3486

Определение ускорения свободного падения при помощи оборотного и математического маятников

Лабораторная работа

Физика

Определение ускорения свободного падения при помощи оборотного и математического маятников, изучение законов колебания маятника, ознакомление с косвенными методами измерения ускорения свободного падения при помощи математического и оборотного...

Русский

2012-11-02

443.96 KB

23 чел.

Определение ускорения свободного падения при помощи оборотного и математического маятников

  1.  изучение законов колебания маятника; ознакомление с косвенными методами измерения ускорения свободного падения при помощи математического и оборотного маятников.
  2.  изучение колебательных процессов при наличии сил трения, экспериментальное определение коэффициента затухания, логарифмического декремента и добротности крутильного маятника.

Приборы и принадлежности: маятник универсальный ФПМ-04 (далее - маятник), стандартная установка ФПМ-С9.

Элементы теории

Наиболее точные измерения ускорения свободного падения g выполняются с помощью косвенных методов. Многие из них основаны на использовании формулы для периода колебаний физического маятника. Массу маятника и период его колебаний можно измерить с очень высокой точностью, но точно измерить момент инерции не удается. Указанного недостатка лишен метод оборотного маятника, который позволяет исключить момент инерции из расчетной формулы для g.

Рассмотрим тело массы m, способное колебаться относительно точки О и отклоненное от положения равновесия на угол а (рис. 1). Это тело представляет собой физический маятник с моментом инерции I (относительно оси О, перпендикулярной плоскости рисунка).

Приведенная длина физического маятника l - это длина такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника:

(1) ;

Отсюда , где I - момент инерции маятника относительно оси качаний, т - его масса, S1 - расстояние от центра масс до точки подвеса.

Измерить приведенную длину можно перераспределением масс маятника или изменением положения точки его подвеса.

Точка К, лежащая на перпендикуляре к оси качаний, проходящем через центр тяжести физического маятника на расстоянии l от этой оси, называется центром качаний (математический маятник длины l, подвешенный к оси качаний физического маятника, будет колебаться синхронно с центром качаний).

Приведенная длина маятника

2) .

По теореме Штейнера

3) .

Если заставить маятник колебаться около горизонтальной оси, проходящей через К, его приведенная длина

4) ,

где S2=KC - расстояние от новой оси вращения до центра масс маятника; I0 -момент инерции относительно оси, перпендикулярной плоскости рисунка и проходящей через центр масс маятника. Из рис. 1 следует, что

5) .

Подставим это выражение в формулу (4) и найдем приведенную длину l2:

6) .

Таким образом, центр качаний обладает следующим свойством: если ось пройдет через центр качаний, то новый центр качаний будет расположен на месте старой оси.

Рис. 1

Рис. 2

Из равенства приведенных длин следует равенство периодов колебаний.

Оборотным маятником называется физический маятник, центр качаний которого расположен в пределах колеблющегося тела. Такой маятник можно подвешивать в любой из двух точек О и К (рис. 2) без изменения периода колебаний: T1=T2=T. Взаимозаменяемые точки О и К расположены по обе стороны от центра масс С на расстояниях S1 и S (рис. 2). Моменты инерции относительно осей, проходящих через эти точки, различны:

7) Il=I0+mS1 и I2=I0+mS2.

Периоды колебаний оборотного маятника могут быть выражены:

8) и .

Учитывая равенство периодов, и решая эту систему уравнений, легко получить выражение для ускорения свободного падения:

9) ,

где l = S1 + S2 - приведенная длина маятника.

Крутильный маятник представляет собой массивное тело, скажем диск или брусок (рис. I) подвешенное на тонкой упругой струне или кварцевой нити. При выводе такого маятника из положения равновесия на некоторый угол θ на него со стороны нити начинает действовать упругий момент

(1)

пропорциональный углу поворота θ.

- постоянная, характеризующая момент характеризующая момент упругих сил.

Если струна достаточно тонкая и длинная, то, как показывает опыт, зависимость (1) справедлива и для довольно больших углов закручивания, например θ >2π. Кроме того, затухание крутильного маятника обычно мало. Все это делает его удобным прибором для измерение различных физических величин. Затухание маятника определяется моментом, сил трения, пропорциональным угловой скорости .

(2),

где - коэффициент пропорциональности.

Движение маятника списывается уравнением моментов

(3)

которое с .учетом (1) и (2) легко привести к уравнению осциллятора с вязким трением:

(4)

где J - момент инерции маятника .относительно оси вращения.

 

коэффициент затухания,

 

собственная циклическая частота колебаний маятника.

Период-слабозатухающих колебаний маятника (β << ) примерно равен периоду собственных незатухающих колебаний, т.е. .

(5)

Это выражение указывает простой путь для вычисления если известен момент инерции J, измерить период колебаний маятника T. И наоборот, если измерено, то с помощью (5) можно определить момент инерции J.

Решением уравнения (4) является функимя вида

(6),

где - амплитуда колебаний в момент времени t, - циклическая частота этих колебаний, - начальная фаза, причем

(7)

График функции (6) представлен на рис. 2. Характер движения маятника, т.е. вид функции , сильно зависят от соотношения между коэффициентом затухания и собственной частотой колебаний .

Если << (трение мало), то представляет собой медленно затухающую синусоиду.

Строго говоря, затухающие колебания не являются периодическими, т.к. с течением времени их амплитуда убывает. Амплитудой колебания в момент времени T по аналогии с незатухающими колебаниями называют величину

.

т.е коэффициент при функции в выражении (6). Это определение амплитуды имеет смысл только для слабо затухающих колебаний, когда уменьшение амплитуды за один период является незначительным.

Уменьшение затухающих колебаний за один период T характеризуется логарифмическим декрементом затухания .

(8)

Так как

,

то очевидно, что

(9)

Пусть - число колебаний, по истечении которых амплитуда уменьшается в e≈2,7 раза.

Тогда

или

откуда следует, что

(11)

Для характеристики колебательной системы используется также величина называемая добротностью системы.

(12)

Очевидно, что чем больше добротность системы, тем больше колебаний она совершит при выведении ее из положения равновесия.

ti,с

ti-<ti>,c

(ti - <t>)2,c2

Ni

Ni

1

32,601

-0,0182

3,312410-4

20

0

2

32,611

-0,0082

6,72410-5

20

0

3

32,627

0,0058

3,36410-5

20

0

4

32,639

0,0192

3,686410-4

20

0

5

32,618

0,0012

1,4410-6

20

0

<ti>,c

(ti - <t>),

c

(ti - <t>)2,

c2

<Ni>

(Ni - <N>),

32,6192

-0,0002

8,02210-4

20

0

; (c)

Вычислим случайную составляющую среднеквадратичной погрешности ().

;

= 0,00633 (c)

Подсчитаем суммарную среднеквадратичную погрешность .

; (c)

Вычислим случайную погрешность (сл).

сл = tc; сл = 2,78 (c)

Оценим полную погрешность (h).

t = ; t = (c)

Расчёт среднего значения величины .

<>; <>

<>; < >=0,030656

(мм3)

Расчёт абсолютной погрешности величины .

;   

<Q>;<Q>=3,141520=62,83185 В итоге:

= 0,05

=<>; =0,030656 (мм3)

Q =62,83185

Расчётная часть

l = 0,39 м. (расстояние между крепёжными призмами);

l = 0,4 м. (расстояние между крепёжными призмами);

l = 0,37 м. (длина подвеса маятника);

Вначале рассчитаем погрешность измерения времени t, при c = 10-3 с, k = 1,1 и tc = 4,3:

 

 

с.

 

Вычислим погрешность однократного (сл = 0) измерения величины l для физического маятника, при c = 10-2 м.:

м.

 

Теперь по формуле 0(9) подсчитаем значение g по данным снятым с физического маятника (а):

;

м/с2.

Далее подсчитаем значение g по данным снятым с физического маятника (б):


м/с2.

Вычисления с физическим маятником завершим вычислением (по упрощённой формуле) погрешности косвенной величины g. За относительную погрешность периода колебаний T, примем относительную погрешность измерения времени t:

;

м/с2

Итого для физического маятника получен результат:

g = 9,810,194 м/с2.

Вычислим погрешность однократного измерения величины l для математического маятника, при c = 10-3 м.:

м.

 

Пользуясь тем же выражением, вычислим значение g по данным снятым с математического маятника:

м/с2.


Теперь для математического маятника найдём погрешность величины
g:

м/с2

Для математического маятника получен результат:

g = (9800,521)10-2 м/с2.


 

А также другие работы, которые могут Вас заинтересовать

24669. Основні методи обліку витрат і калькулювання собівартості продукції 39 KB
  Позамовний метод калькулювання широко використовується в зарубіжній практиці. Принципові особливості позамовного позамовного методу калькулювання полягають у наступному: в індивідуалізації обліку витрат і розрахунку собівартості на конкретне замовлення усі прямі витрати групуються в аналітичному обліку в суворій відповідності з відкритими замовленнями; калькуляція отриманої продукції складається після повного завершення робіт із замовлення незалежно від тривалості його виконання. Можна назвати принаймні два напрями модифікації позамовного...
24670. Робочий час менеджера 27 KB
  Ці рішення можуть стосуватися як довгострокових перспектив розвитку підприємства так і поточних проблем що виникають у процесі господарської діяльності. Довгострокові або стратегічні рішення пов'язані з майбутніми можливостями які прогнозуються і які потребують конкретних кроків сьогодні або найближчим часом. Поряд зі стратегічними рішеннями менеджери приймають рішення пов'язані з використанням ресурсів у процесі поточної діяльності. Такі рішення називають короткостроковими або ; операційними.
24671. Організація обліку витрат за економічними елементами 24.5 KB
  На основі переліку калькуляційних статей які встановлюються підприємством самостійно виходячи з особливостей технології та організації виробництва складаються форми калькуляційних розрахунків кошторисів та внутрішньої звітності.
24672. Калькуляція та її рівні 27 KB
  Статичний бюджет це бюджетні обсяги бюджетні ціни бюджетні витрати. Гнучкий бюджет це фактичні обсяги бюджетні ціни бюджетні витрати.
24673. Використання програмового забезпечення на підприємства «Титан-Ойл» 4.75 MB
  Щодо самого процесу практики, він ставить на меті освоєння програм, котрі необхідні для подальшого вивчення фахових предметів, наприклад, пакет програм Microsoft Office, котрий є основою для створення текстових документів та електронних таблиць.
24674. Витрати на оплату праці 31.5 KB
  Пропорційно нормам вказуються в планах або нормативах калькуляції спочатку на кожний вид продукції відносяться витрати в межах норм плану а потім додаються відхилення. Ці витрати включаються в повну собівартість.До витрат повязаних з адміністративною діяльністю підприємства відносяться витрати: на службові відрядження і утримання апарату управління підприємства та іншого загальногосподарського персоналу; на утримання основних засобів інших необоротних активів загальногосподарського використання в тому числі операційна оренда...
24675. Собівартість продукції 32 KB
  Основні етапи розподілу непрямих витрат на обєкти: Вибір обєкта калькулювання на який розподіляється непрямі витрати окремий продукт група продуктівцентр відповідальності Вибір бази розподілу Зарплата основних працівників преміїматер. витратимашиногодини Розрахунок ставки коефіцієнт розподілуяка обчислюється як частина від ділення загальних накладних витрат на величину базу розподілу розрахунок накладних витрат що підлягають віднесеню на обєкт облікута обчислюється множенням ставки розподілу на величину бази розподілуяка...
24676. Особливості калькулювання собівартості продукції за повними витратами 32 KB
  Система обліку за повними витратами включають збір інфо про витратикалькулювання повної собівартості продукції та видачу інформації про витрати менеджерами певного рівня. До складу повної собівартості продукції входять прямі і непрямі виробничі і невиробничі витрати. Витратиякі безпосередньо включені до собівартості продукції складаються з матеріальних і доданих витрат.
24677. Управління витратами 27 KB
  Згідно з наведеним раніше визначенням виробничого обліку можна вирізнити три напрями класифікації витрат в основу якої покладено принцип: різні витрати для різних цілей. Витрати для прийняття управлінських рішень поділяються на: релевантні та нерелевантні; постійні та змінні; маржинальні та середні; дійсні та альтернативні. Очікувані релевантні витрати це витрати що можуть бути змінені внаслідок прийняття управлінських рішень тобто майбутні витрати.