347

Разработка воздушного радиатора транзистора ГТ701А

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Транзистор германиевый сплавной p-n-p универсальный. Корпус металлический со стеклянными изоляторами и гибкими выводами. Коэффициент теплоотдачи зависит от теплофизических свойств воздуха, его режима движения и геометрии омываемой поверхности.

Русский

2012-12-07

668 KB

49 чел.

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Рязанский Государственный Радиотехнический Университет»

Кафедра Промышленной Электроники

Курсовая работа по дисциплине

«Тепловые процессы в электронике»

Разработка Воздушного Радиатора Транзистора

ГТ701А

Направление 210100 – «Электроника и микроэлектроника»

Выполнил:

студент группы №926

Мальцев М.В.

Проверил:

Д.Т.Н. проф.

Улитенко А.И.

1) Конструкция транзистора

Транзистор германиевый сплавной p-n-p универсальный. Предназначен для работы в системах зажигания двигателей внутреннего сгорания, а так же в преобразователях напряжения. Допускается применять в условиях импульсных перегрузок по напряжению и мощности.

Корпус металлический со стеклянными изоляторами и гибкими выводами. Масса транзистора не более 25 г. Масса крепежного фланца не более 7,5 г.

Рис. 1. Общий вид транзистора

2) Предельные эксплуатационные данные

  •  Предельная рассеиваемая мощность – 50 Вт
  •  Максимальная температура корпуса – 90 ºС
  •  Температура окружающей среды – 40 ºС

3) Условные обозначения

Q – рассеиваемая мощность, Вт

Тк – температура корпуса прибора, ºС

Т – температура окружающей среды, ºС

α – коэффициент теплоотдачи, Вт/(м2 ºС)

λр – коэффициент теплопроводности материала радиатора, Вт/(м  ºС)

λ – коэффициент теплопроводности воздуха, Вт/(м  ºС)

с – удельная теплоемкость воздуха, Дж/(кгºС)

– плотность воздуха, кг/м3

µ – динамическая вязкость воздуха, Пас

β = 1/(273+Т) – коэффициент объемного расширения воздуха, 1/ ºС

h – высота пластины радиатора, м

Nu – критерий Нуссельта

Gr – критерий Грасгофа

Pr – критерий Прандтля

b – ширина пластины радиатора, м

δ – толщины пластины, м

Тх – температура в сечении х радиатора, ºС

t – средняя температура радиатора, ºС

L – ширина радиатора, м

s – ширина межреберных зазоров, м

N – число пластин в радиаторе

p – плотность материала радиатора, кг/м3 

g = 9,81 – ускорение свободного падения, м/c2

F – общая площадь воздушного радиатора , м2 


4) Основные расчетные соотношения

По условию теплоотдачи при естественной конвекции:

Коэффициент теплоотдачи зависит от теплофизических свойств воздуха, его режима движения  и геометрии омываемой поверхности.

Для вертикальной пластины справедливо критериальное соотношение:

  

Здесь индексы «ж» и «с» обозначают что теплофизические свойства определяются по температуре жидкости (Т) и средней температуры стенки радиатора (t). Индекс «h» означает, что в качестве характерного размера выступает высота пластины.

Оптимальная величина зазора между пластинами s, при котором отдаваемая мощность воздуху максимальна, определяется из условия:

  

Здесь при расчете критерия Gr в качестве характерного размера будет стоять s. А теплофизические свойства воздуха определяются по средней температуре радиатора (t)


5) Тип проектируемого радиатора

Рис.2. Геометрия радиатора

В качестве материала используется Al (Алюминий) с λр = 205 Вт/(м  ºС). При ширине радиатора L число пластин N:


6) Соотношения для расчета средней температуры

радиатора

Рис.3. Передача тепла по ребру радиатора

При числе пластин в радиаторе N, каждая из них рассеивает мощность

Q1 = Q/N; Поверхностная плотность рассеиваемой мощности на ребре

q1 = Q/2bhN;

Поскольку мощность распространяется от основания ребра к его концу, то при подходе к сечению х часть её рассеется и составит:

Оставшаяся часть мощности пройдёт через сечение ребра толщиной dx

Записывая для этой мощности закон теплопроводности в сечении х, получаем:

Проинтегрируем в соответствующих пределах:

Отсюда температура в сечении х:

При  х = b температура на конце радиатора составит:

Здесь температура в основании ребра Tк принимается равной температуре корпуса транзистора.

7) Теплофизические свойства воздуха

Зависимость плотности от температуры

T,ºC

0

20

40

60

80

100

ρ,

1,293

1,205

1,128

1,060

1,000

0,946

Зависимость теплопроводности от температуры

T,ºC

0

20

40

60

80

100

λ,

2,4410-2

1,5910-2

2,7610-2

2,910-2

3,0510-2

3,2110-2

 

Зависимость удельной теплоемкости от температуры

T,ºC

0

20

40

60

80

100

с,

1005

1006

1007

1007

1008

1009

Зависимость динамической вязкости от температуры

T,ºC

0

20

40

60

80

100

µ,

17,210-6

18,110-6

19,110-6

20,110-6

21,110-6

21,910-6

Зависимость коэффициента объемного расширения от температуры

T,ºC

0

20

40

60

80

100

β,

3,66310-3

3,41310-3

3,19510-3

3,00310-3

2,83310-3

2,68110-3

8) Расчёт геометрических размеров радиатора

С целью придания радиатору компактной формы впишем его размеры в куб с ребром, равным h. В этом случае, принимаем b=h;  L=h. Соответственно число ребер в радиаторе составит . Площадь радиатора будет равна:

здесь толщина ребра δ вначале задаётся произвольно. Согласно уравнению (3) при заданной высоте ребра h величина межреберных зазоров определяется из соотношения:

При расчёте зазора s учитываем, что ребро разогрето не равномерно, следовательно теплофизические свойства воздуха принимаются при средней температуре радиатора, которое на ∆Т, ºС ниже температуры Тк (корпуса транзистора). Её значение определяется из выражения:

Т задаётся произвольно.

Расчёт коэффициента теплоотдачи производиться с помощью соотношения (2), откуда α равна:

Критерий Prc рассчитывать при средней температуре радиатора.

По формуле (1) рассчитывается рассеиваемая мощность   

Задаваясь последовательно различными значениями высоты радиатора h, строится зависимость рассеиваемой мощности от высоты.

По мощности, рассеиваемой транзистором из графика определяем требуемую высоту пластины h, площадь радиатора F, число пластин N и зазор между ними s.

Затем принимая во внимание, что средняя температура ребра на ∆Т, ºС ниже температуры Тк , по ф. (5) подбираем соответствующую ей толщину ребра:

По найденному значению δ1 уточняем ширину радиатора:

9) Последовательность расчёта

Присваиваем выражения для зависимостей теплофизических свойств воздуха от температуры.

Присваиваем рабочие значения температур:

Tк = 90ºС ;

T = 40ºС ;

Присваиваем значения констант:

g = 9,81;  λр = 205;

Задаёмся разностью температур между корпусом транзистора и средней температурой радиатора:

Т = 3ºС

Присваиваем среднюю температуру радиатора:

;

Задаёмся высотой радиатора h и толщиной радиатора δ:

h = 79 мм              δ = 2,8 мм

Присваиваем выражение для определения межреберного зазора s:

Присваиваем выражение для площади радиатора:

Присваиваем выражение для теплоотдачи:

Присваиваем выражение для рассеиваемой мощности:

Присваиваем выражение для уточнённой толщины ребра δ1:

В итоге получаем:

Q = 51,5 Вт

F = 11,3104 мм2

N = 9

α = 9,677 Вт/(м2 ºС)

s = 6,64 мм

δ1 = 2.3 мм

L = 75 мм

10) Выводы

По результатам расчёта радиатора транзистора ГТ701А, рассеивающего мощность 50 Вт при температуре окружающей среды Т = 40 ºС и температуре корпуса радиатора Тк = 90 ºС, сводится к следующему: площадь радиатора    F  = 11,3104 мм2, высота пластин h = 79 мм, ширина радиатора L = 75 мм, толщина пластин δ = 2.3 мм, ширина межреберных зазоров s = 6,64 мм.

Конструкция радиатора, спроектированная по этим данным представлена на рис. 4.

Рис.4. Общий вид радиатора с транзистором

Рязань 2012


 

А также другие работы, которые могут Вас заинтересовать

30551. Технические каналы утечки информации, классификация и характеристика 26.65 KB
  Для исключения утечки персональных данных за счет побочных электромагнитных излучений и наводок в информационных системах 1 класса могут применяться следующие методы и способы защиты информации: использование технических средств в защищенном исполнении; использование средств защиты информации прошедших в установленном порядке процедуру оценки соответствия; размещение объектов защиты в соответствии с предписанием на эксплуатацию; размещение понижающих трансформаторных подстанций электропитания и контуров заземления; обеспечение...
30552. Оптические каналы утечки информации 67.52 KB
  Отраженный от объекта свет содержит информацию о его внешнем виде видовых признаках а излучаемый объектом свет о параметрах излучений признаках сигналов. Длина протяженность канала утечки зависит от мощности света от объекта свойств среды распространения и чувствительности фотоприемника. Способы и средства противодействия наблюдению в оптическом диапазоне В интересах защиты информации об объекте его демаскирующих признаков необходимо уменьшать контраст объект фон снижать яркость объекта и не допускать наблюдателя близко к объекту.
30553. Структура оптического канала утечки информации 87.73 KB
  Выступление: Оптические каналы утечки информации Структура оптического канала утечки информации Объект наблюдения в оптическом канале утечки информации является одновременно источником информации и источником сигнала потому что световые лучи несущие информацию о видовых признаках объекта представляют собой отраженные объектом лучи внешнего источника или его собственные излучения. Излучаемый свет содержит информацию об уровне и спектральном составе источников видимого света а в инфракрасном диапазоне по характеристикам излучений можно также...
30554. Радиоэлектронные каналы утечки информации 18.65 KB
  Радиоэлектронный канал относится к наиболее информативным каналам утечки в силу следующих его особенностей: независимость функционирования канала от времени суток и года существенно меньшая зависимость его параметров по сравнению с другими каналами от метеоусловий; высокая достоверность добываемой информации особенно при перехвате ее в функциональных каналах связи за исключением случаев дезинформации; большой объем добываемой информации; оперативность получения информации вплоть до реального масштаба времени; скрытность перехвата...
30555. Акустические каналы утечки информации 701.6 KB
  Часть III дополнительно Оценка громкости звука Уровень звука дБ Источник звука Очень тихий 0 10 Усредненный порог чувствительности уха Тихий шепот 1. Порог слышимости соответствует мощности звука 1012 Вт или звуковому давлению на барабанную перепонку уха человека 2105 Па Абсолютный порог минимальное значение воздействующего раздражителя при котором возникает ощущение. Под воздействием звука Рак = 70 дБ кирпичная стена толщиной 05 м совершает вибрационные колебания с ускорением а≈3·105g.
30556. Задачи и принципы инженерно-технической защиты информации 50.5 KB
  Задачи Инженернотехническая защита информации одна из основных составляющих комплекса мер по защите информации составляющей государственную коммерческую и личную тайну. Этот комплекс включает нормативноправовые документы организационные и технические меры направленные на обеспечение безопасности секретной и конфиденциальной информации. Инженернотехническая защита информации включает комплекс организационных и технических мер по обеспечению информационной безопасности техническими средствами и решает следующие задачи:...
30557. Способы и средства инженерной защиты и технической охраны объектов 20.37 KB
  Проникновение злоумышленника может быть скрытным с механическим разрушением инженерных конструкций и средств охраны с помощью инструмента или взрыва и в редких случаях в виде вооруженного нападения с нейтрализацией охранников. Люди и средства ИЗТОО образуют систему охраны. В общем случае структура системы охраны объектов.
30558. Теорема о среднем для действительных функций одного действительного переменного. Теорема Ферма; теорема Ролля, теорема Лагранжа. Примеры, показывающие существенность каждого условия в теореме Ролля: теоретическая интерпретация 91.81 KB
  Все вышеперечисленные теоремы являются основными теоремами дифференциального исчисления поэтому сначала введем понятие дифференцируемости функции. Понятие дифференцируемости функции. Выражение ∆x называется дифференциалом функции fx в точке x0 соответствующим приращению аргумента ∆x и обозначается символом dy или dfx0. При этом приращение функции ∆y определяется главным образом первым слагаемым т.
30559. Первообразная и неопределенный ∫. Опр. первообразной. Опр. неопределенного ∫, свойства. Опр. по Риману. Необходимое и достаточное условие интегрируемости. Ньютон-Лейбниц 23.61 KB
  Функция Fx называется первообразной для функции fx на интервале b если в любой точке х из интервала b функция Fx дифференцируема и имеет производную Fx=fx. Совокупность всех первообразных функций для данной функции fx на интервале b называется неопределенным интегралом от функции fx на этом интервале и обозначается где fxdx подынтегральное выражение fx подынтегральная функция x переменная интегрирования. Операцию нахождения первообразной восстановление функции по ее производной называют интегрированием...