3528

Исследование движения тел в диссипативой средде

Лабораторная работа

Физика

Исследование движения тел в диссипативой средде Цель работы Исследование процессов рассеяния энергии в диссипативной системе на примере измерения скорости движения тела в жидкой среде, определение основных характеристик диссипативной системы. ПРИБОР...

Русский

2012-11-03

57.5 KB

64 чел.

Исследование движения тел в диссипативой средде

Цель работы

Исследование процессов рассеяния энергии в диссипативной системе на примере измерения скорости движения тела в жидкой среде, определение основных характеристик диссипативной системы.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

Цилиндрический сосуд со шкалой, содержащий исследуемую вязкую жидкость; пять свинцовых шариков, имеющих плотность большую, чем плотность жидкости; секундомер; масштабная линейка; весы.

 

ЭСКИЗ ИЛИ СХЕМА УСТАНОВКИ (с кратким описанием работы макета)

В работе используется цилиндрический сосуд (рис. 1), на котором нанесены метки. Измеряя расстояние между метками и время падения шарика в жидкости, можно определить скорость его падения. Шарик опускается в жидкость через впускной патрубок, расположенный в крышке цилиндра.

 

 

 

 

 

 

 

ИССЛЕДУЕМЫЕ ЗАКОНОМЕРНОСТИ

 

Сила сопротивления движению в вязкой среде. В вязкой среде на движущееся тело действует сила сопротивления, направленная против скорости тела. При небольших скоростях (существенно меньших скорости распространения звуковых волн в данной среде) эта сила обусловлена вязким трением между слоями среды и пропорциональна скорости тела

,

где v – скорость движения тела, r – коэффициент сопротивления, зависящий от формы, размеров тела и от вязкости среды h.

Для шара радиуса R коэффициент сопротивления определяется формулой Стокса

.

При движении тела в вязкой среде происходит рассеяние (диссипация) его кинетической энергии. Слои жидкости, находящиеся на разном расстоянии от движущегося тела имеют различную скорость. Слой жидкости, находящийся в непосредственной близости от поверхности движущегося тела, имеет ту же скорость, что и тело, по мере удаления скорость частиц жидкости уменьшается. В этом состоит явление вязкого трения, в результате которого энергия тела передается слоям окружающей среды в направлении, перпендикулярном движению тела.

Движение тела в диссипативной среде. Движение тела массой m под действием постоянной силы F при наличии сопротивления среды описывается следующим уравнением:

.

В данной работе тело движется под действием силы тяжести, уменьшенной в результате действия выталкивающей силы Архимеда, т.е.

,

где rс и rт – плотности среды и тела, соответственно. Таким образом, уравнение движения преобразуется к виду

.

Если начальная скорость движения тела равна нулю, то равна нулю и сила сопротивления, поэтому начальное ускорение

.

С увеличением скорости сила сопротивления возрастает, ускорение уменьшается, обращаясь в нуль при равенстве движущей силы и силы сопротивления. Дальше тело движется равномерно с установившейся скоростью v¥ (теоретически для достижения установившейся скорости требуется бесконечно большое время)

.

Аналитическое решение уравнения движения при нулевой начальной скорости выражается формулой

,

где t - время релаксации. Соответствующая зависимость скорости движения тела в диссипативной среде от времени представлена на рис. 2.

Рис. 2

 

Время релаксации t можно определить различным образом. Например, из графика на рис. 2 следует, что если бы тело двигалось все время равноускоренно с ускорением, равным начальному ускорению a0 , то оно достигло бы установившейся скорости за время, равное t.

Превращение энергии в диссипативной системе.

Полная энергия движущегося тела в произвольный момент времени определяется выражением

,

где h – высота расположения тела над дном сосуда. В установившемся режиме

.

Передача энергии жидкой среде, окружающей движущееся тело, происходит за счет совершения работы против сил трения. Энергия при этом превращается в тепло, идет процесс диссипации энергии. Скорость диссипации энергии (мощность потерь) в установившемся режиме

.

Учитывая, что m / t = r, получим уравнение баланса энергии на участке установившегося движения

.

 

Указания по выполнению наблюдений

  1.  Масштабной линейкой измерить расстояние Dh между средней и нижней меткой на боковой поверхности сосуда.
  2.  На аналитических весах взвесить поочередно 5 шариков, и записать массу каждого шарика в таблицу Протокола наблюдений.
  3.  Поочередно опуская шарики в жидкость через впускной патрубок, измерить секундомером время прохождения каждым шариком расстояния между двумя метками на боковой поверхности сосуда. Результаты записать в таблицу Протокола наблюдений.
  4.  На панели макета установки указаны значения плотности жидкости в сосуде и плотности материала шариков. Эти данные также следует записать в Протокол наблюдений.

 

Задание на подготовку к работе

  1.  Выполните индивидуальное домашнее задание №2
  2.  Изучите описание лабораторной работы.
  3.  Выведите формулу для определения коэффициента сопротивления r , полагая что известно значение установившейся скорости v¥. Выведите также формулу погрешности Dr.
  4.  Выведите формулу для определения коэффициента вязкости h на основе рассчитанного коэффициент сопротивления r, массы и плотности материала шариков.
  5.  Подготовьте бланк Протокола наблюдений, основываясь на содержании раздела «Указания по проведению наблюдений». Разработайте и занесите в бланк Протокола наблюдений таблицу результатов наблюдений.

 

Задание по обработке результатов

  1.  По данным таблицы результатов наблюдений определите значения установившихся скоростей шариков. Рассчитайте значения коэффициентов сопротивления r для каждого опыта и инструментальную погрешность полученных результатов.
  2.  Определите коэффициент вязкости h исследуемой жидкости. Найдите его среднее значения и погрешность полученного результата.
  3.  Промежуточные вычисления и окончательные результаты, полученные в п. 1, 2 сведите в таблицу.
  4.  Для одного из опытов определите мощность рассеяния и проверьте баланс энергии на участке установившегося движения.
  5.  Также для одного из опытов найдите время релаксации t, постройте графики скорости и ускорения от времени.
  6.  Результаты, полученные в п. 3 и 4, следует округлить, основываясь на значениях погрешностей величин, рассчитанных ранее.


 

А также другие работы, которые могут Вас заинтересовать

42730. ЛИНЕЙНЫЕ МЕТОДЫ КЛАССИФИКАЦИИ 178.5 KB
  В данной лабораторной работе мы будем рассматривать способ построения линейного решающего правила на основе обучения одного формального нейрона. Модель нейрона Нейрон представляет собой формализованную модель биологического нейрона.4 Простейший нейрон В общем виде функционирование нейрона подчиняется следующему выражению: где: вектор входного сигнала весовой вектор T порог f функция активации. Весовой вектор порог и функция активации определяют поведение нейрона то как он реагирует на входные данные.
42731. РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ ДЛЯ РАСЧЕТА ПОТРЕБНОСТИ В КОРМАХ НА ПАСТБИЩНЫЙ ПЕРИОД 70 KB
  Исходя из наличия поголовья сельскохозяйственных животных структуры и организации стада структуры суточных рационов и норм кормления рассчитать потребность в кормах по ферме на пастбищный период в кормовых единицах и физическом весе по видам корма и половозрастным группам. Промежуточными данными должны быть: Поголовье по половозрастным группам; Потребность в кормах в сутки на одну голову кормовые единицы и физический...
42732. Работа с файлами в С# 288.5 KB
  Потоки в С Под файлом обычно подразумевается именованная информация на внешнем носителе например на жестком или гибком магнитном диске. Логически файл можно представить как конечное количество последовательных байтов поэтому такие устройства как дисплей клавиатура и принтер также можно рассматривать как частные случаи файлов.
42733. Простейшие классы 160 KB
  Методы и свойства должны обеспечивать непротиворечивый полный минимальный и удобный интерфейс класса. В программе должна выполняться проверка всех разработанных элементов класса.1 Классы в C Работу с классами рассмотрим на следующем примере. Создайте новое консольное приложение для C и введите следующий текст: using System; nmespce test { Начало класса clss Worker { public int ge=0; public string nme; } Конец класса clss Test { [STThred]...
42734. ВЗАИМОДЕЙСТВИЕ С УНАСЛЕДОВАННЫМ ПРОГРАММНЫМ КОДОМ 167.37 KB
  Очень часто сборки .NET должны успешно взаимодействовать со сложными приложениями, где значительную часть кода составляют классические СОМ- серверы. Код модулей СОМ является двоичным и платформенно-зависимым (в отличие от полностью платформенно-независимого кода IL). СОМ-серверы работают с уникальным набором типов данных (BSTR, VARIANT и т. п.), содержание которых в разных языках программирования сильно различается.
42735. Разработка и использование ActiveX ФОРМ 552 KB
  Шифр скитала многократно совершенствовался в последующие времена Шифрующие таблицы С начала эпохи Возрождения конец XIV столетия начала возрождаться и криптография. В разработанных шифрах перестановки того времени применяются шифрующие таблицы которые в сущности задают правила перестановки букв в сообщении В качестве ключа в шифрующих таблицах используются' размер таблицы; слово или фраза задающие перестановку особенности структуры таблицы. Одним из самых примитивных табличных шифров перестановки является простая перестановка для...
42736. Исследование трехфазного двигателя и однофазном и конденсаторном режимах 61 KB
  Ход работы: Теоретический материал: а Принцип работы однофазного АД основан на б Пусковой момент однофазного АД равен в Фаза смещающий элемент это аппарат предназначенный для г Пусковая емкость предназначена Рабочая емкость предназначена для д Рабочие свойства АД лучше в однофазном или конденсаторном режиме Ознакомиться с конструкцией трехфазного АД и записать паспортные данные. А...
42737. ИССЛЕДОВАНИЕ АНАЛОГОВЫХ КОМПАРАТОРОВ 76.5 KB
  При этом ОУ работает преимущественно в области положительного или отрицательного ограничения выходного напряжения проходя область усилительного режима только вблизи порога. Использование разных входов ОУ для подачи входного сигнала позволяет реализовать фиксацию уровня входного напряжения положительным или отрицательным перепадом напряжения на выходе компаратора.4 приведены схемы детекторов положительного и отрицательного уровней входного напряжения. Пороговый уровень входного напряжения в этих схемах задается величиной напряжения смещения...