347

Разработка воздушного радиатора транзистора ГТ701А

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Транзистор германиевый сплавной p-n-p универсальный. Корпус металлический со стеклянными изоляторами и гибкими выводами. Коэффициент теплоотдачи зависит от теплофизических свойств воздуха, его режима движения и геометрии омываемой поверхности.

Русский

2012-12-07

668 KB

49 чел.

Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Рязанский Государственный Радиотехнический Университет»

Кафедра Промышленной Электроники

Курсовая работа по дисциплине

«Тепловые процессы в электронике»

Разработка Воздушного Радиатора Транзистора

ГТ701А

Направление 210100 – «Электроника и микроэлектроника»

Выполнил:

студент группы №926

Мальцев М.В.

Проверил:

Д.Т.Н. проф.

Улитенко А.И.

1) Конструкция транзистора

Транзистор германиевый сплавной p-n-p универсальный. Предназначен для работы в системах зажигания двигателей внутреннего сгорания, а так же в преобразователях напряжения. Допускается применять в условиях импульсных перегрузок по напряжению и мощности.

Корпус металлический со стеклянными изоляторами и гибкими выводами. Масса транзистора не более 25 г. Масса крепежного фланца не более 7,5 г.

Рис. 1. Общий вид транзистора

2) Предельные эксплуатационные данные

  •  Предельная рассеиваемая мощность – 50 Вт
  •  Максимальная температура корпуса – 90 ºС
  •  Температура окружающей среды – 40 ºС

3) Условные обозначения

Q – рассеиваемая мощность, Вт

Тк – температура корпуса прибора, ºС

Т – температура окружающей среды, ºС

α – коэффициент теплоотдачи, Вт/(м2 ºС)

λр – коэффициент теплопроводности материала радиатора, Вт/(м  ºС)

λ – коэффициент теплопроводности воздуха, Вт/(м  ºС)

с – удельная теплоемкость воздуха, Дж/(кгºС)

– плотность воздуха, кг/м3

µ – динамическая вязкость воздуха, Пас

β = 1/(273+Т) – коэффициент объемного расширения воздуха, 1/ ºС

h – высота пластины радиатора, м

Nu – критерий Нуссельта

Gr – критерий Грасгофа

Pr – критерий Прандтля

b – ширина пластины радиатора, м

δ – толщины пластины, м

Тх – температура в сечении х радиатора, ºС

t – средняя температура радиатора, ºС

L – ширина радиатора, м

s – ширина межреберных зазоров, м

N – число пластин в радиаторе

p – плотность материала радиатора, кг/м3 

g = 9,81 – ускорение свободного падения, м/c2

F – общая площадь воздушного радиатора , м2 


4) Основные расчетные соотношения

По условию теплоотдачи при естественной конвекции:

Коэффициент теплоотдачи зависит от теплофизических свойств воздуха, его режима движения  и геометрии омываемой поверхности.

Для вертикальной пластины справедливо критериальное соотношение:

  

Здесь индексы «ж» и «с» обозначают что теплофизические свойства определяются по температуре жидкости (Т) и средней температуры стенки радиатора (t). Индекс «h» означает, что в качестве характерного размера выступает высота пластины.

Оптимальная величина зазора между пластинами s, при котором отдаваемая мощность воздуху максимальна, определяется из условия:

  

Здесь при расчете критерия Gr в качестве характерного размера будет стоять s. А теплофизические свойства воздуха определяются по средней температуре радиатора (t)


5) Тип проектируемого радиатора

Рис.2. Геометрия радиатора

В качестве материала используется Al (Алюминий) с λр = 205 Вт/(м  ºС). При ширине радиатора L число пластин N:


6) Соотношения для расчета средней температуры

радиатора

Рис.3. Передача тепла по ребру радиатора

При числе пластин в радиаторе N, каждая из них рассеивает мощность

Q1 = Q/N; Поверхностная плотность рассеиваемой мощности на ребре

q1 = Q/2bhN;

Поскольку мощность распространяется от основания ребра к его концу, то при подходе к сечению х часть её рассеется и составит:

Оставшаяся часть мощности пройдёт через сечение ребра толщиной dx

Записывая для этой мощности закон теплопроводности в сечении х, получаем:

Проинтегрируем в соответствующих пределах:

Отсюда температура в сечении х:

При  х = b температура на конце радиатора составит:

Здесь температура в основании ребра Tк принимается равной температуре корпуса транзистора.

7) Теплофизические свойства воздуха

Зависимость плотности от температуры

T,ºC

0

20

40

60

80

100

ρ,

1,293

1,205

1,128

1,060

1,000

0,946

Зависимость теплопроводности от температуры

T,ºC

0

20

40

60

80

100

λ,

2,4410-2

1,5910-2

2,7610-2

2,910-2

3,0510-2

3,2110-2

 

Зависимость удельной теплоемкости от температуры

T,ºC

0

20

40

60

80

100

с,

1005

1006

1007

1007

1008

1009

Зависимость динамической вязкости от температуры

T,ºC

0

20

40

60

80

100

µ,

17,210-6

18,110-6

19,110-6

20,110-6

21,110-6

21,910-6

Зависимость коэффициента объемного расширения от температуры

T,ºC

0

20

40

60

80

100

β,

3,66310-3

3,41310-3

3,19510-3

3,00310-3

2,83310-3

2,68110-3

8) Расчёт геометрических размеров радиатора

С целью придания радиатору компактной формы впишем его размеры в куб с ребром, равным h. В этом случае, принимаем b=h;  L=h. Соответственно число ребер в радиаторе составит . Площадь радиатора будет равна:

здесь толщина ребра δ вначале задаётся произвольно. Согласно уравнению (3) при заданной высоте ребра h величина межреберных зазоров определяется из соотношения:

При расчёте зазора s учитываем, что ребро разогрето не равномерно, следовательно теплофизические свойства воздуха принимаются при средней температуре радиатора, которое на ∆Т, ºС ниже температуры Тк (корпуса транзистора). Её значение определяется из выражения:

Т задаётся произвольно.

Расчёт коэффициента теплоотдачи производиться с помощью соотношения (2), откуда α равна:

Критерий Prc рассчитывать при средней температуре радиатора.

По формуле (1) рассчитывается рассеиваемая мощность   

Задаваясь последовательно различными значениями высоты радиатора h, строится зависимость рассеиваемой мощности от высоты.

По мощности, рассеиваемой транзистором из графика определяем требуемую высоту пластины h, площадь радиатора F, число пластин N и зазор между ними s.

Затем принимая во внимание, что средняя температура ребра на ∆Т, ºС ниже температуры Тк , по ф. (5) подбираем соответствующую ей толщину ребра:

По найденному значению δ1 уточняем ширину радиатора:

9) Последовательность расчёта

Присваиваем выражения для зависимостей теплофизических свойств воздуха от температуры.

Присваиваем рабочие значения температур:

Tк = 90ºС ;

T = 40ºС ;

Присваиваем значения констант:

g = 9,81;  λр = 205;

Задаёмся разностью температур между корпусом транзистора и средней температурой радиатора:

Т = 3ºС

Присваиваем среднюю температуру радиатора:

;

Задаёмся высотой радиатора h и толщиной радиатора δ:

h = 79 мм              δ = 2,8 мм

Присваиваем выражение для определения межреберного зазора s:

Присваиваем выражение для площади радиатора:

Присваиваем выражение для теплоотдачи:

Присваиваем выражение для рассеиваемой мощности:

Присваиваем выражение для уточнённой толщины ребра δ1:

В итоге получаем:

Q = 51,5 Вт

F = 11,3104 мм2

N = 9

α = 9,677 Вт/(м2 ºС)

s = 6,64 мм

δ1 = 2.3 мм

L = 75 мм

10) Выводы

По результатам расчёта радиатора транзистора ГТ701А, рассеивающего мощность 50 Вт при температуре окружающей среды Т = 40 ºС и температуре корпуса радиатора Тк = 90 ºС, сводится к следующему: площадь радиатора    F  = 11,3104 мм2, высота пластин h = 79 мм, ширина радиатора L = 75 мм, толщина пластин δ = 2.3 мм, ширина межреберных зазоров s = 6,64 мм.

Конструкция радиатора, спроектированная по этим данным представлена на рис. 4.

Рис.4. Общий вид радиатора с транзистором

Рязань 2012


 

А также другие работы, которые могут Вас заинтересовать

2114. Детали машин 311.31 KB
  Деталь, узел. Комплект, изделие, машинный агрегат. Классификация деталей машин. Основные критерии работоспособности деталей машин. Общие сведения зубчатых передач, классификация. Геометрические параметры и их соотношения в косозубых цилиндрических зубчатых передачах. Подшипники качения. Условные обозначения. Виды повреждений.
2115. Финансовое право 301 KB
  Финансы и финансовая деятельность государства. Предмет, метод, система, источники финансового права Российской Федерации. Финансовые правоотношения. Финансово-правовые нормы. Санкции за финансовые правонарушения. Формы государственного финансового контроля.
2116. Методическое пособие к практическим занятиям по дисциплине Основы теории систем и управления 3.91 MB
  Содержатся задания по курсу, с примерами их выполнения и соответствующими методическими пояснениями. При этом содержание дисциплины разделено на четыре учебных модуля в. соответствии с программой курса и скоординировано по времени с планом лекций и лекцвонным контролем
2117. Теория принятия решения 1.1 MB
  Классификация решений. Рефлексивные решения. Принятие решения: оценка вероятностей и исходов событий (ценностей). Общение как информационный процесс. Межличностное восприятие в структуре общения. Сплоченность, срабатываемость и эффективность внутригрупповой деятельности. Понятие группового решения.
2118. Історія розвитку аудиту 32.5 KB
  У Давній Греції схоронності майна приділяли особливу увагу. В період Середньовіччя зафіксовані перші наукові праці, присвячені обліку та контролю. Поштовхом до розвитку аудиту став прийнятий 1862 р. закон про британські компанії.
2119. Урок-захід. Я - громадянин України 34 KB
  Твір присвячений громадянству власної держави та прагненню цією державою гордитися.
2120. Поняття, мета, завдання, сутність аудиту 32.5 KB
  Аудит має досить давню історію, а первинним його завданням було визначення правильності ведення бухгалтерського обліку на підприємстві.
2121. Основы проектирования асфальтной дороги. Теоретические и практические постулаты 707.99 KB
  Классификация А/Д общего пользования и подъездных. План трассы а/д. Прямые, кривые в плане. Проектирование дорог в оползневых районах. Организация складского хозяйства. Организация транспорта дорожно-строительного материала. Повышение деформативности асфальтобетонных покрытий.
2122. День захисника вітчизни 527.46 KB
  Мета: розширити і поглибити поняття про повагу до старших та сильної статі, виховувати в учнів звичку поважно ставитись до військових; вміти бачити хиби у своїй поведінці та виправляти їх, виховувати мужність, відвагу і спритність.