3525

Коррозия металлов

Лабораторная работа

Физика

Коррозия металлов. Цели. 1.Познакомиться с процессом коррозии с водородной деполяризацией. 2. Познакомиться с процессом коррозии с кислородной деполяризацией. 3. Рассчитать термодинамическую вероятность процессов коррозии с водородной и с кислородно...

Русский

2012-11-02

48 KB

22 чел.

Коррозия металлов.

Цели.

1.Познакомиться с процессом коррозии с водородной деполяризацией.

2. Познакомиться с процессом коррозии с кислородной деполяризацией.

3. Рассчитать термодинамическую вероятность процессов коррозии с водородной и с кислородной деполяризацией.

I. Теоретическая часть.

Коррозия – необратимое самопроизвольное разрушение металлов и сплавов.

Электрохимическая коррозия происходит в том случае, если на поверхности металлического слоя находится электролит в виде растворов солей, кислот, щелочей.

Сущность электрохимической коррозии в том, что процесс окисления металла сопровождается полным удалением электронов его атома и передачей их деполяризатору. (На катоде деполяризатор восстанавливается H+→H2, O2→ O2-).

Коррозия с водородной деполяризацией – ионы водорода обладают высокой подвижностью, и поэтому данная коррозия протекает с большой скоростью.

При pH < 7:  2H+ + 2e- → H2.

При pH > 7, pH = 7: 2H2O + 2e- → H2 + 2OH-.

Коррозия с кислородной деполяризацией – протекает в водных растворах электролитов в длительном соприкосновении с воздухом. В этом случае деполяризатором является кислород.

При pH < 7:  O2 + 4H+ + 4e- → 2H2O.

При pH > 7, pH = 7: O2 +2H2O + 4e- → 4OH-.

II. Экспериментальная часть.

Опыт 1. Электрохимическая коррозия с водородной деполяризацией.

Ход работы:

В пробирку налить 5 мл разбавленного раствора H2SO4, опустить в раствор кусочек цинка Zn.

Наблюдения:

 

Уравнение реакции:

Zn + H2SO4 (разб) → ZnSO+H

Zn-2e=Zn  φ()=-0,763

2H

ph(HSO)=2

φ0 о-ль = -0,059pH=-0,118

E==-0,118-(-0,763)=0,645 B

∆G=-n*E*F=-2*0,645*96500=-124,5 кДж

 

Отрезок медной проволоки очистить наждачной бумагой и промыв водой, медленно опустить в раствор. Медь не взаимодействует с разбавленной H2SO4. (Почему?)

С разбавленной серной кислотой (H2SO4 р) реагируют металлы, электродный потенциал которых меньше 0 В (φ0< 0 В), а φ(Cu

Прикоснуться медной проволокой к кусочку цинка.

Наблюдения: Газ выделяется на медной проволоке

Механизм процесса:

φ0(Cu2+/Cu) = 0,339 В

φ0(Zn2+/Zn) = -0,763 В

Катодом является – Cu

Анодом является – Zn

Перенапряжение водорода на катоде: η Н2(Cu) = 0,5 B

pH = 0

Реакция на аноде (А):Zn

Реакция на катоде (К): H

φ0 (катод) = φ0 (окислитель) = -0,059 pHη Н2(Cu ) = -0,5 B 

E0 = φ0 (окислитель) - φ0 (восстановитель);

E0 = -0,5-(-0,763)= 0,263

G0 = - nE0F;

G0 = -2*0,263*96500= - 50,76 кДж.

Вывод: Познакомились с процессом коррозии с водородной деполяризацией. Рассчитали термодинамическую вероятность процесса коррозии с водородной деполяризацией.

Опыт 2. Электрохимическая коррозия с кислородной деполяризацией.

Ход работы:

В 2 стаканчика налить по 50 мл 2M раствора Na2SO4. Раствор в одном из стаканчиков прокипятить. Прилить в оба раствора по 1 мл раствора K3[Fe(CN)6] (красная кровяная соль). Две стальные пластинки очистить наждачной бумагой, ополоснуть водой, поместить в стаканчики с растворами. Добавить по 3-4 капли фенолфталеина.

Наблюдения:

не кипятили  кипятили

 Механизм процесса:

φ0(Fe2+/Fe) = -0,447 В

φ0(O2/OH-) = 1,23 – 0,059рН=1,23-0,59=0,64 В

Катодом и анодом является – Fe.

Перенапряжение кислорода на катоде: η O2(Fe) = 0,6 В.

pH = 7.

Реакция на аноде (А):

Реакция на катоде (К): O2 +2H2O + 4e- → 4OH-.

Уравнения реакций:

1) 3Fe2++2 K3[Fe(CN)6] Fe3[Fe(CN)6]2↓ + 6K+ ;   

 

 (турнбуллевая синь)

2) Наличие в растворе ионов OH- обуславливает pH> 7, следовательно, фенолфталеиновый в щелочной среде становится малиновым.

φ0 (катод) = φ0 (окислитель) = φ0(O2/OH-) η O2(Fe) =0,64-0,6=0,04 В

E0 = φ0 (окислитель) - φ0 (восстановитель);

E0 = 0,04-(-0,447)=0,451 В

G0 = - nE0F;

G0 = -4*0,451*96500= -174 кДж

Вывод: . Познакомились с процессом коррозии с кислородной деполяризацией. Рассчитали термодинамическую вероятность процесса коррозии с кислородной деполяризацией.


 

А также другие работы, которые могут Вас заинтересовать

19858. Принцип действия растрового электронного микроскопа. Схема РЭМ. Понятие увеличения в РЭМ 137.5 KB
  Лекция 23 Принцип действия растрового электронного микроскопа. Схема РЭМ. Понятие увеличения в РЭМ. Детектор электронов. Растровый электронный микроскоп РЭМ является одним из наиболее распространенных аналитических приборов используемых как в исследовательских ла
19859. Понятие контраста в растровом электронном микроскопе. Определение предельного разрешения РЭМ. Формирование топографического контраста в РЭМ 553 KB
  Лекция 24 Понятие контраста в растровом электронном микроскопе. Определение предельного разрешения РЭМ. Формирование топографического контраста в РЭМ. Для того чтобы на экране ЭЛТ можно было наблюдать картину отображения образца необходимо чтобы интенсивность свеч
19860. Физические основы рентгеновского микроанализа. Количественный рентгеновский микроанализ с использованием метода трех поправок 604 KB
  Лекция 25 Физические основы рентгеновского микроанализа. Количественный рентгеновский микроанализ с использованием метода трех поправок. Как было отмечено ранее при взаимодействии электронного пучка с образцом генерируется характеристическое рентгеновское излуче...
19861. Физические основы метода Оже-электронной спектроскопии. Необходимое оборудование. Модуляционная методика в Оже-электронной спектроскопии 189 KB
  Лекция 26 Физические основы метода Ожеэлектронной спектроскопии. Необходимое оборудование. Модуляционная методика в Ожеэлектронной спектроскопии. В прошлом семестре был подробно рассмотрен процесс Ожеэлектронной эмиссии. Кратко напомним схему образования Ожеэле
19862. Проведение количественного анализа в Оже-спектроскопии методом внешних эталонов и методом коэффициентов элементной чувствительности 255.5 KB
  Лекция 27 Проведение количественного анализа в Ожеспектроскопии методом внешних эталонов и методом коэффициентов элементной чувствительности. Растровая Ожеэлектронная спектроскопия. Метод ОЭС позволяет проводить как качественный так и количественный элементный
19863. Физические основы метода вторичной ионной масс-спектрометрии (ВИМС). Аппаратура, необходимая для реализации метода ВИМС 115 KB
  Лекция 28 Физические основы метода вторичной ионной массспектрометрии ВИМС. Аппаратура необходимая для реализации метода ВИМС. Возможности метода ВИМС. Массспектрометрический анализ нейтральных распыленных частиц. Метод вторичной ионной массспектрометрии ВИМС ...
19864. Метод резерфордовского обратного рассеяния (РОР). Форма спектра обратнорассеянных ионов. Аппаратура, необходимая для реализации метода РОР 194 KB
  Лекция 29 Метод резерфордовского обратного рассеяния РОР. Форма спектра обратнорассеянных ионов. Аппаратура необходимая для реализации метода РОР. Первая работа посвященная анализу образца с помощью обратнорассеянных ионов появилась в 1968 г. В основе метода лежит м
19865. Определение стехиометрии образца методом РОР. Разрешение метода по глубине. Определение толщины пленки методом РОР 157 KB
  Лекция 30 Определение стехиометрии образца методом РОР. Разрешение метода по глубине. Определение толщины пленки методом РОР. С помощью метода Резерфордовского обратного рассеяния можно определить стехиометрический состав однородного образца не прибегая к использо
19866. Определение элементного состава образца методом PIXE (Proton Induced X-ray Emission) 85.5 KB
  Лекция 31 Определение элементного состава образца методом PIXE Proton Induced Xray Emission. Метод PIXE русский аналог РФА рентгеновский флуоресцентный анализ является малораспространенным как следует из его названия основан на возбуждении ускоренными протонами линий характе...