34674

Походження основних компонентів хімічного складу атмосферних опадів

Лекция

Экология и защита окружающей среды

Постійним природним джерелом надходження сірководню та сірчистого газу в атмосферу є вулканічна діяльність. Робота промислових підприємств постачає в атмосферу велику кількість сполук сірки у вигляді SO2 SO3 H2S CS2. Сполуки сірки викидаються в атмосферу також підприємствами що виробляють і застосовують сірчану кислоту та сірководень а також при спалюванні органічних решток в териконах. Сполуки азоту що надходять в атмосферу представлені оксидами азоту N2O NO NO2 N2O3 N2O5.

Украинкский

2013-09-08

38 KB

8 чел.

Походження основних компонентів хімічного складу атмосферних опадів

Відповідно до принципів Комплексної програми атмосферного моніторингу  у хімічному складі атмосферних опадах визначають головні іони, до яких належать SO42-, NО3-, Cl-, НСО3-, NH4+, Са2+, Mg2+, Na+, та К+ та важкі метали. На жаль,  в наш час в Україні вміст важких металів у атмосферних опадах не визначається, як виняток можна згадати вивчення вмісту важких металів у Севастополі протягом 1997-1999 рр., коли було відібрано 6 проб атмосферних опадів, при чому аналіз цих проб проводився в Узбекистані . Тож у подальшому зосередимо увагу лише на головних іонах хімічного складу атмосферних опадів.

Початкова стадія формування хімічного складу майбутніх атмосферних опадів відбувається в хмарах при конденсації водяної пари на ядрах конденсації. Хімічний склад води в хмарах важко вивчати через методичні та і технічні труднощі. Мінералізація води хмар дуже мала, навіть над містами – до 5 мг/дм3, крім районів промислового забруднення повітря. У складі аніонів найчастіше переважає Cl- над SO42- (хоча буває і навпаки). У катіонному складі переважає Са2+чи Mg2+.

Основна ж частина хімічного складу атмосферних опадів формується при проходженні опадами нижньої частини тропосфери (нижче хмар і в приземних шарах), коли краплі дощу або сніжинки при своєму падінні з хмар вимивають з повітря значну кількість аерозолів. При чому дощ з дрібними краплями (з більшою питомою поверхнею) вимиває аерозолі повніше. Велике значення має також тривалість періоду, який передує випадінню атмосферних опадів. Так повітря, яке довго не промивалося опадами, характеризується вищою концентрацією аерозолів порівняно з опадами, які випали одразу за першим дощем .

Характер і концентрація іонів в атмосферних опадах залежать від: характеру підстильної поверхні, (море або суша), віддаленості від моря, аридності клімату, характеру ґрунтів, рослинності, наявності промислових підприємств, висоти місцевості, характеру самих опадів (дощ, сніг, град) та їхньої інтенсивності. Проте переважаючим іоном над суходолом, як правило, є сульфатний іон.

Присутність іонів SO42- зумовлено окислюванням сполук сірки (зокрема сірководню та сірчистого газу) в атмосфері, а також підняттям сульфатних солей із засолених поверхонь та поверхонь морів і океанів. Постійним  природним джерелом надходження сірководню та сірчистого газу в атмосферу є вулканічна діяльність.

Робота промислових підприємств постачає в атмосферу велику кількість сполук сірки у вигляді SO2, SO3, H2S, CS2. Серед них найбільш поширеним є сірчистий газ, який виділяється під час спалювання сірковмісного палива або при переробці сірчистих руд. Основними джерелами викидів є котли для спалювання вугілля. Сполуки сірки викидаються в атмосферу також підприємствами, що виробляють і застосовують сірчану кислоту та сірководень, а також при спалюванні органічних решток в териконах.

Джерелом NО3- є окислювання оксидів азоту в атмосфері, що виділяються з ґрунту та надходять з інших джерел (міста, промислові підприємства, вулкани). При цьому частково утворяться й іони NО2-.

Сполуки азоту, що надходять в атмосферу, представлені оксидами азоту (N2O, NO, NO2, N2O3, N2O5). Основними джерелами забруднення ними повітря, крім згаданих вище котлів для спалювання мазуту і природного газу, є підприємства, що виробляють добрива, азотну кислоту і нітрати, анілінові фарбники, нітросполуки, віскозний шовк, целулоїд. В повітрі, як правило, знаходиться суміш оксидів азоту. Вони порівняно легко переходять один в одний. Основним оксидом, що викидається в атмосферу разом з паливними газами, оксид азоту (NO). При освітленні сонячними променями він інтенсивно окислюється атмосферним киснем до діоксиду.

Основними антропогенними джерелами амонію є тваринництво та підприємства, які виробляють амонійні добрива і азотну кислоту, а природним – розклад біомаси. Безпосередньо в атмосфері іони NH4+ утворюються  за рахунок взаємодії аміаку з кислотами.

Надходження в атмосферу іонів Cl- пов'язано з виносом морських солей на континент, з вулканічною діяльністю та з димовими і газовими викидами промислових підприємств, що виробляють соляну кислоту, хлормісткі пестициди, органічні фарбники, гідролізний спирт, соду .

Основним джерелом, що збагачує атмосферу іонами НСО3- , є пилуваті частки, що підняті в повітря з поверхні вапняків, що вивітрюються, доломітів, мергелів та інших порід, які містять карбонати. Підвищений вміст іонів НСО3- у промислових районах пов'язано з роботою промислових підприємств.

Джерелом надходження іонів Са2+ в атмосферу є пилуваті частки вапняних і сульфатних осадових порід, промислові підприємства і вулканічні виверження.

Надходження іонів Mg2+ в атмосферу може бути зв'язане з виносом морських аерозолів у вигляді MgCl2, і MgSO4. Крім того, пилуваті частки вивітрених мергелів і доломітів, непокритих ґрунтом, можуть також збагачувати атмосферу іонами Mg2+. Антропогенні осередки забруднень пов'язані з підприємствами, що переробляють карбонатні породи, що містять магній.

Іони Na+ найбільше часто зв'язані з іонами Cl- та рідше із сульфатними та гідрокарбонатними іонами. Тому вони надходять в атмосферу із солями, що виносяться з поверхні морських акваторій, з димовими та газовими відходами промислових підприємств і при процесах ґрунтової ерозії, що сприяють переміщенню тонких пилуватих часток, піднятих в атмосферу з поверхні землі конвективними та турбулентними потоками повітря.

Серед катіонів іони К+ за поширенням займають останнє місце. Аналогічно іонам Nа+ вони найчастіше зв'язані з іонами Cl- і рідше – з іонами SO42- та НСО3-. Найбільших значень іони К+ набувають у промислових районах [].

Отже, зі сказаного вище видно, що всі дев’ять головних іонів в  хімічному складі атмосферних опадів мають як природне, так і антропогенне походження.


 

А также другие работы, которые могут Вас заинтересовать

40103. СИНТЕЗ СИСТЕМ АВТОМАТИЧЕСКОЙ СТАБИЛИЗАЦИИ МЕХАНИЧЕСКОГО ОБЪЕКТА 13.61 MB
  Построение компьютерной модели с целью имитации движений, а также применение методов теории управления упрощается, если исходные уравнения привести к форме Коши. Для этого разрешим исходные уравнения относительно старших производных. Заметим, что старшие производные входят в уравнение линейно, что позволяет представить уравнения в матричной форме
40104. Синтез алгоритмов управления нестабильным объектом 449.5 KB
  Для достижения цели проекта необходимо решить следующие задачи: 1 – составить нелинейную математическую модель объекта и провести анализ методом компьютерного моделирования; 2 – провести анализ устойчивости управляемости и наблюдаемости объекта по линеаризованной модели; 3 – синтезировать регулятор состояния методом размещения собственных значений [2]; 4 – синтезировать наблюдатель состояний и динамический регулятор; 5 – оценить размеры области притяжения положения равновесия нелинейной системы с непрерывным регулятором; 6 – построить...
40105. Двойственный симплекс-метод, основные принципы, алгоритм. Случаи, когда удобно применять двойственный симплексный метод 178 KB
  ДСМ ДСМ как и СМ называется методом последовательного улучшения оценок и применяется для решения задачи: исходным пунктом этого метода является выбор такого базиса . Таким образом основные принципы ДСМ заключаются в том чтобы: каждый раз выполнялось 2 значения целевой функции убывало. Для этого воспользуемся 2м принципом ДСМ. Чтобы обеспечить это надо выбрать так что: 6 Алгоритм ДСМ формулируется так: Выбираем базис и строим I симплекстаблицу Если все то решение оптимально иначе переход к 3.
40106. Задача максимизации прибыли при заданных ценах на продукцию и ресурсы. Анализ оптимальных решений с помощью множителей Лагранжа 34.5 KB
  Требуется решить задачу максимизации прибыли при заданных P0 и p: mx P0fx – p x 1 x  0 2 Исследование задачи будем проводить с помощью функции Лагранжа: – балансовое соотношение В оптимальном плане x для любых используемых ресурсов отношение цены к предельной эффективности постоянно. Для этих же ресурсов показали что соотношение предельных эффективностей равно соотношению цен. Наибольшая отдача будет от тех ресурсов которые имеют самую большую предельную эффективность в текущей точке.
40107. Теорема о необходимых и достаточных условиях оптимальности смешанных стратегий 167.5 KB
  Пусть игра определена матрицей и ценой игры V. – оптимальная стратегия 1 игрока х является первой координатой некоторой седловой точки фции выигрыша Мх у. СЛЕДСТВИЕ: Если для смешанных стратегий и числа V одновременно выполняются 1 и 2 то будут оптимальными стратегиями игроков а V– цена игры. Докво: умножим 1 на y и просуммируем: умножим 2 на x и просуммируем: Получаем Тогда по следствию Т о седловой точке точка – седловая и –...
40108. Функция выигрыша в матричных играх без седловой точки. Смешанные и оптимальные смешанные стратегии. Метод сведения решения матричных игр к задаче линейного программирования 119.5 KB
  Функция выигрыша в матричных играх без седловой точки. Парная игра с нулевой суммой задается формально матрицей игры – матрицей А = {ij} элементы которой определяют выигрыш первого игрока и проигрыш второго если первый игрок выберет iю стратегию а второй jю стратегию. Пара i0j0 называется седловой точкой матрицы решением игры если выполняются условия: mx по столбцу I игрок min по строке II игрок Значение функции выигрыша в седловой точке называется ценой игры. Тогда выигрыш первого игрока при условии что он выбирает...
40109. Методы штрафных функций и методы центров в выпуклом программировании 90 KB
  Методы штрафных функций и методы центров в выпуклом программировании Метод штрафных функций Постановка задачи Даны непрерывно дифференцируемые целевая функция fx = fx1 xn и функции ограничений gjx = 0 j = 1 m; gjx 0 j = m1 p определяющие множество допустимых решений D. Требуется найти локальный минимум целевой функции на множестве D т. Стратегия поиска Идея метода заключается в сведении задачи на условный минимум к решению последовательности задач поиска безусловного минимума вспомогательной функции: Fx Ck =...
40110. Методы наискорейшего и координатного спуска для минимизации выпуклой функции без ограничений. Их алгоритмы и геометрическая интерпретация 94.5 KB
  Все методы спуска решения задачи безусловной минимизации различаются либо выбором направления спуска, либо способом движения вдоль направления спуска. Решается задача минимизации функции f(x) на всём пространстве Rn. Методы спуска состоят в следующей процедуре построения последовательност
40111. Субградиент как обобщение понятия градиента. Субградиент для функции максимума. Субградиентный метод и его геометрическая интерпретация в R2 141 KB
  Субградиент для функции максимума. Градиентом дифференцируемой функции fx в точке называется вектор частных производных.x0 y0 а значение lim называется частной производной функции f по x в т. Вектор называется субградиентом опорным вектором функции fx в точке если выполняется: Таких с множество но это множество ограничено и замкнуто.