3464

Изучение свободных колебаний пружинного маятника

Лабораторная работа

Физика

Изучение свободных колебаний пружинного маятника. Цель работы: на примере пружинного маятника изучить основные законы колебательного движения, проверить формулу периода колебаний пружинного маятника, определить основные характеристики его затухающих...

Русский

2012-11-01

177.5 KB

50 чел.

Изучение свободных колебаний пружинного маятника.

Цель работы: на примере пружинного маятника изучить основные законы колебательного движения, проверить формулу периода колебаний пружинного маятника, определить основные характеристики его затухающих колебаний.

Свободные колебания.

   Периодические или почти периодические во времени движения или процессы, протекающие в ограниченной области пространства, называются колебаниями. Колебания широко распространены в природе и технике и играют большую роль в разнообразных явлениях.

   В зависимости от характера воздействия на колеблющуюся систему различают свободные (собственные) колебания, вынужденные колебания, автоколебания и параметрические колебания.

   Колебания в системе, на которую не действуют переменные внешние силы, а возникающие в результате начального отклонения этой системы от состояния устойчивого равновесия называются свободными. Если в системе отсутствуют диссипативные силы (силы трения), то при колебаниях не происходит потерь энергии. Такие свободные колебания будут незатухающими.

   Рассмотрим основные черты свободных незатухающих колебаний на примере пружинного маятника. В этом случае колебания возникают только под действием сил упругости. Уравнение движения колеблющегося тела (груза на пружине) имеет вид

                          (1)

где m – масса, - мгновенное ускорение, х – смещение тела из положения равновесия в момент времени t, k – жесткость пружины.

   Уравнение (1) можно переписать в иной форме

                                           (2)

   Тогда решение уравнения (2) удобно искать в виде функции

         (3)

   Дважды продифференцировав выражение (3) по времени получаем

         (4)

   Подставив (4) в (2) убеждаемся, что функция (3) будет являться решением уравнения движения (2), если

                          (5)

   Таким образом колебания груза на пружине можно описать функциями

       (6)

или

          (7)

где А0 – амплитуда колебаний, - циклическая частота,  - фаза, I0 и I – начальные фазы колебаний.

   Колебания, совершаемые по закону косинуса или синуса, принято называть гармоническими.

   По известному значению циклической частоты  (5) нетрудно получить формулу для периода свободных колебаний пружинного маятника

       (8)

   В реальных колебательных системах всегда присутствуют силы трения. Их наличие приводит к рассеянию энергии, занесенной в системе и, как следствие, к уменьшению амплитуды колебаний. Такие колебания называют затухающими и не являются гармоническими.

   Рассмотрим затухающие колебания пружинного маятника. Во многих случаях с достаточной степенью точности можно считать, что силы трения пропорциональны скорости движения. Тогда вместо уравнения (1) имеем

            (9)

где  - сила трения,  - коэффициент пропорциональности, постоянный для данной системы.

   Перепишем (9) в иной форме

                      (10)

здесь введены обозначения

               и     (11)

Решение уравнения (10) имеет вид

                                                                (12)

   Выражение (12) описывает затухающие колебания. График затухающих колебаний изображен на рисунке 1. Величину  принимают за амплитуду затухающих колебаний.

   С течением времени она уменьшается по экспоненциальному закону (пунктирные кривые на рис.1). Частота затухающих колебаний  меньше частоты соответствующих свободных колебаний и с течением времени остается неизменной.

Рис.1

   Затухающие колебания не являются периодическими и гармоническими. Однако, для их описания удобно сохранить понятие условного периода , понимая под ним удвоенный  промежуток времени между двумя последовательными прохождениями системой положения равновесия (см. рис.1).

   Для характеристики затухающих колебаний вводят следующие величины:

  1.  Время затухания (релаксации) . Это время, в течении которого амплитуда А уменьшается в е=2.71 раза

   откуда  или   (13)

              Большим значениям соответствует меньшее время           

             затухания . Поэтому  называют коэффициентом

             затухания.

  1.  Логарифмический декремент затухания æ. Это натуральный логарифм отношения двух последующих амплитуд, разделенных промежутком времени равным периоду             (14)
  2.  Число колебаний за время затухания                                                          (15)         Для характеристики колебательной системы вводят понятие добротности. Добротность Q, с точностью до коэффициента 2 равна отношению энергии Е, запасенной в колебательной системе, к энергии, рассеиваемой за период Ер                                     (16) Можно показать, что добротность                                                           (17)

Описание установки.

          

Работа выполняется на установке, изображенной на рис.2. В качестве колеблющейся системы взят пружинный маятник, представляющий собой вертикально расположенную пружину 1, на которую подвешена платформа 2. Масса платформы m0=(75,0±0,5)г. На платформу 2 можно помещать грузы 3 различной массы. Амплитуда колебаний измеряется по шкале 4.

 Рис.2

Выполнение работы.

Упражнение 1. Проверка формулы периода колебаний пружинного маятника.

   Для маятников с массами m1 и m2 согласно (8) будем иметь

                           и   

откуда следует равенство

                                       (18)

Соотношение (18) и проверяется в данном упражнении. Для более определения периода колебаний измеряют время t , за которое совершается N полных колебаний и используют формулу

   (19)

  1.  Поместить на платформу груз массой m´. Тогда масса маятника m1 = m´+m0, где m0 масса платформы.
  2.  Вывести маятник из положения равновесия на 40-70мм и измерить время, в течении которого совершается 10-15 полных колебаний. Опыт проделать не менее 5 раз. Результаты измерений занести в таблицу и по формуле (19) определить период колебаний.
  3.  Поместить на платформу груз иной массы m и снова выполнить пункт 2.
  4.  Вычислить  и  и проверить справедливость равенства (18).
  5.  По указанию преподавателя пункты 1-4 проделать для другой пары грузов.

Упражнение 2: Определение основных характеристик затухающих колебаний пружинного маятника.

  1.  Положить на платформу несколько грузов и определить период Т колебаний маятника, как указано в упражнении 1.
  2.  Вывести тело из положения равновесия на А0 и определить время t0 за которое амплитуда колебаний уменьшится да значения An (за величину конечной амплитуды An удобно взять значение примерно в 10 раз меньше А0. При отсчете амплитуды колебаний луч зрения должен быть перпендикулярен к плоскости шкалы). Измерения повторить не менее 5 раз. Результаты занести в таблицу (составить самостоятельно).
  3.  По формуле  определить логарифмический декремент затухания.
  4.  Используя формулы (13-17) вычислить коэффициент затухания , время затухания , число колебаний за время затухания Ne и добротность Q системы. Сделать выводы.

Контрольные вопросы.

  1.  Свободные колебания. Физические величины их характеризующие. Графики зависимости амплитуды, скорости и ускорения от времени для свободных гармонических колебаний.
  2.  Затухающие колебания. Физические величины, используемые для описания затухающих колебаний. Их физический смысл.
  3.  Апериодическое движение тел. Условие его возникновения.


 

А также другие работы, которые могут Вас заинтересовать

28551. Режим шифрования с обратной связью по выходу (OFB) 52.55 KB
  Разница заключается в том что выход алгоритма в режиме OFB подается обратно в регистр тогда как в режиме CFB в регистр подается результат применения операции XOR к незашифрованному блоку и результату алгоритма см. Шифрование в режиме OFB Основное преимущество режима OFB состоит в том что если при передаче произошла ошибка то она не распространяется на следующие зашифрованные блоки и тем самым сохраняется возможность дешифрования последующих блоков. Дешифрование в режиме OFB Недостаток режима OFB заключается в том что он более уязвим к...
28552. Симметричные методы шифрования DES 63.46 KB
  Функция перестановки одна и та же для каждого раунда но подключи Ki для каждого раунда получаются разные вследствие повторяющегося сдвига битов ключа. Последовательность преобразований отдельного раунда Теперь рассмотрим последовательность преобразований используемую на каждом раунде. Создание подключей Ключ для отдельного раунда Ki состоит из 48 битов. На каждом раунде Ci и Di независимо циклически сдвигаются влево на 1 или 2 бита в зависимости от номера раунда.
28553. Примеры современных шифров проблема последнего блока DES 26.44 KB
  Альтернативой DES можно считать тройной DES IDEA а также алгоритм Rijndael принятый в качестве нового стандарта на алгоритмы симметричного шифрования. Также без ответа пока остается вопрос возможен ли криптоанализ с использованием существующих характеристик алгоритма DES. Алгоритм тройной DES В настоящее время основным недостатком DES считается маленькая длина ключа поэтому уже давно начали разрабатываться различные альтернативы этому алгоритму шифрования.
28554. Распределение ключей. Использование базовых ключей 13.15 KB
  Он заключается в доставке абоненту сети связи не полного комплекта ключей для связи со всеми другими абонентами а некоторой универсальной заготовки уникальной для каждого абонента по которой он может вычислить необходимый ему ключ. Пусть в сети связи действуют N абонентов занумеруем их от 0 до N1 и поставим каждому абоненту уникальный открытый идентификатор Yi из некоторого множества Y открытый в смысле общеизвестный. Генерация ключей для абонентов сети связи заключается в выработке N секретных ключей Xi из некоторого множества X....
28555. Использование маркантов или производных ключей 15.1 KB
  Заключается в использовании для шифрования не непосредственно ключей хранимых у абонентов а некоторых производных ключей из них получаемых. Заключается в использовании вместо ключа K двоичного вектора S полученного побитным суммированием K и случайного двоичного вектора M называемого маркантом при этом маркант передается в открытом виде отправителем получателю. Действительно использование одного и того же ключа но разных маркантов не снижает стойкости шифра. Однако этот метод обладает одним недостатком восстановление одного...
28557. Несимметричные системы шифрования и их построение 23.7 KB
  Эти системы характеризуются тем что для шифрования и для расшифрования используются разные ключи связанные между собой некоторой зависимостью. Один из ключей например ключ шифрования может быть сделан общедоступным и в этом случае проблема получения общего секретного ключа для связи отпадает. Поскольку в большинстве случаев один ключ из пары делается общедоступным такие системы получили также название криптосистем с открытым ключом. Первый ключ не является секретным и может быть опубликован для использования всеми пользователями...
28558. Новое направление в криптографии, постулаты У. Диффи и М. Хеллмана 23.14 KB
  Это означает что если А является примитивным корнем простого числа Q тогда числа A mod Q A2 mod AQ1 mod Q являются различными и состоят из целых от 1 до Q – 1 с некоторыми перестановками. В этом случае для любого целого B Q и примитивного корня A простого числа Q можно найти единственную экспоненту Х такую что Y =AX mod Q где 0≤ X ≤ Q1. Экспонента X называется дискретным логарифмом или индексом Y по основанию A mod Q. Общеизвестные элементы Q Простое число A A Q и A является примитивным корнем Q Создание...
28559. Описание системы с открытыми ключами 14.42 KB
  Альтернативным вариантом может быть обработка регистрации системой имеющей древовидную структуру: ЦО выдает сертификаты местным представителям которые в дальнейшем действуют в качестве посредников в процессе регистрации пользователя на более низких уровнях иерархии. Сертификаты могут распространяться ЦО пользователями или использоваться в иерархической системе. Поэтому если сертификаты хранятся у пользователей а не выдаются каждый раз ЦО при их использовании ЦО должен время от времени публиковать списки аннулированных сертификатов....