35033

Системы автоматизированного проектирования ЕLECTRICS Light 1.0.

Реферат

Информатика, кибернетика и программирование

К существенным преимуществам системы заметно отличающим ее от программ аналогичного назначения следует отнести: прямой расчет освещенности с использованием кривых силы света светильников с отслеживанием затенений и отражений от поверхностей; возможность расчета освещенностей в помещениях произвольной конфигурации прямоугольной овальной Г или Tобразной и т.; получение сводного результата по расчету множества помещений и всего здания проекта; возможность детального анализа распределения освещенности по области расчета построение...

Русский

2013-09-08

50 KB

1 чел.

              Министерство Образования Российской Федерации.

         Тольяттинский государственный университет.

               Кафедра: «Электроснабжение промышленных

                                              предприятий»

        РЕФЕРАТ

             по предмету: «Системы автоматизированного

             проектирования»

             ЕLECTRICS Light 1.0.

Преподаватель: Сенько В. В.

Студент: Кудрявцев Н. А.

Группа; Э – 501

    

Тольятти 2005

                  Введение.

 Система ElectriCS Light предназначена для светотехнических расчетов при проектировании осветительных установок промышленных предприятий. Расчеты производятся на основе «Справочной книги по светотехнике» (под ред. Ю. Б. Айзенберга. – М., Энергоатомиздат, 1983).

               1. Назначение системы.

ElectriCS Light представляет собой одну из систем семейства «AutomatiCS – ElectriCS», позволяющего осуществить комплексную автоматизацию проектной организации в части электротехнического отдела и отдела КИПиА (АСУТП).

Инструментарий системы предоставляет возможность выполнять расчеты как для внутреннего освещения зданий и сооружений, так и для наружного (в том числе прожекторного) освещения промплощадок.

К существенным преимуществам системы, заметно отличающим ее от программ аналогичного назначения, следует отнести:

прямой расчет освещенности с использованием кривых силы света светильников (с отслеживанием затенений и отражений от поверхностей);

возможность расчета освещенностей в помещениях произвольной конфигурации (прямоугольной, овальной, Г- или T-образной и т.д.);

получение сводного результата по расчету множества помещений и всего здания (проекта);

возможность детального анализа распределения освещенности по области расчета, построение полей освещенности, а также оценка освещенности в произвольных точках пространства с различной ориентацией расчетной поверхности;

возможность ввода исходных данных – координат светильников, стен, точек контроля и т.д. – с использованием графических средств AutoCAD (оцифровка планов в AutoCAD) и параллельной выдачей информации на планы;

просмотр в трехмерном виде (аксонометрии) исходных данных для расчетов: источников света (светильников) с вектором направленности светового потока, точек контроля, а также стен, зданий и сооружений, создающих тень;

просмотр (в трехмерном виде) результатов расчета как световых полей, что позволяет визуально оценить распределение освещенности по площади освещаемой поверхности;

отображение на плане (в AutoCAD) линий заданного уровня освещенности, что позволяет визуально оценить и вывести на планы границы области заданного уровня освещенности;

итоговая документация в форматах AutoCAD и MS Word.



В инженерной практике для выполнения светотехнических расчетов приняты два метода: метод коэффициента использования и точечный. Первый из них пригоден для расчета общего освещения, если не требуется учитывать особенности размещения оборудования и светильников. Второй позволяет учесть освещенность от каждого светильника в произвольной точке пространства, но для его использования необходимы заранее построенные кривые равной освещенности (изолюксы). Для расчета освещенности применяется метод силы света. Исходной информацией о помещении служат его геометрические размеры и коэффициенты отражения поверхностей потолка, стен и пола. Число стен помещения произвольно, а само помещение может иметь различную конфигурацию – в том числе и овальную. В один проект (расчет) допускается включение нескольких помещений. Исходные данные о светильнике содержат его геометрические размеры, описание кривых силы света (КСС), площадь выходного окна светильника, коэффициент полезного действия, число ламп, их мощность и величину светового потока. Светильники могут быть круглосимметричными, иметь две или одну плоскость симметрии. В одном помещении возможно совместное использование светильников разных типов.

Выбор светильников и ламп производится из базы данных. Число светильников, а также способ их расположения в пространстве помещений определяются на основе вариантных расчетов с учетом обеспечения заданных уровней освещенности в контрольных точках и допустимой степени ее неравномерности. Размещение светильников выполняется как вручную (диалоговый режим), так и в графическом режиме на планах помещений (генпланах).

Исходными данными для светотехнических расчетов являются перечни источников света (светильников), точек контроля, стен, комнат (помещений), мачт, а также зона расчета и группа примитивов зданий и сооружений. Последнюю составляют здания, резервуары, цистерны, сферы, трубы – они используются только для формирования теней (учета затененности при расчете освещенности). Координаты исходных данных можно вводить на строительных планах (генпланах) в AutoCAD.

Кривые силы света можно просматривать как в декартовой, так и в полярной системе координат.
Исходные данные и результаты расчета можно выдавать в AutoCAD как в трехмерном представлении, так и в виде плана.

       2. Представление расчётов на чертеже.

В 3D-виде выдаются:

результаты расчета – как две поверхности (первая – горизонтальная тонированная плоская поверхность на заданном уровне освещенности, вторая – тонированная неплоская поверхность, заданная расчетными точками освещенности, где освещенность приведена к координате Z);

изолинии – как замкнутые линии для заданного уровня освещенности;

источники света (светильники) – как круг или ориентированный прямоугольник заданных размеров с 3D-вектором;

точки контроля – как тонированный шар стандартных размеров с выноской проектной позиции;

стены – как тонированный вертикальный прямоугольник;

мачты – как тонированный вертикальный цилиндр;

зона расчетов – как ортогональный параллелепипед (без тонирования);

здания и сооружения – как тонированные объекты различного типа (резервуар, сфера и т.д.).

В виде плана представляются:

источники света (светильники) – как круг или ориентированный прямоугольник стандартных размеров с выноской проектной позиции. Если вектор светильника направлен не строго вертикально, на план выдается плоская стрелка как проекция вектора;

точки контроля – как квадрат стандартных размеров с выноской проектной позиции;

стены – как линия с выноской проектной позиции;

зона расчетов – как ортогональный прямоугольник.

Сайты в Интернете: www.csoft.ru

                                  www.consistent.ru


 

А также другие работы, которые могут Вас заинтересовать

13251. Розрахунок санітарно-захисної зони для джерела електромагнітного випромінювання 45 KB
  Лабораторна робота № Розрахунок санітарнозахисної зони для джерела електромагнітного випромінювання Теоретичні відомості Основними джерелами електромагнітних полів ЕМП є: атмосферна електрика радіовипромінювання електричне та магнітне поля Землі потуж
13252. Оцінка рівня радіаційного фону 56.5 KB
  Лабораторна робота № Тема: Оцінка рівня радіаційного фону Теоретична частина Випромінювання з високою енергією здатні віднімати електрони від атомів і приєднувати їх до інших атомів з утворенням пар позитивних і негативних іонів називається іонізуючим випромі
13253. Визначення концентрації оксиду вуглецю (СО) в атмосферному повітрі 142 KB
  Лабораторна робота № Тема: Визначення концентрації оксиду вуглецю СО в атмосферному повітрі Теоретична частина Автомобільний транспорт є однією з галузей що у значній мірі визначає розвиток промисловості і сільського господарства будьякої країни. Тому світов
13254. Оцінка збитків заподіяних атмосфері, при вивезенні твердих побутових відходів 36 KB
  Лабораторна робота № Побутові відходи Тема: Оцінка збитків заподіяних атмосфері при вивезенні твердих побутових відходів. Мета: Ознайомитись з проблемою твердих побутових відходів взагалі та проблемою вивезення твердих побутових відходів зокрема а також з метод...
13255. Визначення рівня шумового забруднення 70.5 KB
  Лабораторна робота № Тема: Визначення рівня шумового забруднення Теоретична частина Шум це одна з форм фізичного хвильового забруднення природного середовища. Під шумом розуміють усі неприємні та небажані звуки чи їхню сукупність які заважають нормально прац
13256. ІНФОРМАЦІЙНЕ ЗАБЕЗПЕЧЕННЯ УЧАСНИКІВ ДОРОЖНЬОГО РУХУ 5.86 MB
  ІНФОРМАЦІЙНЕ ЗАБЕЗПЕЧЕННЯ УЧАСНИКІВ ДОРОЖНЬОГО РУХУ МЕТОДИЧНІ ВКАЗІВКИ до виконання лабораторних робіт для студентів базового напряму 6.070101 Транспортні технології спеціальностей 78.07010104 Організація і регулювання дорожнього руху та 78.07010102 Організація перев...
13257. Архітектура персонального компютера 54.97 KB
  Архітектура персонального компютера Вузловою компонентою ПК є центральний процесор ЦП. Він виконує обчислювальну роботу керує обміном даними між оперативною памяттю та пристроями вводувиводу. Продуктивність ЦП залежить від частоти яку задає йому тактовий генера
13258. Изучение погрешностей измерений 261.5 KB
  Лабораторная работа № 1 Изучение погрешностей измерений Цель работы: Изучить погрешности измерений. Оценить погрешности измерения физических величин. Ход работы. 1. Теоретическая часть. 1.1. Физические измерения. Измерением в физике называется сравнени
13259. Погрешности измерений. Цели математической обработки результатов эксперимента 107 KB
  Погрешности измерений Основой всего естествознания является наблюдение и эксперимент. Наблюдение - это систематическое целенаправленное восприятие того или иного объекта или явления без воздействия на изучаемый объект или явление. Наблюдение позволяет получит...