349

Определение момента инерции твердых тел с помощью маятника Максвелла

Лабораторная работа

Физика

Момент инерции системы (тела) относительно оси вращения это скалярная величина, равная сумме произведения масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Русский

2012-12-07

121 KB

457 чел.

Санкт-Петербургский государственный минерально-сырьевой (Горный) университет

Отчёт по лабораторной работе №6

По дисциплине:  ____________Общая и техническая физика_________

                                      (наименование учебной дисциплины согласно учебному плану)

Тема: Определение момента инерции твердых тел с помощью маятника Максвелла

Выполнила: студент  гр. ГК-11-2                                                               /Лазейкина Н. П./

                                                                                                                       (подпись)                                                               (Ф.И.О.)   

Принял:                           /Ходьков Д. А./

                                                                                                                       (подпись)                                                               (Ф.И.О.)   

Санкт-Петербург

2012 год.


Цель работы – изучение маятника Максвелла и определение с его помощью момента инерции твердых тел.

Краткое теоретическое обоснование.

Явления, изучаемые в работе: Момент инерции тела

Основные определения явлений, процессов и величин, относящихся к работе: Момент инерции системы (тела) относительно оси вращения  это скалярная величина, равная сумме произведения масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Основные законы и соотношения, на основе которых получены основные расчетные формулы:

Момент инерции твердого тела в данной работе рассчитывается по формуле, выведенной на основе закона сохранения энергии.

Eп = mgh - полная энергия маятника в начальном положении (при закреплении его на верхнем кронштейне).

 - полная энергия маятника в нижней точке движения, равная сумме кинетических энергий поступательного и вращательного движений.

v – линейная скорость поступательного движения маятника;w - угловая скорость вращательного движения маятника;J - момент инерции;m - масса маятника;

Из закона сохранения энергии следует, что полная энергия маятника в верхнем и нижнем положениях должна быть одинакова, т.е..

Отсюда момент инерции

Поскольку поступательное движение маятника возникает только за счет вращательного движения, то угловая () и линейная () скорости связаны соотношением .

.

Исходя из соотношений.

Окончательная формула момента инерции твердого тела

Схема установки:

1. Основание установки.

2. Электронный секундомер.

3. Фотоэлектрический датчик.

4. Нити.

5. Диск маятника.

6. Ось маятника.

7. Подвижный нижний кронштейн.

8. Колонка.

9. Верхний кронштейн, прикрепленный неподвижно к колонке 8.

10. Электромагнит.

11. Фотоэлектрический датчик.

12. Сменные кольца.

Основные расчетные формулы.

  1.  Момент инерции тела

 

mмасса маятника [кг]

R – радиус оси маятника [м]

g – ускорение свободного падения, g=9,8 м/с2

t – среднее значение времени падения маятника, [с]

h – длина нити маятника [м]

  1.  Масса маятника

m = mo+mд+mk

mo – масса оси маятника [кг]

mд – масса диска [кг]

mk – масса кольца [кг]

  1.  

  1.  Среднее значение времени падения маятника

  

n – номер опыта

ti – время падения маятника, [с]

  1.  

  1.  Теоретическое значение момента инерции маятника

J0 - момент инерции оси маятника [кг/м2]

Jд - момент инерции диска [кг/м2]

Jк - момент инерции кольца, надетого на диск [кг/м2]

  1.  

  1.  Момент инерции оси маятника

mo – масса оси маятника [кг]

Ro – радиус оси маятника [м]

  1.  

  1.  Момент инерции диска

mд – масса диска [кг]

Rд - радиус диска [м]

R0 - радиус оси маятника [м]

  1.  

  1.  Момент инерции кольца, надетого на диск

/2

mk – масса кольца [кг]

Rк - радиус кольца [м]

Rд - радиус диска [м]

 

Погрешности прямых измерений.

t = 0.001 c

R = 0.00025 м

H= 0.0005 м

m = 0.0005 м

Погрешности косвенных измерений.

Таблица для занесения результатов измерений

Определение момента инерции твердых тел с помощью маятника Максвелла

Кольцо 1

Кольцо 2

Кольцо 3

Mk1

h

ti

tср

Mk2

h

ti

tср

Mk3

h

ti

tср

кг

м

с

с

кг

м

с

с

кг

м

с

с

1

0,263

0,397

2,153

2,124

0,392

0,397

2,151

2,087

0,522

0,405

2,237

2,284

2

2,112

2,163

2,319

3

2,097

2,192

2,257

4

2,089

2,175

2,372

5

2,196

2,182

2,302

6

2,065

2,176

2,242

7

2,09

2,188

2,271

8

2,179

2,168

2,363

9

2,145

2,271

2,236

10

2,113

2,207

2,378

Исходные данные

mo

масса оси

0,0322 кг

mД

масса диска

0,124 кг

R0

радиус оси маятника

0,0051 м

Rд

радиус диска

0,0432 м

Rк1

радиус кольца

0,05245м

Rк2

радиус кольца

0,0519м

Rк3

радиус кольца

0,0524м

Расчет результатов эксперимента

=5,7310-4 кг/м2

=7,2310-4  кг/м2

=10,53 кг/м2

Средняя квадратичная погрешность


Графический материал

Диаграмма зависимости момента инерции твердого тела от массы кольца


     

Окончательные результаты.

J1 = (5,731,2)∙10-4  кг/м2

J2 = (7,231,6)∙10-4  кг/м2

J3 = (10,532,0)∙10-4   кг/м2

JT1 = 7,15∙10-4   кг/м2

JT2 = 10,09∙10-4   кг/м2

JT3 = 13,05∙10-4  кг/м2

Вывод.

В ходе лабораторной работы было найдено три значения момента инерции для сменных колец различной массы, т.е. для различных масс маятника Максвелла. Из результатов опыта видно, что с увеличением массы маятника увеличивается и момент инерции, т.е. существует прямая зависимость между этими величинами. Рассчитанные же теоретические значения момента инерции приближенно равны найденным результатам.


 

А также другие работы, которые могут Вас заинтересовать

11054. Построение структуры системы управления, программная реализация регуляторов 136 KB
  Построение структуры системы управления программная реализация регуляторов Большинство систем процессорного компьютерного управления содержат в своем составе различные регуляторы выполненные программным образом либо реализованные аппаратно. В настоящее время н...
11055. Исполнительные устройства систем мехатроники 206.5 KB
  Исполнительные устройства систем мехатроники Общие сведения и классификация Исполнительными механизмами называются механизмы выполняющие непосредственно требуемую технологическую операцию путем воздействия на обрабатываемую среду или объект с целью изменения
11056. Основы проектирования интегрированных мехатронных модулей и систем 734 KB
  Основы проектирования интегрированных мехатронных модулей и систем Основой метода мехатроники является интеграция составляющих частей которая закладывается на этапе проектирования и затем реализуется в технологических процессах производства и эксплуатации мехат...
11057. Методы интеграции при проектировании мехатронных агрегатов 182.5 KB
  Методы интеграции при проектировании мехатронных агрегатов Для проектирования интегрированных мехатронных агрегатов разработаны три метода интеграции. Каждый из методов может применяться как самостоятельно так и в комбинации с другими методами поскольку они реа
11058. Создание базы данных каналов промышленного контроллера в SCADA системе TRACE MODE 561.5 KB
  Создание базы данных каналов промышленного контроллера в SCADA системе TRACE MODE: методические указания по выполнению практической работы и варианты заданий / Воронеж. гос. технол. акад.; сост. И.А. Хаустов А.А Хвостов Р.А. Романов. – Воронеж: ВГТА 2011. – 32 с. Указания разработаны
11059. Создание базы каналов автоматизированного рабочего места диспетчерского контроля и управления с настройкой сетевого обмена 447 KB
  Создание базы каналов автоматизированного рабочего места диспетчерского контроля и управления с настройкой сетевого обмена: методические указания по выполнению практической работы / Воронеж. гос. технол. акад.; сост. И.А. Хаустов А.А Хвостов Р.А. Романов. – Воронеж: ВГТА 20...
11060. Создание пользовательских функциональных блоков программированием на СИ++ 900 KB
  Создание пользовательских функциональных блоков программированием на СИ: Методические указания для выполнения лабораторной работы по дисциплине Интегрированные системы проектирования и управления / Воронеж. гос. технол. акад.; Сост. И.А. Хаустов А.А. Хвостов. Воронеж...
11061. Создание и отладка программ на языке инструкций 270 KB
  Создание и отладка программ на языке инструкций: Методические указания для выполнения практической работы по дисциплине Интегрированные системы проектирования и управления / Воронеж. гос. технол. акад.; Сост. И.А. Хаустов. Воронеж 2011. 13 с. Указания разработаны в соотве...
11062. Создание графического интерфейса оператора технолога 1.25 MB
  Создание графического интерфейса оператора технолога: Методические указания для выполнения лабораторной работы по дисциплине Интегрированные системы проектирования и управления / Воронеж. гос. технол. акад.; Сост. И.А. Хаустов. Воронеж 2011. 54 с. Указания разработаны в ...