствует меньшее время           

             затухания . Поэтому  называют коэффициентом

             затухания.

  1.  Логарифмический декремент затухания æ. Это натуральный логарифм отношения двух последующих амплитуд, разделенных промежутком времени равным периоду             (14)
  2.  Число колебаний за время затухания                                                          (15)         Для характеристики колебательной системы вводят понятие добротности. Добротность Q, с точностью до коэффициента 2 равна отношению энергии Е, запасенной в колебательной системе, к энергии, рассеиваемой за период Ер                                     (16) Можно показать, что добротность                                                           (17)

Описание установки.

          

Работа выполняется на установке, изображенной на рис.2. В качестве колеблющейся системы взят пружинный маятник, представляющий собой вертикально расположенную пружину 1, на которую подвешена платформа 2. Масса платформы m0=(75,0±0,5)г. На платформу 2 можно помещать грузы 3 различной массы. Амплитуда колебаний измеряется по шкале 4.

 Рис.2

Выполнение работы.

Упражнение 1. Проверка формулы периода колебаний пружинного маятника.

   Для маятников с массами m1 и m2 согласно (8) будем иметь

                           и   

откуда следует равенство

                                       (18)

Соотношение (18) и проверяется в данном упражнении. Для более определения периода колебаний измеряют время t , за которое совершается N полных колебаний и используют формулу

   (19)

  1.  Поместить на платформу груз массой m´. Тогда масса маятника m1 = m´+m0, где m0 масса платформы.
  2.  Вывести маятник из положения равновесия на 40-70мм и измерить время, в течении которого совершается 10-15 полных колебаний. Опыт проделать не менее 5 раз. Результаты измерений занести в таблицу и по формуле (19) определить период колебаний.
  3.  Поместить на платформу груз иной массы m и снова выполнить пункт 2.
  4.  Вычислить  и  и проверить справедливость равенства (18).
  5.  По указанию преподавателя пункты 1-4 проделать для другой пары грузов.

Упражнение 2: Определение основных характеристик затухающих колебаний пружинного маятника.

  1.  Положить на платформу несколько грузов и определить период Т колебаний маятника, как указано в упражнении 1.
  2.  Вывести тело из положения равновесия на А0 и определить время t0 за которое амплитуда колебаний уменьшится да значения An (за величину конечной амплитуды An удобно взять значение примерно в 10 раз меньше А0. При отсчете амплитуды колебаний луч зрения должен быть перпендикулярен к плоскости шкалы). Измерения повторить не менее 5 раз. Результаты занести в таблицу (составить самостоятельно).
  3.  По формуле  определить логарифмический декремент затухания.
  4.  Используя формулы (13-17) вычислить коэффициент затухания , время затухания , число колебаний за время затухания Ne и добротность Q системы. Сделать выводы.

Контрольные вопросы.

  1.  Свободные колебания. Физические величины их характеризующие. Графики зависимости амплитуды, скорости и ускорения от времени для свободных гармонических колебаний.
  2.  Затухающие колебания. Физические величины, используемые для описания затухающих колебаний. Их физический смысл.
  3.  Апериодическое движение тел. Условие его возникновения.


 

А также другие работы, которые могут Вас заинтересовать

83424. Два різних світи – одне ціле. Програма виховної роботи 340 KB
  Дорослішання сучасної молоді відбувається в складних умовах. Нестабільність сімейного інституту, неактуальність традиційної підготовки молоді до шлюбу диктують необхідність використання спеціальних заходів для надання допомоги дітям в усвідомленні своєї статевої приналежності, формування адекватного...
83425. Розважально-пізнавальна програма. Сім’Я. Сім’Я. Сім’Я 105 KB
  А зараз з великим задоволенням разом рушимо вперед. Кожному з вас доведеться сім разів проявити себе. Оскільки в сім’ї тільки починає складатися життєвий досвід дитини, тому, проявляючи своє Я, він має право звернутися по допомогу або до мами, або до тата, а, може, і до обох відразу.
83429. Сценарій ДЮП «Прометей» 41.5 KB
  Але жарке, палюче сонце обпекло молоде листячко і маленька, настирлива іскорка починає свою гру. Пожежу ще можна попередити, якщо засипати вогнище піском. 10 година 12 хвилин. Вітер переносить полум’я на сусідні дерева, вогонь ще можна загасити водою, але гілки дерев уже сплелись...
83430. Антитютюнова пропаганда 74.5 KB
  Мета заходу: Виховання свідомого ставлення до свого здоров’я та здоров’я громадян як найвищої соціальної цінності; формування валеологічного світогляду; формування та пропаганда здорового способу життя; забезпечення обізнаності учнів з питань тютюнопаління; профілактика шкідливих звичок...
83431. Птахи. Закріплення звука[ш], букви Ш, ш. Робота над виразністю читання, речень, різних за метою висловлювання 52.5 KB
  Складіть малюнок птаха і прочитайте цікаву інформацію про нього.Якого птаха впізнали сова Прочитайте цікаву інформацію про нього. Якого птаха впізнала ваша група шишкарик Прочитайте цікаву інформацію про нього. Звернемось до нашого словника синички зустрілися шматочки сидиш комашка поспішай годівничка лети Прочитайте слова першого стовпчика.
83432. Як живуть птахи? 70.5 KB
  Мета: дати уявлення про довкілля птахів на прикладі ластівки і синички їх пристосованість до умов життя. Щоб гніздо було міцнішим ластівки додають до глини невеликі соломинки. Пташенята і дорослі ластівки голодують бо тоді комахи не літають. Ластівки знищують багато шкідливих комах.