35138

Разработка файл-серверной информационной системы с использованием технологий Borland

Практическая работа

Информатика, кибернетика и программирование

Программное использование БД Простейший случай Для обращения к таблицам используются невизуальные компоненты TTble и TDtSource закладки Dt ccess и BDE палитры компонентов и ряд визуальных: TDBGrid TDBEdit TDBLookupComboBox и т. В компоненте TTble устанавливаются свойства TbleNme TbleType. В последнем случае псевдоним БД указывается в свойстве DtbseNme объекта TTble. В компоненте TDtSource устанавливается свойство DtSet как указатель на TTble.

Русский

2013-09-09

47.5 KB

1 чел.

Практическая работа №2

Разработка файл-серверной информационной системы с использованием технологий Borland

Изучение принципов разработки приложений, работающих с БД, лучше начинать, создавая БД при помощи интерактивных средств Borland Database Engine (BDE), включенных в комплект Borland C++ Builder. Это позволяет сосредоточиться на функциональных возможностях разрабатываемых средств.

Настройка баз данных с использованием BDE Administrator и Borland Database Desktop

Создание псевдонима БД

Для создания псевдонима (alias) БД следует запустить средство BDE Administrator группы Borland C++ Builder. Из главного меню выбрать пункт Object->New. В появившемся окне выбрать тип БД: STANDARD, после чего в левом поле окна BDE Administrator появится строка с именем новой БД: STANDARD. Имя следует изменить. В правом поле окна необходимо установить параметр PATH, указав папку, в которой будет располагаться БД. Применить сделанные установки можно при помощи кнопки “Apply”.

Создание структуры

Для создания структуры БД следует запустить средство Database Desktop (DBD). Из главного меню выбрать пункт File->Working Directory, после чего в списке Aliases выбрать имя созданной БД. Таблицы БД создаются при помощи пункта главного меню File->New->Table. В окне Create Table можно оставить тип Paradox и нажать OK.

В появляющемся после этого окне определения структуры формируют структуру таблицы: указывают имена полей, их типы и размеры.

Основные типы таблиц Paradox приведены в таблице 1.

Пометка «*» Key означает вхождение поля в первичный ключ (Primary Key).

Таблица 1. Основные типы полей таблиц Paradox

Наименование

Сокр. наименование

Значения

Alpha

A

Строка до 255 символов

Number

N

Числа –10307…+10308

Short

S

Числа –32768…32767

LongInteger

I

Числа –2147483648…2147483647

Date

D

Дата

Time

T

Время

Сохранение структуры выполняется путем нажатия кнопки «Save As».

Определение индексов

Для открытой, ранее созданной таблицы окно модификации структуры вызывается при помощи кнопки «Restructure…». В окне создания структуры в списке Table Properties необходимо выбрать пункт Secondary Indexes и нажать кнопку «Define…» для определения нового индекса. В диалоговом окне Define Secondary Index следует скопировать имена полей из списка Fields в список Indexed fields, после чего нажать OK и ввести имя созданного индекса.

Изменение и удаление индексов

Изменение и удаление индексов производится также из окна создания структуры при помощи кнопок «Modify…» и «Erase».

Определение ссылочной целостности

Для создания связи «один-ко-многим» («1-2-many») выполняются следующие действия:

  1.  Открыть подчиненную (Detail) таблицу.
  2.  Открыть окно модификации структуры. В списке Table Properties выбрать элемент Referential Integrity и нажать кнопку «Define...».
  3.  В окне Referential Integrity переместить имя поля связи из списка Fields в список Child Fields. Переместить таблицу из списка Table в список Parents key (появится имя поля первичного ключа).

Программное использование БД

Простейший случай

Для обращения к таблицам используются невизуальные компоненты TTable и TDataSource (закладки Data Access и BDE палитры компонентов) и ряд визуальных: TDBGrid, TDBEdit, TDBLookupComboBox и т.п. (закладка Data Controls палитры компонентов). Необходимые компоненты переносятся на форму.

В компоненте TTable устанавливаются свойства TableName, TableType. Таблица может предназначаться как для управления обособленной таблицей, задаваемой именем файла, так и таблицей, входящей в базу данных. В последнем случае псевдоним БД указывается в свойстве DatabaseName объекта TTable.

В компоненте TDataSource устанавливается свойство DataSet как указатель на TTable. У визуальных компонентов устанавливается свойство DataSource как указатель на TDataSource. После этого достаточно установить свойство Active объекта TTable в true, чтобы таблица стала доступной из приложения.

Организация реляционных связей

Пусть на форме имеются компоненты DetailTable и MasterTable класса TTable, организующие доступ к таблицам, которые следует связать как главный-подчиненный. К компоненту MasterTable привяжем компонент MasterSource класса TDataSource. Установим свойство MasterSource объекта DetailTable в MasterSource и нажмем кнопку  в свойстве MasterFields. После чего в окне Field Link Designer следует выбрать из списка Available Indexes имя индекса, которое после этого отобразится в списке Detail Fields, и выбрать имя поля главной таблицы в списке Master Fields.

Настройка списка используемых полей таблицы

Для настройки списка используемых полей следует при помощи двойного щелчка на компоненте TTable войти в редактор полей Fields Editor. В редакторе полей можно формировать список полей, используя пункты контекстного меню: New Field, Add Field, Add All Fields.

Сортировать записи таблицы можно путем выбора индекса и установки его в свойстве IndexFieldNames объекта TTable. Изменение отображаемых имен столбцов таблицы выполняется двумя путями: свойство DisplayName объекта TField, свойство Title объекта TColumn (колонка объекта TDBGrid).

Обращение к полям таблицы

Если поля были описаны в редакторе полей, то возможно обращение непосредственно к созданным объектам классов, производных от TField. Кроме того, можно обращаться к полю по его имени через функцию FieldByName объектов TTable и TQuery, а также по его порядковому номеру в списке полей через свойство Fields этих же объектов.

В первом случае разработчик имеет дело с объектами классов TStringField – строковое поле, TIntegerField – целочисленное поле, TFloatField – вещественное поле и т.п. При этом получение и установку значения поля можно выполнять путем обращения к свойству Value объектов перечисленных классов. Свойство Value будет иметь тип, соответствующий типу значения поля.

Во втором случае разработчик распоряжается объектом базового класса TField и использует его свойства AsInteger, AsString, AsFloat и т.п.

Задание

Для выполнения задания воспользоваться вариантом практической работы №1 и базами данных, разработанными в ходе ее выполнения.

  1.  Путем использования BDE Administrator создать БД структуры, аналогичной созданной при выполнении практической работы №1.
  2.  Разместив на форме компоненты TTable, TDataSource, TDBGrid, реализовать приложение для отображения и редактирования одной таблицы БД.
  3.  Реализовать связи главный-подчиненный.
  4.  Организовать «клон» проекта и подключить его к БД, созданной в процессе выполнения практической работы №1.

В качестве дополнительного задания предлагается разместить БД в папке общего доступа и выполнить одновременную работу с данными БД из приложений, размещенных на двух ПЭВМ локальной сети, выявить проблемы многопользовательского доступа к БД и исследовать возможности свойств Exclusive, CachedUpdates, методов ApplyUpdates, CommitUpdates компонента Ttable.


 

А также другие работы, которые могут Вас заинтересовать

32726. Материальная точка. Абсолютно твёрдое тело. Система отсчёта 27.5 KB
  Система отсчёта. Системы отсчёта. Для определения координат материальной точки следует прежде всего выбрать тело отсчёта и связать с ним систему координат. Для определения положения материальной точки в любой момент времени необходимо также задать начало отсчёта времени.
32727. Кинематика точки. Путь. Перемещение. Скорость и ускорение. Их проекции на координатные оси. Вычисление пройденного пути. Средние значения 28.5 KB
  Скорость и ускорение. Скорость векторная физическая величина характеризующая быстроту перемещения тела численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым если скорость при неравномерном движении в течение этого промежутка не менялась. Измеряют скорость спидометром.
32728. Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения 37 KB
  Криволинейное движение с постоянным ускорением всегда происходит в той плоскости в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам vx=v0xxt x=x0v0xtxtxt2 2; vy=v0yyt y=y0v0ytyt2 2 Частным случаем криволинейного движения является движение по окружности. Движение по окружности даже равномерное всегда есть движение...
32729. Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями 39 KB
  Кинематика твёрдого тела. Движение тела может быть как поступательным так и вращательным. При поступательном движении все точки твердого тела за один и тот же промежуток времени совершают равные по величине и направлению перемещения. Следовательно скорости и ускорения всех точек тела в любой момент времени также одинаковы.
32730. Границы применимости ньютоновской механики. Первый закон Ньютона 28.5 KB
  Первый закон Ньютона. Вследствие развития физики в начале XX века определилась область применения классической механики: ее законы выполняются для движений скорость которых много меньше скорости света. Вообще законы классической механики Ньютона справедливы для случая инерциальных систем отсчета. При ускоренном движении неинерциальной системы координат относительно инерциальной системы первый закон Ньютона закон инерции в этой системе не имеет места свободные тела в ней будут с течением времени менять свою скорость движения.
32731. Масса и импульс. Второй закон Ньютона как уравнение движения 37.5 KB
  Масса скал. тела масса величина аддитивная т. масса системы рана сумме масс материальных тел входящих в состав этой системы при любых воздействиях выполняется закон сохранения массы: суммарная масса взаимодействующих тел до взаимодействия и после равны между собой. инерции точка в которой может считаться масса всего тела при поступательном движении данного тела.
32732. Третий закон Ньютона. Центр масс. Уравнение движения центра масс 30.5 KB
  Центр масс. Уравнение движения центра масс. Сам закон: Тела действуют друг на друга с силами имеющими одинаковую природу направленными вдоль одной и той же прямой равными по модулю и противоположными по направлению: Центр масс это геометрическая точка характеризующая движение тела или системы частиц как целого. Определение Положение центра масс центра инерции в классической механике определяется следующим образом: где радиусвектор центра масс радиусвектор iй точки системы масса iй точки.
32733. Сила тяжести и вес тела. Упругие силы. Силы трения 43.5 KB
  Силы трения. Сила трения Трение один из видов взаимодействия тел. Трение как и все другие виды взаимодействия подчиняется третьему закону Ньютона: если на одно из тел действует сила трения то такая же по модулю но направленная в противоположную сторону сила действует и на второе тело. Силы трения как и упругие силы имеют электромагнитную природу.
32734. Законы сохранения. Силы внутренние и внешние. Замкнутая система. Сохраняющиеся величины. Связь законов сохранения со свойствами пространства и времени 32.5 KB
  Силы внутренние и внешние. Внешние и внутренние силы Внешняя сила это мера взаимодействия между телами. В задачах сопротивления материалов внешние силы считаются всегда заданными. Внешние силы делятся на объемные и поверхностные.