3479

Определение коээфициента поверхностного натяжения жидкости по способу отрыва капли

Лабораторная работа

Физика

Определение коээфициента поверхностного натяжения жидкости по способу отрыва капли Приборы и принадлежности: Бюретка с краном на штативе, два стакана, воронка, вода, исследуемая жидкость (спирт). Теория работы и описания приборов Жидкость состоит из...

Русский

2012-11-02

185 KB

84 чел.

Определение коээфициента поверхностного натяжения жидкости по способу отрыва капли

Приборы и принадлежности:

Бюретка с краном на штативе, два стакана, воронка, вода, исследуемая жидкость (спирт).

Теория работы и описания приборов

Жидкость состоит из молекул, между которыми действуют силы сцепления в пределах радиуса межмолекулярного взаимодействия. Если молекула «А» находится внутри жидкости на глубине ниже радиуса межмолекулярного взаимодействия, то силы, действующие на молекулу «А» со стороны окружающих молекул уравновешены. Если молекула «А» находится на поверхности жидкости или на глубине меньше радиуса межмолекулярного взаимодействия, то результирующая сил межмолекулярного взаимодействия направлена внутрь жидкости. В результате на поверхности жидкости образуется упругая пленка, стремящаяся сократить свою поверхность. Поверхностный слой обладает дополнительной поверхностной энергией, а силы, действующие на пленку называются силами поверхностного натяжения.

За меру поверхностного натяжения принимают величину коэффициента поверхностного натяжения, который равен силе поверхностного натяжения приложенный к единице длины линии разрыва пленки, направленный по касательной к поверхности пленки перпендикулярно линии разрыва.

Единица измерения коэффициента поверхностного натяжения . Коэффициент поверхностного натяжения можно определить по способу отрыва капли. Если из стеклянной трубки будет капать жидкость, то капля оторвется от трубочки только тогда, когда ее вес будет равен (или незначительно больше) силе, удерживающей каплю от падения. Капля оторвется под действием ее веса, а сила поверхностного натяжения, удерживающая каплю от падения может быть записана

  (1)

где F – сила поверхностного натяжения,

– длина окружности шейки капли в момент отрыва (рис. 8),

– коэффициент поверхностного натяжения,

r – радиус шейки капли.

В момент отрыва капли ее вес равен силе поверхностного натяжения P=F или

 (2)

здесь m – масса капли.

Из равенства (2) можно определить . Но из за трудности определения радиуса шейки капли применяют относительный метод определения коэффициента поверхностного натяжения жидкости. Если через один и тот же капилляр (бюретку) пропускать две разные жидкости, для одной из которых известен коэффициент поверхностного натяжения, то можно определить коэффициент поверхностного натяжения для второй жидкости. В расчетную формулу, вывод которой здесь приводится, радиус шейки капли не входит. Жидкость пропускают через капилляр так, чтобы она протекала отдельными каплями.

рис 8 рис 9

Объем вытекающей жидкости связан с ее массой и плотностью формулой:

 (3)

где mж – масса вытекшей жидкости, которая может быть выражена произведением массы одной капли на число капель;

V – объем жидкости,

 – плотность жидкости.

Для равных объемов двух вытекших из трубки жидкостей, количество капель в которых известно на основании формулы (3) можно записать:

 (4)

 (5)

где N1 и N2 – число капель каждой из жидкостей в данном объеме,

m1 – масса одной капли воды,

m2 – масса одной капли исследуемой жидкости,

1 – плотность воды,

2 – плотность исследуемой жидкости.

Подставив в (4) и (5) выражения массы одной капли из (2) и приняв (4) и (5) получим,

 (6)

Откуда коэффициент поверхностного натяжения исследуемой жидкости будет

 (7)

Для удобства расчета 2  в (7) в место N1 и N2 – чисел капель в каком либо определенном объеме можно взять число капель n1 и n2 каждой из жидкостей в единице объема, где

 ;

Тогда равенство (7) перепишем

 (8)

Работу выполняют на установке изображенной, на рис. 9.

Порядок выполнения работы

  1.  Открыв кран, подбирают скорость вытекания жидкости, позволяющую считать капли.
  2.  Отметив начальную высоту уровня жидкости, отсчитывают некоторые количество капель (80-100 капель) и закрывают кран.
  3.  Отмечают новое положение уровня жидкости и по их разности определяют объем вытекшей жидкости.
  4.  Опыт проделывают не менее трех раз с каждой жидкостью для разного количества капель.
  5.  Рассчитывают для каждого случая количество капель для единицы объема.
  6.  По формуле (8) вычисляют коэффициент поверхностного натяжения % исследуемой жидкости и определяют его среднее значение.
  7.  Результаты записывают в таблицу наблюдений.

Таблица наблюдений

Плотность воды (кг/м3)

1

1000

Плотность исследуемой жидкости (кг/м3)

2

800

V1

N1

n1

1

V2

N2

n2

2

<2>

Ед. изм.

м3

м-3

м3

м-3

1

2

3

Указания к работе

  1.  1 см3 = 10-6 м3
  2.  Коэффицент поверхностного натяжения воды 1 определяют из графика зависимости его от температуры (рис. 5)
  3.  Плотность воды принять равной 103

Контрольные вопросы

  1.  Вывести формулу (8) для определения коэффициента поверхностного натяжения жидкости.
  2.  Дать определение коэффициента поверхностного натяжения жидкости. Единицы измерения коэффициента поверхностного натяжения.
  3.  Какова природа сил поверхностного натяжения?
  4.  Как направлены силы поверхностного натяжения в месте отрыва капли?
  5.  У какой из исследуемой жидкости число капель в единицу объема больше и почему?
  6.  Как зависит коэффициент поверхностного натяжения от температуры?


 

А также другие работы, которые могут Вас заинтересовать

27102. Периферийные устройства персонального компьютера 33 KB
  Принтер print печатать устройство для вывода на печать текстовой и графической информации. Плоттер графопостроитель устройство для вывода на бумагу больших рисунков чертежей и другой графической информации. Манипулятор мышь mouse устройство облегчающее ввод информации в компьютер. Дисковод CDROM устройство для чтения информации записанной на лазерных компактдисках CD ROM Compact Disk Read Only Memory что в переводе означает компактдиск с памятью только для чтения.
27103. Характеристика стека TCP/IP 18.93 KB
  Стек TCP IP получил своё название от основных протоколов TCP Transmission Control Protocol и IP Internet Protocol разработанных в 70е г.Kahn в работе A protocol for packet network interconnection IEEE Transaction on Communications Vol. HTTP Hyper Text Transfer Protocol протокол передачи гипертекстовых документов используется для реализации приложений WWW Word Wide Web всемирной паутины. FTP File Transfer Protocol протокол передачи и приёма файлов.
27104. Организация и протоколы электронной почты. E-mail 644.2 KB
  Технологии ISDN ATM Ethernet. Модель стека TCP IP Уровни OSI Протоколы стека TCP IP Уровни стека TCP IP Прикладной Application HTTP FTP Telnet Прикладной Application Представительный Presentation Сеансовый Session Транспортный Transport TCP UDP Транспортный Transport Сетевой Network IP ARP ICMP RIP OSPF Сетевой Network Канальный Data Link ТехнологииСетевые интерфейсыEthernet ATM Физический Physical Физический Physical Приведём краткую характеристику основных протоколов стека. Технология чаще всего...
27105. Архитектура вычислительной машины (компьютера) 66.34 KB
  Интерфейсная система обеспечивает три направления передачи информации: между МП и оперативной памятью; между МП и портами ввода вывода внешних устройств; между оперативной памятью и портами ввода вывода внешних устройств. Память устройство для хранения информации в виде данных и программ. Память делится прежде всего на внутреннюю расположенную на системной плате и внешнюю размещенную на разнообразных внешних носителях информации. Выделяют: Накопители на магнитной ленте Диски Диски относятся к носителям информации с прямым...
27106. Беспроводные технологии (Wi-Fi, Bluetooth, WiMAX) 183 KB
  В настоящее время существует множество беспроводных технологий наиболее часто известных пользователям по их маркетинговым названиям таким как WiFi WiMAX Bluetooth.4 GHz работает множество устройств таких как устройства поддерживающие Bluetooth и др и даже микроволновые печи что ухудшает электромагнитную совместимость.
27107. Операти́вная па́мять 71 KB
  Память Оперативка энергозависимая часть системы компьютерной памяти в которой временно хранятся данные и команды необходимые процессору для выполнения им операции. Обязательным условием является адресуемость каждое машинное словоимеет индивидуальный адрес памяти. Содержащиеся в оперативной памяти данные доступны только тогда когда на модули памяти подаётся напряжение то есть компьютер включён. Пропадание на модулях памяти питания даже кратковременное приводит к искажению либо полному уничтожению данных в ОЗУ.
27108. Классификация и принципы работы энергонезависимой памяти компьютера 98.71 KB
  Постоянное запоминающее устройство ПЗУ энергонезависимая память используется для хранения массива неизменяемых данных. Массив данных совмещён с устройством выборки считывающим устройством в этом случае массив данных часто в разговоре называется прошивка: микросхема ПЗУ; Один из внутренних ресурсов однокристальной микроЭВМ микроконтроллера как правило FlashROM. По разновидностям микросхем ПЗУ: По технологии изготовления кристалла: ROM англ. readonly memory постоянное запоминающее устройство масочное ПЗУ...
27109. Режимы работы процессора 124.5 KB
  Первое поколение Pentium носило кодовое имя P5 а также i80501 напряжение питания было 5 В расположение выводов матрица тактовые частоты 60 и 66 МГц технология изготовления 080микронная частота шины равна частоте ядра. Тактовая частота ядра 75200 МГц шины 50 60 66 МГц. Внутренняя тактовая частота 166233 МГц частота шины 66 МГц. Тактовые частоты от 133 до 266 МГц с частотой шины 6066 МГц.