35049

ГИДРОСФЕРА

Лекция

Химия и фармакология

Воды Мирового океана покрывают 2 3 поверхности планеты и образуют основную массу ее водной оболочки. Воды Мирового океана составляют около 93 всех вод биосферы поэтому можно считать что химический состав гидросферы в целом определяется главным образом химическим составом океанических вод. Существует мнение и не без основания что для Земли характерно постоянное присутствие воды на её поверхности. Катионы переходили сразу в раствор поэтому воды сразу же стали солеными.

Русский

2013-09-08

118.5 KB

4 чел.

PAGE  1

Геохимия ОС

Лекция 5

ГИДРОСФЕРА

Химический  состав  океана. Воды Мирового океана покрывают 2/3 поверхности планеты и образуют основную массу ее водной оболочки. Объем океанических вод равен примерно 1379 млн. км3. Объем всех вод суши (с учетом ледников и подземных вод до глубины 5 км) не превышает 90 млн. км3. Воды Мирового океана составляют около 93 % всех вод биосферы, поэтому можно считать, что химический состав гидросферы в целом определяется главным образом химическим составом океанических вод.

Существует мнение, и не без основания, что для Земли характерно постоянное присутствие воды на её поверхности. В свою очередь наличие гидросферы определило пути эволюции вещества планеты. Английские ученые в Гренландии обнаружили осадочную породу бурый железняк возрастом 3,760,07 млрд. лет. Рядом располагаются гранитоидные гнейсы возрастом 3,7  0,14 млрд. лет (Rb-Sr метод). Так как два разных метода дали один и тот же результат, то эти цифры считаются достоверными.

Считается, что вода образуется при дегазации вещества мантии и её количество еще будет увеличиваться в течение 2 млрд. лет (2*109 лет). В первичной атмосфере, содержащей СО2 (~62%), СО, СН4, NH3, SO2, HS, галогеноводороды, инертные газы и др., осадки должны быть кислые. Кислоты реагировали с минералами горных пород и  нейтрализовались. Катионы переходили сразу в раствор, поэтому воды сразу же стали солеными. По расчетам Гольдшмидта на 1 кг океанической воды приходится 0,6 кг растворенной горной породы. В тоже время содержание главных анионов в 1 кг морской воды во много раз превышает их содержание в горной породе (Cl – 200 раз). Откуда следует вывод Виноградова – все анионы морской воды вышли при дегазации мантии, а катионы – при растворении горных пород.

Породы в то время были в основном ультраосновные, поэтому в водах было повышенное содержание Na и Mg. В первичном океане отсутствовал сульфат-ион из-за недостатка свободного кислорода. Первые сульфатные осадки появились в рифее.

Химический состав вод современного океана сложился в результате продолжительной деятельности живых организмов. Первичный океан образовался благодаря тем же процессам дегазации твердого вещества планеты, которые привели к возникновению газовой оболочки Земли. Таким образом, химические составы атмосферы и гидросферы тесно связаны, и их эволюция проходила также взаимосвязано.

Среди разнообразных форм химических элементов в гидросфере наиболее типичными являются простые и сложные ионы и молекулы, находящиеся в состоянии сильно разбавленных растворов. Также распространены ионы, которые сорбционно связаны с частицами коллоидных и субколлоидных размеров, присутствующими в морской воде в виде тонкой взвеси.

Общее количество растворенных соединений в морской воде, называемое соленостью, колеблется в поверхностных слоях океанов и окраинных морей в интервале от 3,2 до 4 %. Соленость внутриконтинентальных морях изменяется в более широких пределах. Для Мирового океана принято среднее значение солености, равное 35 о/оо.

Океаническая вода характеризуется замечательной геохимической особенностью, которая заключается в том, что соотношение главных элементов остается всегда постоянным независимо от колебаний солености, т.е. солевой состав океана представляет собой своего рода геохимическую константу. 

Анализ кларкового содержания элементов в океане показывает, что основную массу растворенных соединений образуют хлориды распространенных щелочных и щелочно-земельных элементов, намного меньшая масса приходится на сульфаты и еще меньше – на гидрокарбонаты. Концентрации рассеянных элементов в океанических водах (мкг/л) на три математических порядка меньше, чем в горных породах. При этом так же, как и в земной коре, диапазон значений кларков рассеянных элементов в Мировом океане лежит в пределах 10 математических порядков, однако имеют место существенные отличия в соотношениях элементов. В океанической воде преобладают бром, стронций, бор и фтор – концентрация этих элементов выше 1000 мкг/л. В большом количестве содержатся литий, рубидий, иод, барий, концентрация которых превышает 10 мкг/л. Рассеянные в воде молибден, цинк, уран, ванадий, титан, медь характеризуются значениями концентрации, лежащими в интервале от 1 до 10 мкг/л. Никель, марганец, кобальт, хром, ртуть, кадмий представлены в количестве от сотых до десятых долей мкг/л. Главные элементы земной коры – железо и алюминий – имеют в океане концентрацию более низкую, чем молибден и цинк. Такие элементы, как ниобий, скандий, бериллий и торий растворены в океане в наименьших количествах.

Роль живых организмов в формировании состава Мирового океана. На протяжении геологической истории суммарная биогеохимическая деятельность живых организмов была ведущим фактором эволюции химического состава океана. И сегодня организмы играют важную роль в процессе дифференциации химических элементов в океане и выведения их масс в осадок. Согласно биофильтрационной гипотезе А.П. Лисицына, планктонные (главным образом зоопланктонные) организмы ежедневно профильтровывают через свои тела около 17 млн. км3 воды, что составляет около 1 % объема Мирового океана. В процессе фильтрации минеральные частицы размером 1 мкм и менее связываются в комочки (пеллеты) размером от десятков микрометров до 1 – 4 мм. При этом одновременно в телах организмов часть растворенных в воде химических элементов трансформируется в нерастворимые соединения. Связывание тонких взвесей в комочки способствует более быстрому оседанию взвешенных частиц на дно (пеллетный транспорт). Яркими примерами биогеохимической трансформации растворенных элементов в нерастворимые соединения служат образование известковых (кальцитовых) и кремниевых (опаловых) скелетов планктонных организмов, а также извлечение карбоната кальция известковыми водорослями и кораллами.

Среди глубоководных отложений океана (пелагических илов) выделяются две группы. Отложения первой группы состоят в основном из биогенных образований планктона, а отложения второй группы – из частиц небиогенного происхождения. Для первой группы наиболее характерны известковые (карбонатные) илы, для второй группы – глинистые илы. Примерно треть площади дна Мирового океана занимают карбонатные илы и более четверти – глинистые. В карбонатных отложениях относительно велика концентрация кальция, магния, стронция и иода. В глинистых илах значительно больше металлов.

Элементы, которые очень слабо переносятся из раствора в илы и постепенно накапливаются в океанической воде, называют талассофильными. Отношение между концентрациями в сумме растворимых солей морской воды и в илах называют коэффициентом талассофильности Кт. Этот коэффициент показывает, во сколько раз этого элемента больше в солевой части океанической воды по сравнению с осадком.

Таллассофильность можно оценивать по времени нахождения элемента в воде: чем больше, тем талассофильней. Скорость удаления химического элемента из океанического раствора определяют, исходя из величины его годового прихода (стока). Например, масса мышьяка, находящегося в океане, оценивается примерно в 3,6 млрд. тонн, речной сток приносит ежегодно 74 тыс. тонн этого элемента. Следовательно, полное удаление всей массы мышьяка из Мирового океана происходит за промежуток времени, равный 49 тыс. лет.

Ориентировочные оценки периодов полного удаления растворенных химических элементов из Мирового океана выполняли многие исследователи. Согласно расчетам В.В. Добровольского, рассеянные элементы можно разбить на следующие группы в соответствии с длительностью их нахождения в океаническом растворе (в годах, в последовательности увеличения периода в каждом ряду):

                  n102  –  Th,  Zr,  Al,  Y,  Sc;

                  n103  –  Pb,  Sn,  Mn,  Fe,  Co,  Cu,  Ni,  Cr,  Ti,  Zn;

                  n104  –  Ag,  Cd,  Si,  Ba,  As,  Hg,  N;

                  n105  –  Mo,  U,  I;

                  n106  –  Ca,  F,  Sr,  B,  K;

                  n107  –  S,  Na;

                  n108  –  Cl,  Br.

Для элементов, которые имеют наименьший период полного удаления из океана, характерна наиболее интенсивная концентрация в глубоководных илах. К ним относятся торий, цирконий, алюминий, иттрий, скандий (порядок лет – 102). Близкие к ним периоды полного удаления имеют свинец, олово, марганец, железо, кобальт (порядок лет – 103). Для большей части металлов периоды полного удаления из океана составляют несколько тысяч или десятков тысяч лет. Время нахождения талассофильных элементов в растворенном состоянии – сотни тысяч лет и более.

Дисперсное органическое вещество океана, основным источником которого являются отмирающие планктонные организмы, связывает большие массы рассеянных элементов. Разрушение остатков планктонных организмов наиболее интенсивно происходит на глубине до 500 – 1000 м. В результате в осадках шельфовых и неглубоких приконтинентальных морей накапливаются значительные массы дисперсного органического вещества морских организмов, к которым добавляются органические взвеси, выносимые с суши речным стоком.

8.2. Химический состав поверхностных вод суши

Вода является обязательным условием существования и главной составной частью живого вещества. Все физиологические процессы и биохимические реакции протекают в водных растворах. Около 60 % суммарной массы живых организмов суши и 80 % массы организмов океана приходится на воду. Поэтому неудивительно, что взаимодействие живого вещества и гидросферы – это один из генеральных процессов в биосфере.

Химический состав природных вод является функцией целого ряда прямых и косвенных факторов. К прямым факторам, оказывающим непосредственное влияние на формирование состава вод, относятся: химический состав и свойства горных пород и почв, жизнедеятельность живых организмов и деятельность человека. К косвенным факторам относятся условия, определяющие протекание процессов взаимодействия веществ с водой, такие как климат, рельеф, растительность и др.

Главные ионы. Хлоридные ионы присутствуют почти во всех природных водах. Концентрация их изменяется примерно от 0,1 мг/л в арктических снегах до 150 мг/л в рассолах. В атмосферных осадках среднее содержание хлор-иона составляет менее 1 мг/л, в поверхностных и неглубоко залегающих подземных водах в районе избыточного увлажнения — до 30 мг/л, в аридных районах — до 1000 мг/л. Основными естественными источниками поступления хлоридов в природные воды являются: 1) вынос из почв и водовмещающих пород; 2) привнес хлоридов ветром и атмосферными осадками из океана 3) растворение солевой пыли, содержащейся в атмосфере. Все хлориды хорошо растворимы, их осаждение из воды возможно лишь при замерзании и испарении. Они относительно слабо подвержены ионному обмену, адсорбции и воздействию биологических факторов. Таким образом, если в водном растворе оказался хлорид, естественные процессы с трудом выводят его из раствора.

Сульфатные ионы, так же как и хлоридные, распространены повсеместна в природных водах. Концентрация их колеблется в пределах 0,2-100 мг/л. Наименьшая концентрация сульфат-иона наблюдается в атмосферных осадках, а также в подземных и поверхностных водах, в которых сульфаты подвержены восстановлению. Атмосферные осадки содержат сульфаты в среднем до 2 мг/л. Хотя абсолютная концентрация сульфат-иона в атмосферных осадках и невелика, они являются основным поставщиком сульфатов в поверхностные воды. Источниками сульфатов в атмосфере служат частицы пыли морского происхождения, содержащие сульфатные минералы, а также газы (двуокись серы и сероводород), которые, окисляясь, дают сульфаты.

Карбонатные и гидрокарбонатные ионы поступают в природные воды за счет углекислого газа атмосферы, двуокиси углерода почвы и растворения карбонатных пород. Соотношение между карбонатными и гидрокарбонатными ионами в воде определяется рН среды. Диссоциация гидрокарбонатных ионов на карбонатные и водородные ионы активно происходит при рН > 8,2. Следовательно, в щелочных водах преобладают карбонатные ионы. В водах с рН < < 8,2 часть карбонатных ионов реагирует с водородными ионами по  схеме:

В этом случае соотношение гидрокарбонатных и карбонатных ионов составляет 100 : 1. При рН < 4,5 гидрокарбонатные ионы реагируют с ионами водорода, образуя молекулы угольной кислоты:

Таким образом, в природных водах устанавливается динамическое равновесие, определяемое рН среды. Преобладающими, однако, являются гидрокарбонатные ионы (в большинстве случаев рН природных вод близко к нейтральным). Подземные воды содержат  от 10 до 800 мг/л гидрокарбонатных ионов. Наиболее распространенные концентрации  – 50-400 мг/л.

Кальций-ион – один из наиболее распространенных катионов природных вод. Он поступает в воду в результате выщелачивания из пород и почв. Содержание кальция в водах лимитируется концентрацией СО2. Поверхностные воды при равновесии с атмосферным углекислым газом могут содержать 20-30 мг/л кальция при насыщении. Содержание иона кальция в поверхностной воде увеличивается до 40-50 мг/л за счет комплекса двуокиси углерода, гидрокарбоната и карбоната кальция. В сульфатных водах содержание иона кальция определяется растворимостью сульфата кальция и может быть довольно высоким (до 600 мг/л). При увеличении двуокиси углерода концентрация кальция в почвенной воде достигает 100 мг/л и более.

Магний-ион по своим геохимическим свойствам близок к кальцию. Растворимость карбоната магния также зависит от наличия двуокиси углерода. В условиях равновесия с углекислым газом атмосферы в природные воды поступает до 190 мг/л магния. В почвенных водах с повышенным содержанием двуокиси углерода количество растворенного магния значительно возрастает. Концентрация магния в воде обычно составляет от 1 до 40 мг/л. Вода, контактирующая с породами, богатыми магнием, может содержать до 100 мг/л Mg2+, но более высокие концентрации редки, за исключением морской воды и рассолов.

Натрий и калий поступают в природные воды при выщелачивании горных пород и почв. Все природные воды содержат определенные количества этих ионов. Концентрации их в природных водах составляют: натрий-ион 1—20 мг/л, калий-ион до 10 мг/л. С увеличением общей минерализации содержание ионов натрия и калия, как правило, возрастает.

Биогенные вещества. Азот присутствует в воде в виде как неорганических, так и разнообразных органических соединений. Неорганические соединения азота – аммоний NH4, нитриты NО2- и нитраты NO3. Органические соединения азота находятся в составе белка тканей организмов и продуктов его распада и присутствуют в воде при биологических процессах и биохимическом распаде остатков организмов.

Поступление неорганических соединений азота в воды происходит при биологическом распаде азотсодержащих соединений, а также вместе с атмосферными осадками. Концентрация неорганического азота в природных водах определяется интенсивностью процессов потребления соединений азота и скоростью процессов регенерации биогенных элементов. Средняя концентрация ионов аммония в естественных условиях не превышает 0,5 мг/л. Нитритные ионы (NO2) очень неустойчивы в поверхностных условиях, поэтому концентрация их в водах, как правило, не более тысячных долей миллиграмма на литр (в пересчете на азот). Наибольшая концентрация их отмечается осенью.

Соединения фосфора присутствуют в природных водах в виде неорганических и органических соединений. Основным фактором, определяющим концентрацию фосфора, является обмен его между неорганическими и органическими формами, а также живыми организмами. Содержание фосфора в природных водах  обычно  не превышает  десятых  долей миллиграмма на  литр.

Микроэлементы. Целый ряд элементов, не включенных в описанные выше группы, имеет широкое распространение в природных водах, но концентрации их очень малы и, как правило, не превышают тысячных долей миллиграмма на литр. Такими элементами являются тяжелые металлы (Zn, Cu, Pb, Ni, Со и др.), редкие металлы (Li, Rb, Cs, Be и т. д.), галогены (Br, I, F), радиоактивные элементы и др. Несмотря на низкие концентрации, распространение микроэлементов в водах представляет большой интерес. Состав микроэлементов указывает на геологическую историю воды. Кроме того, аномально высокие содержания ряда металлов в природных водах служат индикаторами при поисках рудных месторождений. Многие из этих компонентов даже в ничтожных  концентрациях влияют  на  жизнедеятельность  растений и  животных.

Органические вещества. Изученность органических веществ, входящих в химический состав природных вод, значительно хуже по сравнению с минеральной частью.

Степень насыщения кислородом. Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания. Зависит от температуры воды, атмосферного давления и солености.

Жесткость. Жесткость воды представляет собой свойство природной воды, зависящее от наличия в ней главным образом растворенных солей кальция и магния. Суммарное содержание этих солей называют общей жесткостью. Общая жесткость подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов (и карбонатов при рН>8.3) солей кальция и магния, и некарбонатную – концентрацию в воде кальциевых и магниевых солей сильных кислот. Поскольку при кипячении воды гидрокарбонаты переходят в карбонаты, которые выпадают в осадок, карбонатную жесткость называют временной или устранимой. Остающаяся после кипячения жесткость называется постоянной. Результаты определения жесткости обычно выражают в мг-экв/дм3.

Жесткость воды колеблется в широких пределах. Вода с жесткостью менее 4 мг-экв/дм3 cчитается мягкой, от 4 до 8 мг-экв/дм3 – средней жесткости, от 8 до 12 мг-экв/дм3 – жесткой и выше 12 мг-экв/дм3 – очень жесткой.

Окисляемость: перманганатная и бихроматная (ХПК). Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая. Наиболее высокая степень окисления достигается методами бихроматной и иодатной окисляемости воды.

Выражается в миллиграммах кислорода, пошедшего на окисление органических веществ, содержащихся в 1 дм3 воды

Величины окисляемости природных вод изменяются в пределах от долей миллиграммов до десятков миллиграммов в литре в зависимости от общей биологической продуктивности водоемов, степени загрязненности органическими веществами и соединениями биогенных элементов, а также от влияния органических веществ естественного происхождения, поступающих из болот, торфяников и т.п. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными (десятые и сотые доли миллиграмма на 1 дм3), исключение представляют воды нефтяных месторождений и грунтовые воды, питающиеся за счет болот. Горные реки и озера характеризуются окисляемостью 2-3 мг О/дм3, реки равнинные — 5-12 мг О /дм3, реки с болотным питанием — десятки миллиграммов на 1 дм3.

Физико-географическая зональность природных вод 

Окисляемость

мгО/л

Зона

Очень малая

0 - 2

Высокогорье

Малая

2 - 5

Горные районы

Средняя

5 - 10

Зоны широколиственных лесов, степи, полупустыни и пустыни, а также тундра

Повышенная

15 - 20

Северная и южная тайга

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мгО/дм3; в зонах рекреации в водных объектах допускается величина ХПК до 30 мгО/дм3.

Биохимическое потребление кислорода (БПК). Степень загрязнения воды органическими соединениями определяют как количество кислорода, необходимое для их окисления микроорганизмами в аэробных условиях. Биохимическое окисление различных веществ происходит с различной скоростью. К легкоокисляющимся ("биологически мягким") веществам относят формальдегид, низшие алифатические спирты, фенол, фурфурол и др. Среднее положение занимают крезолы, нафтолы, ксиленолы, резорцин, пирокатехин, анионоактивные ПАВ и др. Медленно разрушаются "биологически жесткие" вещества гидрохинон, сульфонол, неионогенные ПАВ и др.

БПК5. В лабораторных условиях наряду с БПКполн. определяется БПК5 - биохимическая потребность в кислороде за 5 суток. В поверхностных водах величины БПК5 изменяются обычно в пределах 0.5-4 мгO2/дм3 и подвержены сезонным и суточным колебаниям.

Сезонные изменения зависят в основном от изменения температуры и от исходной концентрации растворенного кислорода. Влияние температуры сказывается через ее воздействие на скорость процесса потребления, которая увеличивается в 2-3 раза при повышении температуры на 10oC. Влияние начальной концентрации кислорода на процесс биохимического потребления кислорода связано с тем, что значительная часть микроорганизмов имеет свой кислородный оптимум для развития в целом и для физиологической и биохимической активности.

Величины БПК5 в водоемах с различной степенью загрязненности.

Степень загрязнения (классы водоемов)

БПК5

Очень чистые

0.5 - 1.0

Чистые

1.1 - 1.9

Умеренно загрязненные

2.0 - 2.9

Загрязненные

3.0 - 3.9

Грязные

4.0 - 10.0

Очень грязные

> 10.0

Для водоемов, загрязненных преимущественно хозяйственно-бытовыми сточными водами, БПК5 составляет обычно около 70% БПКполн.

В зависимости от категории водоема величина БПК5 регламентируется следующим образом: не более 3 мгO2/дм3 для водоемов хозяйственно-питьевого водопользования и не более 6 мгO2 /дм3 для водоемов хозяйственно-бытового и культурного водопользования. Для морей (I и II категории рыбохозяйственного водопользования) пятисуточная потребность в кислороде (БПК5) при 20оС не должна превышать 2 мгO2/дм3.

БПКполн. Полным биохимическим потреблением кислорода (БПКполн.) считается количество кислорода, требуемое для окисления органических примесей до начала процессов нитрификации. Количество кислорода, расходуемое для окисления аммонийного азота до нитритов и нитратов, при определении БПК не учитывается.

Для бытовых сточных вод (без существенной примеси производственных) определяют БПК20, считая, что эта величина близка к БПКполн.

Речные воды

Мощный геохимический поток, создаваемый речными водами, играет важную роль в общепланетарном массообмене между сушей и океаном. Речные воды представляют собой сложные растворы, которые содержат как дисперсные взвеси, так и соединения, находящиеся в истинно растворимом состоянии. В составе растворимых соединений в речных водах преобладают анионы [HCO3], [SO4]2–, Cl, на долю которых приходится более 50 % от суммы растворенных веществ. Среди катионов присутствуют кальций – 12,5 %, натрий – 5 %, магний – 3,5 % и калий – 2 %. Все остальные элементы присутствуют в варьирующих микроколичествах.

В речных водах различают следующие главные формы нахождения химических элементов:

1. Ионы простые и комплексные (размер 1 нм и менее).

2. Нейтральные молекулы (размер 1 нм и менее).

3. Частицы коллоидных размеров от 0,001 до 0,1 мкм, на поверхности которых находятся сорбированные ионы.

4. Высокодисперсные частицы, которые состоят преимущественно из глинистых минералов и имеют размеры от 0,5 мкм до 1–2 мкм.

5. Более крупные взвешенные частицы, которые представлены обломочными минералами размером от 2–3 до 10 мкм.

Реки планеты сильно различаются минерализацией воды и содержанием взвешенных дисперсных частиц (мутностью). Средняя минерализация вод рек равна примерно 120 мг/л. С учетом этой цифры и объема годового речного стока воды в Мировой океан, количество растворимых соединений, ежегодно выносимых с суши, составляет 5,3 млрд. тонн. Среднее содержание взвешенных дисперсных частиц в континентальном стоке оценивается в 500 мг/л. Следовательно, ежегодный вынос тонкодисперсного вещества составляет 22 млрд. тонн, что в 4,2 раза превышает вынос растворимых соединений.

В речных водах содержатся также растворимые формы рассеянных элементов, которые не захвачены в биологический круговорот. На поверхности суши текучие воды характеризуются значениями рН от 4,5 до 8,5. Многие металлы (цинк, хром, медь, бериллий, свинец, кадмий, никель, кобальт и др.) при таких значениях рН могут находиться в растворенном состоянии, выпадать в осадок и вновь переходить в раствор.

В природных водах значительная часть рассеянных элементов находится не в форме простых ионов, а входит в состав неорганических комплексных соединений. Широко распространены также комплексные органические соединения металлов, особенно внутрикомплексные (хелатные), в которых ион металла имеет ионную и координационную связи с отдельными функциональными группами внутри молекулы. В комплексообразовании участвуют аминокислоты, кислоты жирного ряда, гуминовые и фульвокислоты, полифенолы и др. Образование комплексных соединений характерно для кобальта, меди, никеля, хрома, цинка, урана. При этом резко возрастает устойчивость элемента в растворе, которая уже не ограничивается щелочно-кислотными и окислительно-восстановительными условиями, необходимыми для существования в растворе простого иона.

По сравнению с водой океана определение величины средней концентрации элементов в водах суши характеризуется некоторой условностью, так как разнообразие растворимых форм элементов в речных водах, геохимические и биоклиматические различия водосборных площадей приводят к значительной вариации концентраций элементов. Общая минерализация пресных речных вод намного меньше соленых морских, тем не менее ежегодный глобальный вынос с суши рассеянных элементов в растворенном состоянии характеризуется значительными массами: для кальция, кремния, магния, натрия, сульфатной серы, хлора – сотнями миллионов тонн; для калия – десятками миллионов тонн; для алюминия, железа, стронция, фтора – миллионами тонн; для бора, брома, иода, марганца, меди, цинка – сотнями тысяч тонн. Вынос многих рассеянных элементов составляет десятки тысяч тонн и только отдельные элементы выносятся в меньших количествах.

Оценка степени интенсивности вовлечения элементов в водную миграцию дополняет представление о выносе растворенных масс элементов. Интенсивность водной миграции элемента определяется отношением его содержания в воде и в дренируемой горной породе. Коэффициент водной миграции Кв представляет собой отношение концентраций элемента в сухом остатке воды к его концентрации в горной породе. Для оценки интенсивности вовлечения элемента в водную миграцию в глобальном масштабе, следует рассчитать отношение среднего содержания элемента в твердом остатке речных вод к кларку этого же элемента в гранитном слое континентов. 

По интенсивности вовлечения в водную миграцию элементы разбиваются на следующие группы (в последовательности уменьшения числового значения Кв в каждом ряду):

         Кв = 100n :  Cl;

         Кв = 10n :  S, I, Br, Ag, Sb, Hg, B, Cd;

         Кв = n :  As, Mo, Ca, Zn, Sr, Cu, Mg, Na, Sn;

         Кв = 0,1n :  U, Ni, Pb, F, Co, Ba, Cr, P, Mn, Si, V, Zr;

Кв = 0,01n :  Ga, Th, Al, Ti, Sc

Исследованиями установлено, что основная масса рассеянных элементов в речных водах связана со взвесями. Соотношение химических элементов и их масс в веществе, которое мигрирует в речных водах в виде взвесей, обнаруживает существенные отличия при сравнении с веществом, мигрирующим в растворенном состоянии. Это обусловлено специфическими особенностям состава речных взвесей и более чем четырехкратным превышением массы взвесей над массой растворимых соединений в годовом стоке рек.

В речных взвесях преобладают высокодисперсные глинистые частицы, мелкие обломки кварца и сгустки гидрооксидов железа, поэтому содержание во взвесях таких элементов, как кремний, алюминий, железо намного выше, чем в сумме растворимых соединений в речной воде. Во взвешенном веществе в целом концентрации большей части элементов превышают соответствующие концентрации в сумме растворимых соединений. Однако для кальция характерно обратное соотношение.

Во взвешенном веществе рек переносится свыше 98 % массы элементов с очень низкими коэффициентами водной миграции (Кв  0,5), от 90до 98 % массы элементов со значениями Кв от 0,05 до 0,9. Даже элементы, имеющие значения Кв от 1 до 10, мигрируют в основном не в растворенном состоянии. Преобладание в речном стоке масс водорастворимых соединений имеет место лишь для азота, брома, кальция, натрия, серы, хлора.

Л_5


 

А также другие работы, которые могут Вас заинтересовать

50856. Исследование непериодических сигналов 312.5 KB
  Для задания формы сигнала используется функциональный источник напряжения NFV Component nlog Primitives Function Sources NFV.2 Схема для исследования спектров различных сигналов для разных стандартов условных графических изображений Задать в качестве сигнала одиночный прямоугольный импульс амплитудой 4 В и длительностью 2 NN мс. В разных графических окнах задать вывод следующих графиков: Зависимости заданного сигнала VE1 от времени t; Спектра исследуемого сигнала зависимости величины гармоник HRMVE1 от частоты f....
50857. Система COMP-P(Expert COMPonent for the Pascal-oriented tool) и построение исполняемого модуля в Borland Delphi 149 KB
  Ознакомьтесь с примером из папки Exmples Steklo. Запустите программу COMPP версия 3 smll и откройте пример steklo. Рассмотрим проект ksteklo. Проект содержит модули формы steklo1.
50858. Рекурсия и итерация в языке Пролог 38 KB
  Что обеспечивает предикат repet Предикат repet обеспечивает дополнительную возможность для порождения множественных решений в процессе возврата. Этот предикат можно определить следующим образом...
50859. Построения экспертных приложений COMP-P, разработка набора правил в этой системе и создание исполняемого модуля «Программист» в Borland Delphi 775.5 KB
  Целью данной работы является изучение инструментальной системы для построения экспертных приложений COMP-P, разработка набора правил в этой системе и создание исполняемого модуля «Программист» в Borland Delphi. Порядок выполнения работы. Для создания исполняемого модуля «Программист» в Borland Delphi Вам необходимо 3 файла.
50860. Совершенствования деятельности таможенного представителя в таможенной сфере 1.2 MB
  Исследовать теоретические основы деятельности в сфере таможенного дела; изучить практические аспекты деятельности таможенного представителя; выявить основные направления совершенствования деятельности таможенного представителя.
50862. Нейронная сеть Хебба 66.5 KB
  Поскольку вектор (у1, у2) = (1, -1) равен вектору (t1, t2), то вычисления прекращаются, так как цель достигнута – нейрон правильно распознает заданные изображения. Задание 2. Обучить бинарный нейрон распознаванию изображений X1 и X2. При этом изображению X1 пусть соответствует выходной сигнал нейрона...