349

Определение момента инерции твердых тел с помощью маятника Максвелла

Лабораторная работа

Физика

Момент инерции системы (тела) относительно оси вращения это скалярная величина, равная сумме произведения масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Русский

2012-12-07

121 KB

515 чел.

Санкт-Петербургский государственный минерально-сырьевой (Горный) университет

Отчёт по лабораторной работе №6

По дисциплине:  ____________Общая и техническая физика_________

                                      (наименование учебной дисциплины согласно учебному плану)

Тема: Определение момента инерции твердых тел с помощью маятника Максвелла

Выполнила: студент  гр. ГК-11-2                                                               /Лазейкина Н. П./

                                                                                                                       (подпись)                                                               (Ф.И.О.)   

Принял:                           /Ходьков Д. А./

                                                                                                                       (подпись)                                                               (Ф.И.О.)   

Санкт-Петербург

2012 год.


Цель работы – изучение маятника Максвелла и определение с его помощью момента инерции твердых тел.

Краткое теоретическое обоснование.

Явления, изучаемые в работе: Момент инерции тела

Основные определения явлений, процессов и величин, относящихся к работе: Момент инерции системы (тела) относительно оси вращения  это скалярная величина, равная сумме произведения масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси.

Основные законы и соотношения, на основе которых получены основные расчетные формулы:

Момент инерции твердого тела в данной работе рассчитывается по формуле, выведенной на основе закона сохранения энергии.

Eп = mgh - полная энергия маятника в начальном положении (при закреплении его на верхнем кронштейне).

 - полная энергия маятника в нижней точке движения, равная сумме кинетических энергий поступательного и вращательного движений.

v – линейная скорость поступательного движения маятника;w - угловая скорость вращательного движения маятника;J - момент инерции;m - масса маятника;

Из закона сохранения энергии следует, что полная энергия маятника в верхнем и нижнем положениях должна быть одинакова, т.е..

Отсюда момент инерции

Поскольку поступательное движение маятника возникает только за счет вращательного движения, то угловая () и линейная () скорости связаны соотношением .

.

Исходя из соотношений.

Окончательная формула момента инерции твердого тела

Схема установки:

1. Основание установки.

2. Электронный секундомер.

3. Фотоэлектрический датчик.

4. Нити.

5. Диск маятника.

6. Ось маятника.

7. Подвижный нижний кронштейн.

8. Колонка.

9. Верхний кронштейн, прикрепленный неподвижно к колонке 8.

10. Электромагнит.

11. Фотоэлектрический датчик.

12. Сменные кольца.

Основные расчетные формулы.

  1.  Момент инерции тела

 

mмасса маятника [кг]

R – радиус оси маятника [м]

g – ускорение свободного падения, g=9,8 м/с2

t – среднее значение времени падения маятника, [с]

h – длина нити маятника [м]

  1.  Масса маятника

m = mo+mд+mk

mo – масса оси маятника [кг]

mд – масса диска [кг]

mk – масса кольца [кг]

  1.  

  1.  Среднее значение времени падения маятника

  

n – номер опыта

ti – время падения маятника, [с]

  1.  

  1.  Теоретическое значение момента инерции маятника

J0 - момент инерции оси маятника [кг/м2]

Jд - момент инерции диска [кг/м2]

Jк - момент инерции кольца, надетого на диск [кг/м2]

  1.  

  1.  Момент инерции оси маятника

mo – масса оси маятника [кг]

Ro – радиус оси маятника [м]

  1.  

  1.  Момент инерции диска

mд – масса диска [кг]

Rд - радиус диска [м]

R0 - радиус оси маятника [м]

  1.  

  1.  Момент инерции кольца, надетого на диск

/2

mk – масса кольца [кг]

Rк - радиус кольца [м]

Rд - радиус диска [м]

 

Погрешности прямых измерений.

t = 0.001 c

R = 0.00025 м

H= 0.0005 м

m = 0.0005 м

Погрешности косвенных измерений.

Таблица для занесения результатов измерений

Определение момента инерции твердых тел с помощью маятника Максвелла

Кольцо 1

Кольцо 2

Кольцо 3

Mk1

h

ti

tср

Mk2

h

ti

tср

Mk3

h

ti

tср

кг

м

с

с

кг

м

с

с

кг

м

с

с

1

0,263

0,397

2,153

2,124

0,392

0,397

2,151

2,087

0,522

0,405

2,237

2,284

2

2,112

2,163

2,319

3

2,097

2,192

2,257

4

2,089

2,175

2,372

5

2,196

2,182

2,302

6

2,065

2,176

2,242

7

2,09

2,188

2,271

8

2,179

2,168

2,363

9

2,145

2,271

2,236

10

2,113

2,207

2,378

Исходные данные

mo

масса оси

0,0322 кг

mД

масса диска

0,124 кг

R0

радиус оси маятника

0,0051 м

Rд

радиус диска

0,0432 м

Rк1

радиус кольца

0,05245м

Rк2

радиус кольца

0,0519м

Rк3

радиус кольца

0,0524м

Расчет результатов эксперимента

=5,7310-4 кг/м2

=7,2310-4  кг/м2

=10,53 кг/м2

Средняя квадратичная погрешность


Графический материал

Диаграмма зависимости момента инерции твердого тела от массы кольца


     

Окончательные результаты.

J1 = (5,731,2)∙10-4  кг/м2

J2 = (7,231,6)∙10-4  кг/м2

J3 = (10,532,0)∙10-4   кг/м2

JT1 = 7,15∙10-4   кг/м2

JT2 = 10,09∙10-4   кг/м2

JT3 = 13,05∙10-4  кг/м2

Вывод.

В ходе лабораторной работы было найдено три значения момента инерции для сменных колец различной массы, т.е. для различных масс маятника Максвелла. Из результатов опыта видно, что с увеличением массы маятника увеличивается и момент инерции, т.е. существует прямая зависимость между этими величинами. Рассчитанные же теоретические значения момента инерции приближенно равны найденным результатам.


 

А также другие работы, которые могут Вас заинтересовать

33330. Телематические службы. Назначение, структура, назначение элементов 18.63 KB
  Первая телематическая служба Телетекст появилась в начале 80х годов. Телефакс факсимильная служба общего пользования предназначенная для передачи сообщений между абонентскими факсимильными аппаратами. Факсимильная служба группы 1 осуществляет аналоговую передачу без сжатия данных и передачу факсимильных сообщений по ОАКТС. Факсимильная служба группы 2 имеет ограниченные возможности сжатия данных страница текста передается по ОАКТС за 3 мин.
33331. Структура взаимоувязанной сети связи РФ. Общедоступные и корпоративные сети связи 64.78 KB
  Общедоступные и корпоративные сети связи. Вместе с тем сети общего пользования Министерства связи не справлялись с требуемыми объемами передачи сообщений требуемых для нормального экономического развития страны и поэтому ряд министерств и ведомств стали создавать свои сети для удовлетворения собственных нужд. В 70х годах было принято решение о создании Единой автоматизированной сети связи ЕАСС Союза ССР.
33332. Способы коммутации и их классификация 19.81 KB
  Методы коммутации в сетях электросвязи Для доставки сообщений в сетях электросвязи могут быть установлены соединения двух видов: долговременные и оперативные. Известны два основных принципа оперативной коммутации: а непосредственное соединение; б соединение с накоплением информации. При непосредственном соединении осуществляется физическое соединение входящих в узел коммутации УК каналов с соответствующими адресу исходящими каналами.
33333. Коммутация каналов. Достоинства и недостатки. Области применения 25.59 KB
  Коммутация каналов обеспечивает предоставление каждой паре абонентов последовательности каналов сети для монопольного использования. В классической схеме в коммутации каналов BC участвуют функциональные блоки физического уровня 11B1C и физические процессы ФП узлов коммутации каналов либо узлов смешанной коммутации рис 3. Структура коммутации каналов В результате происходит сквозная коммутация и между взаимодействующими абонентскими системами либо административными системами KE образуется последовательность логических каналов...
33334. Коммутация сообщений и пакетов. Достоинства и недостатки. Области применения 29.06 KB
  Коммутация пакетов обеспечивает передачу пакетов из одного канала в другой подключенный к этому узлу.3 выполняется на базе одного и того же оборудования коммуникационной сети но позволяет обеспечить как коммуникацию каналов при N=1 так и коммуникацию пакетов при N=3. Первая оказывается дороже но строго гарантирует адресатам время доставки пакетов.
33335. Профессиональные системы подвижной радиосвязи 27.42 KB
  Профессиональные частные системы подвижной радиосвязи PMR Professionl Mobile Rdio PMR Public ccess Mobile Rdio исторически появились первыми. Системы обеспечивающие взаимодействие с телефонными сетями общего пользования получили название частных PMR а не обеспечивающие такого взаимодействия профессиональных PMR т. Профессиональные частные системы подвижной радиосвязи В системе с общедоступным пучком каналов транкинговые системы Рис.
33336. Сотовые системы радиосвязи 23.81 KB
  Тогда требуемые для 01 жителей Москвы 250 каналов можно получить например разделением обслуживаемой территории радиусом в 50 км на 25 ячеек радиусом по 10 км с организацией в каждой ячейке только 10 радиоканалов с одним и тем же набором частот. Группа ячеек в зоне обслуживания с различными наборами частот называется кластером. Обычно ее развертывание начинается с небольшого числа крупных ячеек которые через некоторое время постепенно трансформируются в большее число более мелких ячеек. При этом пропускная способность сети на территории...
33337. Системы персонального радиовызова 15.32 KB
  Современный рынок услуг подвижной связи характеризуется высокими темпами развития систем персонального радиовызова СПРВ которые гармонично сопрягаются с системами радиосвязи и передачи данных. По назначению СПРВ можно разделить на частные ведомственные и общего пользования. Частные СПРВ обеспечивают передачу сообщений в локальных зонах или на ограниченной территории в интересах отдельных групп абонентов. Под СПРВ общего пользования понимается совокупность технических средств через которые через ТФОП происходит передача в радиоканале...
33338. Системы беспроводного доступа (телефония, блютус, wi-fi, wi-max) 41.82 KB
  В 1992 году ETSI принял стандарт ETS300 175 на общеевропейскую систему беспроводных телефонов DECT предназначенную для передачи речевых сообщений и данных в полосе частот 1880. По своему функциональному назначению PCS является близким аналогом стандарта DECT но ориентирована на использование в рамках принятого в США распределения спектра частот и концепции развития персональной связи отличающихся от европейских. Рассмотрим подробнее характеристики общеевропейской системы беспроводных телефонов DECT. Стандарт DECT Digitl Europen Cordless...