347

Разработка воздушного радиатора транзистора ГТ701А

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Транзистор германиевый сплавной p-n-p универсальный. Корпус металлический со стеклянными изоляторами и гибкими выводами. Коэффициент теплоотдачи зависит от теплофизических свойств воздуха, его режима движения и геометрии омываемой поверхности.

Русский

2012-12-07

668 KB

48 чел.

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Рязанский Государственный Радиотехнический Университет»

Кафедра Промышленной Электроники

Курсовая работа по дисциплине

«Тепловые процессы в электронике»

Разработка Воздушного Радиатора Транзистора

ГТ701А

Направление 210100 – «Электроника и микроэлектроника»

Выполнил:

студент группы №926

Мальцев М.В.

Проверил:

Д.Т.Н. проф.

Улитенко А.И.

1) Конструкция транзистора

Транзистор германиевый сплавной p-n-p универсальный. Предназначен для работы в системах зажигания двигателей внутреннего сгорания, а так же в преобразователях напряжения. Допускается применять в условиях импульсных перегрузок по напряжению и мощности.

Корпус металлический со стеклянными изоляторами и гибкими выводами. Масса транзистора не более 25 г. Масса крепежного фланца не более 7,5 г.

Рис. 1. Общий вид транзистора

2) Предельные эксплуатационные данные

  •  Предельная рассеиваемая мощность – 50 Вт
  •  Максимальная температура корпуса – 90 ºС
  •  Температура окружающей среды – 40 ºС

3) Условные обозначения

Q – рассеиваемая мощность, Вт

Тк – температура корпуса прибора, ºС

Т – температура окружающей среды, ºС

α – коэффициент теплоотдачи, Вт/(м2 ºС)

λр – коэффициент теплопроводности материала радиатора, Вт/(м  ºС)

λ – коэффициент теплопроводности воздуха, Вт/(м  ºС)

с – удельная теплоемкость воздуха, Дж/(кгºС)

– плотность воздуха, кг/м3

µ – динамическая вязкость воздуха, Пас

β = 1/(273+Т) – коэффициент объемного расширения воздуха, 1/ ºС

h – высота пластины радиатора, м

Nu – критерий Нуссельта

Gr – критерий Грасгофа

Pr – критерий Прандтля

b – ширина пластины радиатора, м

δ – толщины пластины, м

Тх – температура в сечении х радиатора, ºС

t – средняя температура радиатора, ºС

L – ширина радиатора, м

s – ширина межреберных зазоров, м

N – число пластин в радиаторе

p – плотность материала радиатора, кг/м3 

g = 9,81 – ускорение свободного падения, м/c2

F – общая площадь воздушного радиатора , м2 


4) Основные расчетные соотношения

По условию теплоотдачи при естественной конвекции:

Коэффициент теплоотдачи зависит от теплофизических свойств воздуха, его режима движения  и геометрии омываемой поверхности.

Для вертикальной пластины справедливо критериальное соотношение:

  

Здесь индексы «ж» и «с» обозначают что теплофизические свойства определяются по температуре жидкости (Т) и средней температуры стенки радиатора (t). Индекс «h» означает, что в качестве характерного размера выступает высота пластины.

Оптимальная величина зазора между пластинами s, при котором отдаваемая мощность воздуху максимальна, определяется из условия:

  

Здесь при расчете критерия Gr в качестве характерного размера будет стоять s. А теплофизические свойства воздуха определяются по средней температуре радиатора (t)


5) Тип проектируемого радиатора

Рис.2. Геометрия радиатора

В качестве материала используется Al (Алюминий) с λр = 205 Вт/(м  ºС). При ширине радиатора L число пластин N:


6) Соотношения для расчета средней температуры

радиатора

Рис.3. Передача тепла по ребру радиатора

При числе пластин в радиаторе N, каждая из них рассеивает мощность

Q1 = Q/N; Поверхностная плотность рассеиваемой мощности на ребре

q1 = Q/2bhN;

Поскольку мощность распространяется от основания ребра к его концу, то при подходе к сечению х часть её рассеется и составит:

Оставшаяся часть мощности пройдёт через сечение ребра толщиной dx

Записывая для этой мощности закон теплопроводности в сечении х, получаем:

Проинтегрируем в соответствующих пределах:

Отсюда температура в сечении х:

При  х = b температура на конце радиатора составит:

Здесь температура в основании ребра Tк принимается равной температуре корпуса транзистора.

7) Теплофизические свойства воздуха

Зависимость плотности от температуры

T,ºC

0

20

40

60

80

100

ρ,

1,293

1,205

1,128

1,060

1,000

0,946

Зависимость теплопроводности от температуры

T,ºC

0

20

40

60

80

100

λ,

2,4410-2

1,5910-2

2,7610-2

2,910-2

3,0510-2

3,2110-2

 

Зависимость удельной теплоемкости от температуры

T,ºC

0

20

40

60

80

100

с,

1005

1006

1007

1007

1008

1009

Зависимость динамической вязкости от температуры

T,ºC

0

20

40

60

80

100

µ,

17,210-6

18,110-6

19,110-6

20,110-6

21,110-6

21,910-6

Зависимость коэффициента объемного расширения от температуры

T,ºC

0

20

40

60

80

100

β,

3,66310-3

3,41310-3

3,19510-3

3,00310-3

2,83310-3

2,68110-3

8) Расчёт геометрических размеров радиатора

С целью придания радиатору компактной формы впишем его размеры в куб с ребром, равным h. В этом случае, принимаем b=h;  L=h. Соответственно число ребер в радиаторе составит . Площадь радиатора будет равна:

здесь толщина ребра δ вначале задаётся произвольно. Согласно уравнению (3) при заданной высоте ребра h величина межреберных зазоров определяется из соотношения:

При расчёте зазора s учитываем, что ребро разогрето не равномерно, следовательно теплофизические свойства воздуха принимаются при средней температуре радиатора, которое на ∆Т, ºС ниже температуры Тк (корпуса транзистора). Её значение определяется из выражения:

Т задаётся произвольно.

Расчёт коэффициента теплоотдачи производиться с помощью соотношения (2), откуда α равна:

Критерий Prc рассчитывать при средней температуре радиатора.

По формуле (1) рассчитывается рассеиваемая мощность   

Задаваясь последовательно различными значениями высоты радиатора h, строится зависимость рассеиваемой мощности от высоты.

По мощности, рассеиваемой транзистором из графика определяем требуемую высоту пластины h, площадь радиатора F, число пластин N и зазор между ними s.

Затем принимая во внимание, что средняя температура ребра на ∆Т, ºС ниже температуры Тк , по ф. (5) подбираем соответствующую ей толщину ребра:

По найденному значению δ1 уточняем ширину радиатора:

9) Последовательность расчёта

Присваиваем выражения для зависимостей теплофизических свойств воздуха от температуры.

Присваиваем рабочие значения температур:

Tк = 90ºС ;

T = 40ºС ;

Присваиваем значения констант:

g = 9,81;  λр = 205;

Задаёмся разностью температур между корпусом транзистора и средней температурой радиатора:

Т = 3ºС

Присваиваем среднюю температуру радиатора:

;

Задаёмся высотой радиатора h и толщиной радиатора δ:

h = 79 мм              δ = 2,8 мм

Присваиваем выражение для определения межреберного зазора s:

Присваиваем выражение для площади радиатора:

Присваиваем выражение для теплоотдачи:

Присваиваем выражение для рассеиваемой мощности:

Присваиваем выражение для уточнённой толщины ребра δ1:

В итоге получаем:

Q = 51,5 Вт

F = 11,3104 мм2

N = 9

α = 9,677 Вт/(м2 ºС)

s = 6,64 мм

δ1 = 2.3 мм

L = 75 мм

10) Выводы

По результатам расчёта радиатора транзистора ГТ701А, рассеивающего мощность 50 Вт при температуре окружающей среды Т = 40 ºС и температуре корпуса радиатора Тк = 90 ºС, сводится к следующему: площадь радиатора    F  = 11,3104 мм2, высота пластин h = 79 мм, ширина радиатора L = 75 мм, толщина пластин δ = 2.3 мм, ширина межреберных зазоров s = 6,64 мм.

Конструкция радиатора, спроектированная по этим данным представлена на рис. 4.

Рис.4. Общий вид радиатора с транзистором

Рязань 2012


 

А также другие работы, которые могут Вас заинтересовать

32664. Организационно-динамические структуры управления проектом. Проектирование организационно-динамических структур управления проектом 144 KB
  Организационнодинамические структуры управления проектом. Проектирование организационнодинамических структур управления проектом. Организационные структуры УП Несмотря на все многообразие типов и видов проектов их структура управления по своему содержанию в основном однородна ибо в ней представлена та или иная комбинация одних и тех же видов работ по управлению. Это обстоятельство обеспечивает единый подход к проектированию структур управления.
32665. Организационный инструментарий управления проектами: сетевое моделирование, метод PERT, матрица РАЗУ, информационно-технологические модели управления 263 KB
  Организационный инструментарий управления проектами: сетевое моделирование метод PERT матрица РАЗУ информационнотехнологические модели управления Сетевая матрица представляет собой графическое изображение процессов осуществления проекта где все работы управленческие производственные показаны в определенной технологической последовательности и необходимой взаимосвязи и зависимости. Матрица РАЗУ Возможно разделить функции по подразделениям и службам аппарата управления проектом а также обеспечить их комплексную реализацию. Матрица...
32666. Маркетинг проекта. План маркетинга в проекте 37 KB
  Маркетинг проекта В структуре маркетинговых исследований можно выделить 3 принципиальных блока которые в свою очередь также состоят из конкретных работ: Организация исследований: определение целей диапазона и программы маркетинговых исследований; определение методов и средств маркетинговых исследований; сбор и первичная оценка информации; Внешний анализ: анализ структуры целевого рынка; анализ емкости рынка; анализ каналов сбыта; анализ конкуренции; макроэкономический анализ; анализ социальноэкономической среды; Внутренний анализ:...
32667. Принципы и законы управления образовательными системами 51.5 KB
  Принципы управления весьма разнообразны. Они не только служат построению умозрительных схем но достаточно жестко определяют характер связей в системе структуру органов управления. Принципы управления это основополагающая идея по осуществлению управленческих функций.
32669. Методы управления 57.5 KB
  Огут быть сгруппированы по: Объекту управления Федер. Субъекту управления организационнораспорядительные хозяйственные Целям стратегического управления тактического оперативного Механизму влияния социальнополитические организационнораспорядительные организационнопедагогические Стилю авторитарные демократические либеральные Времени управленческих действий перспективные долгосрочные текущие Методы управления это система способов воздействия субъекта управления на объект для достижения определенного...
32670. Классификация подходов к управлению образовательным процессом 53 KB
  В качестве основы управления педагогическими системами а образовательный процесс представляет собой педагогическую систему Н. Коммуникативная функция нацелена на построение необходимых взаимоотношений и связей между субъектами управления. Конаржевский в процессе управления школой выделяет следующие функции: педагогический анализ планирование организацию внутришкольный контроль регулирование. Якунин рассматривая обучение как процесс управления в качестве относительно самостоятельных но взаимосвязанных функций управления выделяет:...
32671. Общее понятие систем 152 KB
  Системный подход это подход к исследованию объекта проблемы процесса явления организации как системы в которой выделены элементы внутренние и внешние связи наиболее существенным образом влияющие на исследуемые результаты его функционирования а цели каждого из элементов определены исходя из общего предназначения объекта На сегодняшний день существует большое разнообразие конкретных моделей системного подхода к управлению. Сущность системного подхода заключается в исследовании наиболее общих форм организации которое предполагает...
32672. Общая характеристика образовательных систем 133 KB
  Поэтому происходит обновление деятельности всех звеньев системы образования. В новых социокультурных условиях остро стоит проблема формирования целостной системы непрерывного образования в России. Принцип непрерывности предполагает что отдельные образовательные учреждения являются подсистемами общей системы образования человека в течение всей его жизни.