35150

Виртуальные частные сети. Архитектура и протоколы

Доклад

Информатика, кибернетика и программирование

VPN англ. В зависимости от применяемых протоколов и назначения VPN может обеспечивать соединения трёх видов: узелузел узелсеть и сетьсеть. Уровни реализации Обычно VPN развёртывают на уровнях не выше сетевого так как применение криптографии на этих уровнях позволяет использовать в неизменном виде транспортные протоколы такие как TCP UDP. Пользователи Microsoft Windows обозначают термином VPN одну из реализаций виртуальной сети PPTP причём используемую зачастую не для создания частных сетей.

Русский

2013-09-09

42.5 KB

8 чел.

  1.  Виртуальные частные сети. Архитектура и протоколы.

VPN (англ. Virtual Private Network — виртуальная частная сеть[1]) — обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх другой сети (например, Интернет). Несмотря на то, что коммуникации осуществляются по сетям с меньшим неизвестным уровнем доверия (например, по публичным сетям), уровень доверия к построенной логической сети не зависит от уровня доверия к базовым сетям благодаря использованию средств криптографии (шифрования, аутентификации, инфраструктуры открытых ключей, средств для защиты от повторов и изменений передаваемых по логической сети сообщений).

В зависимости от применяемых протоколов и назначения, VPN может обеспечивать соединения трёх видов: узел-узел, узел-сеть и сеть-сеть.

Уровни реализации

Обычно VPN развёртывают на уровнях не выше сетевого, так как применение криптографии на этих уровнях позволяет использовать в неизменном виде транспортные протоколы (такие как TCP, UDP).

Пользователи Microsoft Windows обозначают термином VPN одну из реализаций виртуальной сети — PPTP, причём используемую зачастую не для создания частных сетей.

АРХИТЕКТУРА VPN
Существуют три модели архитектуры виртуальных частных сетей: зависимая, независимая и гибридная как комбинация первых двух альтернатив. Принадлежность к той или иной модели определяется тем, где реализуются четыре основных требования, предъявляемых к VPN. Если провайдер сетевых глобальных услуг предоставляет полное решение для VPN, т.е. обеспечивает туннелирование, безопасность, производительность и управление, то это делает архитектуру зависимой от него. В этом случае все процессы в VPN для пользователя прозрачны, и он видит только свой нативный трафик - IP-, IPX- или NetBEUI-пакеты. Преимущество зависимой архитектуры для абонента заключается в том, что он может использовать существующую сетевую инфраструктуру "как она есть", добавляя лишь брандмауэр между VPN и частной WAN/LAN.

Независимая архитектура реализуется в том случае, когда организация обеспечивает все технологические требования на своем оборудовании, делегируя сервис-провайдеру лишь транспортные функции. Такая архитектура обходится дороже, однако предоставляет пользователю возможность полного контроля за всеми операциями.

Гибридная архитектура включает зависимые и независимые от организации (соответственно, от сервис-провайдера) сайты.


 

А также другие работы, которые могут Вас заинтересовать

12644. Фрактальные многоугольники и «золотое» сечение 742.59 KB
  Фрактальные многоугольники и золотое сечение Рассматривая разнообразные фракталы возникает интуитивное ощущение их красоты а искусственно построенные из них интригуют чрезвычайной похожестью на многие природные образования. Подобные чувства рождаются и при иссл...
12645. Елементи програмування в MATHCAD 80.5 KB
  Лабораторна робота N 8 Елементи програмування в MATHCAD Мета роботи: вивчення методики програмування у пакеті MATHCAD. Завдання: ознайомитися з наведеною методикою відтворити наведені приклади скласти звіт. На одному аркуші MATHCAD можуть визначатися один або декілька пр
12646. Компютерна математика і математичні пакети. Ознайомитися з інтерфейсом пакету Mathcad 1.53 MB
  Лабораторна робота №1 Компютерна математика і математичні пакети Мета роботи: ознайомитися з інтерфейсом пакету Mathcad Встановити пакет на ПЕОМ виконати завдання №1 скласти звіт. При використанні обчислювальної техніки встала проблема реалізації алгоритмі
12647. Масиви в Mathcad 1.55 MB
  Лабораторна робота №2 Масиви в Mathcad. Мета роботи: навчитися працювати з масивами в пакеті Mathcad. Завдання: Опрацювати приведені приклади. Вирішити приведені завдання. Скласти звіт. Стовпець чисел називається вектором а прямокутна таблиця чисел матрицею. Зага...
12648. Символьні обчислення в документі Mathcad 1.29 MB
  Лабораторна робота №3 Символьні обчислення в документі Mathcad. Мета роботи: навчитися працювати з символьним процесором системи Mathcad. Завдання : опрацювати наведені приклади скласти звіт. Символьні обчислення в документі Mathcad. Команди що відносяться до робо
12649. Вирішення систем рівнянь за допомогою блоку Given-Find 67 KB
  Лабораторна робота №4 Вирішення систем рівнянь за допомогою блоку GivenFind. Мета роботи: навчитись вирішувати системи рівнянь в аналітичному вигляді. Завдання: вирішити за допомогою наведені MATHCAD приклади. Вирішення систем рівнянь MATHCAD здійснює чисельними методам
12650. Вирішення оптимізаційних завдань в пакеті MATHCAD 127 KB
  Лабораторна робота №5 Вирішення оптимізаційних завдань в пакеті MATHCAD Мета роботи: навчитись вирішувати оптимізаційні завдання в пакеті MATHCAD Завдання: опрацювати наведені приклади скласти звіт. Оптимізаційні завдання можна розділити на два класи: завдання без...
12651. Чисельне вирішення одного диференціального рівняння 37.5 KB
  Лабораторна робота №6 Чисельне вирішення одного диференціального рівняння. Мета роботи: Навчитися вирішувати диференційні рівняння в пакеті MATHCAD. Завдання: відтворити наведені приклади скласти звіт. MATHCAD 2000 дозволяє без додаткових перетворень чисельно вирішити д
12652. Чисельне рішення систем диференціальних рівнянь 79 KB
  Лабораторна робота №7 Чисельне рішення систем диференціальних рівнянь. Мета роботи: навчитися вирішувати системи диференціальних рівнянь за допомогою пакету С. Завдання: відтворити в пакеті MATHCAD вирішення наведених прикладів. Диференціальні рівняння що входять...