35054

Геохимия

Лекция

Химия и фармакология

Ферсмана: Геохимия изучает историю химических элементоватомов в земной коре и их поведение при различных термодинамических и физикохимических условиях природы. Геохимия – наука изучающая распространение атомов химических элементов в космосе и на Земле историю их существования происхождение а также поведение в различных природных условиях. Понять историю атомов в земной коре и вообще на Земле и в космосе можно лишь изучив свойства этих атомов так как различные природные процессы связанные с распределением и миграцией химических...

Русский

2013-09-08

96.5 KB

10 чел.

PAGE  7

Лекция 1

Введение

Геохимия изучает формы распределения вещества на Земле. Но существует ряд других наук, которые также в той или иной мере касаются вопросов химии Земли (минералогия, петрография, почвоведение и пр.). Поэтому есть необходимость в точном определении геохимии. Определений геохимии как науки существует несколько.

Определение В. И. Вернадского – геохимия изучает химические элементы-атомы земной коры и, насколько возможно, всей планеты. Она изучает их историю, их распределение и движение в пространстве — времени, их генетические соотношения. К этой формулировке довольно близко определение А. Е. Ферсмана: «Геохимия изучает историю химических элементов-атомов в земной коре и их поведение при различных термодинамических и физико-химических условиях природы».

Геохимия – наука, изучающая распространение атомов химических элементов в космосе и на Земле, историю их существования, происхождение, а также поведение в различных природных условиях.

Понять историю атомов в земной коре (и вообще на Земле и в космосе) можно, лишь изучив свойства этих атомов, так как различные природные процессы, связанные с распределением и миграцией химических элементов в пространстве и времени, являются функцией в первую очередь этих свойств. Современная геохимия учит, что распространенность элементов, т. е. относительные их количества на Земле и в космосе, определяется устойчивостью ядер их атомов, химические же свойства и перемещение атомов (миграция) находятся в тесной связи с характером внешних электронных орбит атомов.

Геохимия, наука сравнительно молодая, переживает в настоящее время стадию особенно интенсивного развития. Достаточно четко оформились следующие основные проблемы:

1. Выяснение закономерностей распределения отдельных химических элементов во вселенной, в различных оболочках Земли (геосферах), особенно в земной коре и биосфере, т. е. выяснение качественного и количественного состава геосфер и причин, определяющих различную распространенность элементов. Изучение в тесной связи с этим законов, управляющих распределением элементов в космосе вообще, т. е. в метеоритах, на Солнце, звездах и т. д.

2. Выяснение закономерностей миграции химических элементов в земной коре и причин неравномерного распределения их на различных участках земной коры (например, концентрация металлов в месторождениях и рассеяние в породах). Выяснение в связи с этим причин, определяющих совместное нахождение элементов и последовательность их выпадения в форме тех или иных минеральных комплексов, т. е. так называемый парагенезис элементов и минералов.

Вторая проблема сводится к изучению причин, которые управляют отдельными природными процессами: выпадением элементов из магматических расплавов (кристаллизация, пегматитовый процесс и др.), из гидротермальных растворов (рудные процессы), из холодных растворов (выпадение солей и др.), биогенезом, гипергенезом, техногенезом и т.д.

Первые две проблемы составляют содержание общей геохимии, на основе которой становится возможным разрешение следующих, более частных, конкретных проблем, касающихся окружающей среды:

3. Геохимия отдельных областей, т. е. выяснение закономерностей в распределении элементов между отдельными географическими системами, геологическими отложениями в связи с их возрастом, тектоникой, петрографическим составом и т. д.

4. Геохимия отдельных элементов, т. е. изучение поведения того или иного атома на Земле при различных термодинамических условиях и на различных стадиях ее космической и геологической истории.

5. Геохимия месторождений полезных ископаемых, и аномалий содержания хим. элементов в природе.

5. Эндемические особенности хим. элементов и болезни.

Говоря об окружающей среде, обычно имеют в виду атмосферный воздух, поверхностные и грунтовые воды, океан, почва, горные породы верхней части литосферы, что можно в целом назвать географической оболочкой.

Геохимия окружающей среды изучает распределение химических элементов верхней части литосферы. Ей приходится много заниматься минералами и горными породами, поскольку они предопределяют форму нахождения веществ и способы их движения в окружающей нас среде. Она должна ответить и на такие вопросы – как сформировался вещественный состав окружающей нас среды, и каковы прогнозы его изменения в будущем. Жизнедеятельность человека протекает на поверхности земной коры, поэтому её вещественный состав непосредственным образом сказывается на качестве его существования.

Большинство организмов, населяющих Землю и оказывающих значительное воздействия на состав атмосферного воздуха, литологии, океанических вод и вод суши, прошли длительный путь эволюции, длительность которой измеряется миллионами, десятками миллионов лет. Бактерии эволюционировали совместно с земной корой уже на протяжении миллиардов лет. Понятно, что в процессе эволюции определились формы жизни, которые  воспроизводят условия существования биосферы на поверхности Земли. Поверхность Земли следует воспринимать как целостный организм, воспроизводящий окружающую среду необходимую для собственного существования.

До первой промышленной революции (начало XX века), когда биосферу еще можно было считать находящейся в равновесии, на долю всех позвоночных, включая человека, приходился лишь 1 % потребления органики, производимой всей биосферой. Сейчас лишь одно человечество использует более 7 % органики, производимой растениями и животными. Это сигнал о надвигающейся катастрофе. Другой сигнал связан с ростом концентрации углекислоты в атмосфере. Она и раньше не была постоянной, но биота откликалась на изменение концентрации увеличением или уменьшением прироста фитомассы. В ХХ веке, когда концентрация углекислоты возросла на 17 %, сколько-нибудь заметного увеличения фитомассы не последовало. Скорее, имеет место обратное явление – сокращение, вызванное снижением ассимиляционных свойств окружающей среды по антропогенным причинам. Деятельность промышленности и увеличение концентрации углекислоты в атмосфере вызывает потепление климата на Земле. В 2007 году впервые освободились ото льдов воды между Гренландией и Северной Америкой, что открывает проход судов в этой части океана. Расчеты показывают, что для возвращения биосферы в равновесие, при современных технологиях, а, следовательно, и уровне потребления (в том числе и энергии), население Земли не может составлять более 500 млн. человек.

Последние 150 лет население Земли росло и продолжает расти феноменальными темпами. С древнейших исторических эпох до начала прошлого века численность жителей Земли колебалась около нескольких сотен миллионов человек, то медленно возрастая, то снижаясь из-за эпидемий и волн голода.  Только около 1830 г. она достигла численности   1 млрд. человек. Этому в немалой степени способствовало введение новых сельскохозяйственных культур, использование техники, повышавшей эффективность земледелия. Начала практиковаться крупномасштабная селекция домашних животных с высокой продуктивностью молока и мяса. Работы Луи Пастера, показавшие, что эпидемии вызываются микроорганизмами, привели к разработке эффективных мер профилактики и лечения заболеваний. Важнейшим результатом всего этого было резкое снижение младенческой и детской смертности, увеличение продолжительности жизни.

Европа и европейская часть России были покрыты дремучими лесами, ныне уничтоженными объединенными усилиями хлеборобов многих стран, задолго до смены феодального общества капиталистической системой. Таким образом, еще не так давно, всего несколько сот лет назад, биологическая компонента окружающей человека среды достаточно резко отличалась от того, что получило в наследство от своих предков современное поколение. Однако в доиндустриальный период развития и на ранней стадии промышленного периода человека, всецело занятого борьбой с непокорными силами природы, мало интересовали возможные последствия его деятельности, которая практически еще не нарушала сколько-нибудь серьезно установившееся равновесие во взаимодействии геосфер. Рост производительных сил кратно увеличил воздействие человека на природу за последние сто лет. Воздействие человека на окружающую среду многообразно и вызывает множественные изменения в геохимических циклах биосферы, так что итог этих изменений оказывается непредсказуем. Смысл заключается в том, что скорость изменений геохимических циклов Земли существенно меньше темпов роста потребностей человека и его воздействия на среду, которая его окружает. Люди стали заложниками собственного благополучия.

Технический прогресс земной цивилизации изменил это положение коренным образом. Начавшаяся после второй мировой войны научно-техническая революция сопровождалась резким скачком использования природных ресурсов и промышленного производства в глобальном масштабе. Продолжая расти экспоненциально в течение последних 25 лет, производство и потребление природного сырья достигло огромных объемов. С 1965 г. в мире ежегодно добывается и сжигается не менее 3 млрд. т каменного угля, извлекается из недр более 0,5 млрд. т железной руды, более 40 млн. т бокситов, более 5 млн. т меди и т. д. (Беус и др., 1976). По подсчетам Горного бюро США только промышленность Соединенных Штатов за тридцатилетие (с 1940 по 1970 г.) потребила больше минерального сырья, чем все человечество, начиная с античного периода и до второй мировой  войны. Таким образом, хозяйственная деятельность человека  превратилась в геологический фактор, определяющий развитие планеты.

Таким образом, у человечества три выхода:

  •  влиться в существующие механизмы биосферы, стать одним из механизмов воспроизводства качественного состава окружающей среды, существенно сократив воздействия на неё;
  •  создать свою искусственную замкнутую среду отдельную от природного окружения по типу космического корабля, что пока невозможно из-за недостаточности знаний о функционировании биосферы, естественных геохимических потоках вещества в окружающей среде и отсутствии соответствующих технологий;
  •  уничтожить среду своего обитания и свой вид.

Если убрать третий выход, который можно назвать «выход в никуда», то остаются два. Второй весьма сомнителен в реализации, так как замкнутые производства отсутствуют на Земле и есть подозрения, что такие производства в принципе невозможны. Остается лишь один выход наиболее выгодный – первый, но он требует существенного увеличения расходов на воспроизводство качества окружающей среды и сокращения потребностей в природных ресурсах.

Геохимическая неоднородность земной коры является её особенностью и важнейшем ресурсом, который всегда будет эксплуатироваться человечеством, как источник сырья, так и склад отходов. Основное условие биоразнообразия живого на планете – это разнообразие не столько климатических условий, сколько её геохимической неоднородности.

Практическая значимость

В.И. Вернадский (2005) подчеркивал особую роль геохимии, которая необходима для химиков, геологов, биологов, географов, а её открытия касаются фундаментальных областей физики и подходят к освещению самых общих взглядов на устройство Вселенной. Практическое значение геохимии выражается уже в том, что аномальные содержание веществ в земной коре: очень низкое, или очень высокое может вызвать ряд заболеваний у человека, животных, растений с тяжелыми последствиями. А.А. Сауков (1975) указывал на пользу геохимии в поисках новых источников, видов сырья, что особенно касается рассеянных элементов. По его мнению, человечеству не грозит нехватка минерального сырья, так как в земной коре оно находится в бесконечно большом количестве (относительно потребностей человечества), но в рассеянном состоянии. Необходимы технологии, аналогичные тем, которыми пользуются бактерии, грибы, использующие энергию сол. света для извлечения из первичных минералов горных пород необходимых питательных веществ: фосфатов, солей калия, натрия, кальция, магния, железа и т.д.

Геохимия участвует в поиске месторождений полезных ископаемых, так как концентрация химических элементов, сконцентрированных в месторождении, постепенно снижается в пространстве при удалении от него.

Методы исследования геохимии

Для решения своих задач геохимия пользуется различными методами. Изучение качественного и количественного состава горных пород, минералов, вод, газа, живого вещества ведется аналитическими методами: химическим, микрохимическим, спектрально-оптическим квантометрическим, рентгенохимическим, полярографическим, радиохимическим, люминесцентным и др. Но геохимия предъявляет к этим методам особые, более повышенные требования, чем другие науки. Например, минералоги, петрографы и специалисты по рудным месторождениям интересуются в основном лишь элементами, находящимися в состоянии концентрации, и считают поэтому удовлетворительным анализ, проведенный с точностью до 0,01%. Геохимию в одинаковой мере интересуют и элементы в состоянии рассеяния, содержание которых составляет иногда лишь тысячные, во многих случаях миллионные, а иногда даже и миллиардные доли процента.

Иногда приходится комбинировать различные методы, чтобы еще более повысить чувствительность определений. Например, для определения ряда особо редких элементов в горных породах (рения, галлия и др.) берут очень большие навески (сотни и тысячи граммов), подвергают их химическому обогащению, посредством которого искомый элемент концентрируется в небольшой части вещества, где его потом и определяют количественно, применяя тот или иной чувствительный метод (спектральный, полярографический и др.).

Для решения других геохимических задач, связанных с выяснением миграции атомов, их естественных ассоциаций в земной коре, их относительным распространением в пространстве и т. д., геохимия пользуется рядом других методов.

Одним из наиболее важных методов исследований в геохимии окружающей среды  – это сравнительно-географический. В течение ряда последних десятилетий большие успехи сделаны в разработке и применении на практике важного метода — геохимического картирования, т. е. составления для определенного участка территории такой карты, которая давала бы представление о содержании тех или иных элементов в любой точке изучаемого участка. Таковы, например, купрометричеокие карты для медных месторождений, станнометрические карты — для оловянных и т. п. На этих картах точки одинаковых содержаний данного элемента соединяются соответствующими кривыми. Такие карты помогают рационально направлять разведочные работы, а в ряде случаев и производить подсчеты запасов металла в данном месторождении.

Кроме подробных частных карт, можно составлять и общие карты, на которые особыми способами могут наноситься спектры химических элементов (соотношения). Попытки составления таких общих карт делались для массивов изверженных пород. Гораздо доступнее поэтому геохимические профили, показывающие изменение содержаний тех или иных элементов по линии разреза. Примерами могут служить литологические профили, если они достаточно охарактеризованы в химическом отношении, а также вертикальные и горизонтальные разрезы по месторождениям с указанием содержаний элементов.

Геохимические особенности той или иной территории, того или иного комплекса пород или месторождения хорошо характеризуются кларками концентрации, т. е. величинами, определяющими, согласно В. И. Вернадскому, содержания элементов для данного объекта по сравнению со средними содержаниями этих элементов, вычисленными для всей земной коры. Если кларк концентрации превышает единицу,— имеем накопление данного элемента, если кларк концентрации меньше единицы,— имеем обеднение данным элементом. Так, в месторождениях осадочных железных руд имеем высокие кларки концентрации для железа, мышьяка, марганца и других элементов, низкие кларки концентрации для натрия, калия, кремния и др.

В соответствии с величиной кларков концентрации можно выделить геохимические провинции, для которых характерно обогащение теми или другими элементами. Так, можно говорить об оловоносных, золотоносных, редкоземельных и других геохимических провинциях. Установление кларков концентрации является также одним из характерных методов геохимических исследований.

Важным моментом в геохимии ОС является выявление путей и способов миграции веществ.  При выветривании на земной поверхности многих месторождений в результате миграции элементов образуются вокруг этих месторождений ореолы, отличающиеся повышенным содержанием характерных элементов месторождения. Эти ореолы могут быть представлены соответствующими рудными минералами (например, в случае россыпей), растворимыми соединениями (в водных растворах), сорбированными ионами (в рыхлых высокодисперсных продуктах выветривания и в почвах) и т. д.

Изучение этих ореолов также является одним из важных геохимических методов, который позволяет вести поиски соответствующих месторождений. Сюда относится и определение содержания различных элементов в растениях, произрастающих на почвах, которые образовались на тех или иных горных породах или месторождениях: повышенное содержание данного элемента в некоторых растениях указывает на избыток его в почвах, а следовательно, и в том первичном субстрате, из которого они образовались (в породах или месторождениях). Ореолы вокруг угольных и нефтяных месторождений обогащены углеводородами, вокруг урановых — гелием и радоном. Изучение распределения этих газов в почвах и породах помогает поискам соответствующих месторождений.

При миграции элементов возникают на их пути различные геохимические барьеры, что приводит к концентрации веществ. Изучение таких барьеров также лежит в основе геохимических методов исследования.

Часто, в геохимических исследованиях приходится прибегать и к другим методам, в том числе к методам минералогии, петрографии и других геологических наук, поскольку изучаются в основном минералы, руды, горные породы, воды и газы, залегающие в тех или иных геологических условиях.

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ГЕОХИМИЧЕСКИХ ИДЕЙ

Слово «геохимия» впервые ввел в 1838 г. натуралист  К.Ф. Шенбейн, который предсказал неизбежность появления науки, изучающей содержание различных химических элементов в разных типах горных пород и в земной коре в целом. Под этим названием стали понимать науку о закономерностях химического состава, происхождении и миграции масс различных химических элементов, слагающих земной шар. Однако как особая наука геохимия могла создаться только в конце XIX в., после того как Д. И. Менделеевым (1868) была открыта периодическая система химических элементов. На основе её утвердится атомистический взгляд на вещество вселенной.

Особенно большие успехи были сделаны в области изучения распространения химических элементов на Земле и в метеоритах благодаря работам, начатым в США Кларком, а у нас Вернадским много лет назад (первые таблицы Кларка были составлены в 1889 г.). Эти работы заинтересовали большой круг выдающихся ученых, особенно химиков и физиков, разрабатывавших точнейшие методы анализа (химический, спектральный, рентгенохимический, радиохимический, полярографический, люминесцентный и др.). Успехи химии, физики и других наук во второй половине XIX в. и в XX в. позволили теоретически разрешить многие проблемы, которые возникли при обобщении геохимических фактов в эмпирические закономерности.

Исторически первое направление связано с именами Кларка и его последователей (Ноддаки, Гевеши, Панет и др.). Главной задачей геохимии они считали изучение количественного химического состава нашей планеты, особенно земной коры и отдельных ее частей — горных пород, минералов, гидросферы и атмосферы. Многие тысячи анализов, произведенных при этих исследованиях, позволили решить в первом приближении поставленную задачу в отношении большого числа химических элементов.

Второе направление в геохимии было создано В. М. Гольдшмидтом. Он работал, особенно в первое время, в различных областях геохимии, в том числе над проблемой физико-химического объяснения явлений контактового метаморфизма и над проблемой распространения химических элементов. Придавая исключительное значение размерам радиусов ионов и атомов, оно недостаточно учитывало другие факторы, которые также влияют на распределение химических элементов в различных природных объектах. Важнейшей задачей геохимии он считал при этом объяснение распределения отдельных химических элементов между различными минералами и горными породами, исходя, в первую очередь, из кристаллохимических особенностей решеток минералов, из явлений изоморфизма. Такой взгляд нашел яркое выражение в его известной геохимической классификации элементов, в которой выделяются: элементы первоначальной кристаллизации, изоморфные с Mg и Fe; элементы главной кристаллизации, изоморфные с Si, Al, Ca, К; элементы остаточной кристаллизации, не изоморфные с обычными  компонентами  горных  пород. Кристаллохимическое направление Гольдшмидта оказалось достаточно плодотворным.

Третье направление в геохимии было создано выдающимися советскими учеными В. И. Вернадским и А. Е. Ферсманом. Они определяли задачи геохимии гораздо шире, чем делали это Кларк и Гольдшмидт. Основное внимание они обращали на вопросы миграции атомов, на их поведение в различных условиях земной коры, ставя конечной целью дать для каждого элемента картину его распространения и движения в пространстве и во времени.

В. И. Вернадский справедливо считается творцом новой отрасли знания — биогеохимии, изучающей роль организмов в истории химических элементов. Он показал, что эта роль огромна и проявляется в разных формах. Организмы концентрируют (или создают условия для концентрации) многие химические элементы, особенно углерод, железо, кремний, фосфор и т. д., иногда в грандиозных масштабах; с другой стороны, они их рассеивают, поскольку микроорганизмы, состоящие из десятков химических элементов, рассеиваются, подобно газу, во всем объеме биосферы.

Большое внимание в течение длительного времени уделял В. И. Вернадский вопросам радиоактивности, интерес к которым у него проявился уже вскоре после самого открытия этого явления и не оставлял его в течение всей жизни. Он был одним из первых, кто разгадал и оценил огромное значение явлений радиоактивности для развития науки и будущих судеб человеческого общества.

В развитии мировой и отечественной геохимии одно из главных мест принадлежит Александру Евгеньевичу Ферсману. Широко известны многолетние работы А. Е. Ферсмана по пегматитам. Еще в самом начале своей научной деятельности он заинтересовался одним из сложных и интересных вопросов геологии – вопросом образования и развития пегматитов. В течение многих лет он собирал, сопоставлял и анализировал материалы по пегматитам. Он развивал и обосновывал идеи о так называемом остаточном расплаве. Его разработки опубликованы в большой монографии «Пегматиты».

Целый ряд его исследований посвящен проблеме кларков; самый термин «кларк» введен А. Е. Ферсманом. Он же предложил наряду с весовыми кларками вычислять атомные, что, как известно, дает более наглядное представление об относительных количествах атомов в геохимической системе. Введенные им логарифмические кривые кларков позволили дать теоретический анализ проблемы в целом и, в частности, объяснить как дефицитность, так и избыточность элементов. Он придавал проблеме кларков очень большое не только теоретическое, но и практическое значение.

А. Е. Ферсман привел к уровню новейших кристаллохимических достижений учение об изоморфизме, дав очень простые и ясные формулировки основных его положений. Он классифицировал многочисленные факты изоморфизма атомов и ионов на основе их положения в периодической системе элементов и ввел очень удобное понятие о звездах изоморфизма, т. е. наметил схемы, которые определяют степень изоморфной смесимости.

А. Е. Ферсман разработал и подробно изложил геоэнергетическую теорию, которая обобщает большой фактический материал, накопленный геохимией, минералогией, петрографией и учением о рудных месторождениях. Она объясняет последовательность кристаллизации минералов из расплавов и растворов, естественные ассоциации элементов и минералов, т. е. объясняет типы месторождений. В общем виде идеи о влиянии принципов термодинамики на ход естественных процессов высказывались неоднократно, однако никто из ученых до А. Е. Ферсмана не подвергал этот вопрос всестороннему и глубокому рассмотрению. В этом, бесспорно, его большая заслуга. Он предложил свой приближенный универсальный метод вычисления энергии кристаллической решетки, введя понятие паев энергии (эков), характеризующих каждый ион, и получая значение энергии кристаллической решетки любого соединения аддитивно из эков входящих в него ионов. Метод этот необычайно прост и достаточно точен для геохимических построений и выводов. Он ввел для каждого соединения особое понятие — «параген», т. е. функцию, которая определяет место данного соединения в парагенетической последовательности. Геоэнергетическая теория с единой, новой точки зрения обобщает большой фактический материал, накопленный геохимией, минералогией, петрографией и учением о рудных месторождениях.

Глубокий анализ геохимии провели такие русские исследователи как В. Г. Хлопин (радиогеохимия); А. П. Виноградов (кларки элементов, биогеохимия); Д. И. Щербаков (региональная геохимия); К. А. Ненадкевич (геохимия отдельных элементов); Н. В. Белов (кристаллохимия) и др.

Можно отметить геохимические работы, проведенные в Институте общей и неорганической химии АН СССР, Н. С. Курнаковым и его учениками при изучении природных солевых равновесий и условий образования соляных отложений.

Работы в области геохимии отдельных процессов проводились обычно в тесном контакте со специалистами родственных областей знания: минералогами, геологами, химиками, почвоведами и др. Подобные же комплексные исследования проводились в региональном разрезе с целью выяснить геохимические особенности отдельных территорий  (Средней Азии, Урала и др.).

В Почвенном институте им. В. В. Докучаева были выполнены обширные исследования процессов выветривания горных пород, химического состава почв и миграции элементов в поверхностной оболочке нашей планеты, а также были заложены основы геохимии ландшафтов (Б. Б. Полынов, Глазовская, Перельман и др.).

Значительны были успехи в области геохимии отдельных элементов, особенно углерода, кислорода, железа, редких элементов, благородных газов, платины, золота, ртути и др. В этой области советские ученые под углом зрения геохимии обобщили материалы, накопленные предыдущими исследователями, существенно дополнив их своими наблюдениями и новыми фактами.

Таким образом, геохимией за 200 лет её развития установлено:

  •  распределение химических элементов и веществ в недрах и на земной поверхности на глобальном и региональном иерархических уровнях,
  •  превращение веществ в результате ядерных реакций, изотопный состав,
  •  их парагенетическая связь химических элементов и веществ,
  •  миграция, геохимические барьеры,
  •  роль биосферы в концентрации и рассеивании вещества,
  •  техногенные превращения и потоки химических веществ  в окружающей среде.


 

А также другие работы, которые могут Вас заинтересовать

29476. ЧЕЛОВЕК ПРИСПОСОБЛЕННЫЙ 152.5 KB
  Проблема приспособления человека к изменившейся социальной среде становится предельно острой и общезначимой в условиях крутых общественных переломов когда практически все общественные слои и группы оказываются перед выбором вынужденного приспособления или самораспада. период перестройки общества и человека оказался более долгим располагал более массированными средствами включая тотальный террор и последствия двух мировых войн притом объектом воздействия оказывался расшатанный ранее тип социального человека. Ориентируясь на идеологию...
29477. ЧЕЛОВЕК НЕДОВОЛЬНЫЙ: ПРОТЕСТ И ТЕРПЕНИЕ 114.5 KB
  Чтобы преодолеть видимый парадокс нужно определить те социальные условия и структуры которые формируют и поддерживают такое сочетание а точнее взаимодействие недовольства и терпения в обществе. или к неэффективности современного социального недовольства фонового констатируют бесспорные факты но не объясняют их. Состояние общественно значимого недовольства возникает как реакция на сравнение то ли с лучшим по крайней мере более спокойным прошлым то ли с неосуществленным светлым будущим точнее с иллюзией такого будущего...
29478. ЧЕЛОВЕК ЛУКАВЫЙ: ДВОЕМЫСЛИЕ ПО-РОССИЙСКИ 150 KB
  Он приспосабливается к социальной действительности ища допуски и лазейки в ее нормативной системе то есть способы использовать в собственных интересах существующие в ней правила игры и в то же время что не менее важно постоянно пытаясь в какойто мере обойти эти правила. Успех этой системы на долгие десятилетия по крайней мере был бы невозможен если бы она опиралась только на массовое принуждение и массовый обман. Практическое отсутствие общеобязательных авторитетов создает многополярную структуру нормативного поля где...
29479. «ЧЕЛОВЕК ОГРАНИЧЕННЫЙ»: УРОВНИ И РАМКИ ПРИТЯЗАНИЙ 107.5 KB
  Стабильность притязаний На протяжении ряда лет данные ВЦИОМ охватывают как реальные так и воображаемые приписанные показатели положения человека: данные о полученном и желаемом нормальном по мнению опрошенных доходе и т. При этом 72 опрошенных считали что они получают намного меньше или несколько меньше чем заслуживают; 19 что они получают столько сколько заслуживают; 8 что получают больше чем того заслуживают. Если бы в распоряжении опрошенных исследование типа Мониторинг март 1997 г. При сходной формулировке...
29480. НАШИ ДЕСЯТЬ ЛЕТ: ИТОГИ И ПРОБЛЕМЫ (околоюбилейные размышления) 128 KB
  было подписано Постановление Президиума ВЦСПС и Госкомтруда СССР О создании Всесоюзного центра изучения общественного мнения по социальноэкономическим вопросам формальная дата появления на свет ВЦИОМ. Первое десятилетие жизни и работы ВЦИОМ можно рассматривать под разными углами зрения перебирать опросы отчеты оценивать кадры вспоминать конфликты и т. Что такое ВЦИОМ Условия и время создания нашего центра естественно наложили свой отпечаток на характер ВЦИОМ как организации или даже как своеобразного организма. Вопервых...
29481. Общественные перемены и общественное мнение 23 KB
  Человек политический: сцена и роли переходного периода 9. Человек толпа и масса в общественном мнении 17. Средний человек: фикция или реальность 19. Советский человек пять лет спустя: 1989–1994 гг.
29482. ОТ МНЕНИЙ К ПОНИМАНИЮ 90 KB
  Москва 2000 ОТ АВТОРА В книге собраны статьи публиковавшиеся в журнале Мониторинг общественного мнения1 с 1993 по 2000 гг. В этой формуле выражен один из основных принципов работы нашего центра: использовать данные изучения общественного мнения для понимания процессов и перемен в социальной экономической политической и культурной жизни общества. ВЕКТОРЫ ПЕРЕМЕН: СОЦИОКУЛЬТУРНЫЕ КООРДИНАТЫ ИЗМЕНЕНИЙ Уровни и предмет анализа в социальном исследовании Результаты массовых опросов общественного мнения как зарубежные так и отечественные чаще...
29483. ОБЩЕСТВЕННОЕ МНЕНИЕ В ГОД КРИЗИСНОГО ПЕРЕЛОМА 64.5 KB
  Дело не просто в падении или росте доверия к отдельным лидерам организациям институтам власти и пр. Первая относится к марту апрелю парламентский кризис попытка импичмента президента референдум как стремление найти выход из парламентского а точнее конституционного тупика при помощи прямого обращения президентской власти к авторитету общественного мнения. Обратная сторона этой медали изменение содержания таких традиционных категорий политической жизни как лидерство доверие поддержка властных структур или оппозиция власти. оказалась...
29484. ФАКТОРЫ И РЕСУРСЫ ОБЩЕСТВЕННОГО МНЕНИЯ В УСЛОВИЯХ «ПОСТМОБИЛИЗАЦИОННОГО ОБЩЕСТВА» 60.5 KB
  Малоэффективны поэтому реальными заслонами на пути лавины может служить лишь инерция сила привычки массового сознания и поведения а также относительная кратковременность всякого эмоционального состояния общества будь то увлечение или отталкивание восторг и страх. Эмоциональный всплеск оказался кратковременным уже в октябре ноябре стали усиливаться факторы массового разочарования и отчуждения. Ни устойчивые демократические институты ни устойчивая расстановка основных политических сил не сложились. Негативная мобилизация охватила...