3529

Исследование свободных колебаний пружинного маятника

Лабораторная работа

Физика

Исследование свободных колебаний пружинного маятника Цель работы: исследование свободных колебаний пружинного маятника. МЕТОД ИЗМЕРЕНИЙ: прямые измерения числа колебаний за определенный промежуток времени, а также измерение амплитуды колебания позво...

Русский

2012-11-03

36 KB

10 чел.

Исследование свободных колебаний пружинного маятника

Цель работы: исследование свободных колебаний пружинного маятника.

МЕТОД ИЗМЕРЕНИЙ: прямые измерения числа колебаний за определенный промежуток времени, а также измерение амплитуды колебания позволяют определить основные характеристики свободных колебаний.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: математический маятник, секундомер, грузы, масштабная линейка.

.Результаты измерений

опыта

m

кг

li

м

ki

н/м

k=

н/м

t

c

N

Ti=

c

ki=

н/м

Ti=2

c

A0i

м

Ei=

Дж

1

0,1

0,02

19,62

19,62

16,6

35

0,47

17.6

0,474

0,03

0,009

2

0,2

0,07

19,62

23,7

35

0,67

17,2

0,677

0,1

0,009

3

0,3

0,12

19,62

27.9

35

0,79

18,6

0,797

0,2

0,004

5.Результаты вычислений:

k1 = =(4*9.87/0,474*0,474)*0,1=17,6

k2 = =(4*9.87/0,677*0,677)*0,2=17,2

k3 = =(4*9.87/0,797*0,797)*0,3=18,6

Вывод: при увеличении массы груза период свободных колебаний увеличивается.


 

А также другие работы, которые могут Вас заинтересовать

30560. Непрерывные функции в Rn . Дифференцируемые функции в Rn .. Необходимые и достаточные условия дифференцируемости функции в точке. Полный дифференциал функции нескольких переменных 60.52 KB
  Дифференцируемые функции в Rn . Необходимые и достаточные условия дифференцируемости функции в точке. Полный дифференциал функции нескольких переменных.
30561. Теорема о дифференцируемости сложной функции. Правила дифференцирования. Производная по направлению. Градиент 65.41 KB
  Требования доктрины информационной безопасности РФ и ее реализация в существующих системах информационной безопасности. Доктрина информационной безопасности Российской Федерации. Понятие и назначение доктрины информационной безопасности. 9 сентября 2000 года президент РФ Владимир Путин утвердил Доктрину информационной безопасности РФ.
30562. Локальный экстремум функции многих переменных. Достаточные условия экстремума 45.86 KB
  ТочкаM0x0;y0 внутренняя точка области D. Если в D присутствует такая окрестность UM0 точки M0 что для всех точек то точка M0 называется точкой локального максимума. А если же для всех точек то точка M0 называется точкой локального минимума функции zxy. поясняется геометрический смысл локального максимума: M0 точка максимума так как на поверхности z =z xy соответствующая ей точка C0 находится выше любой соседней точки C в этом локальность максимума.
30563. Условный экстремум функции многих переменных. Необходимое условие экстремума. Метод множителей Лагранжа 274 KB
  Условный экстремум функции многих переменных. Пусть требуется найти максимумы и минимумы функции f х у при условии что х и у связаны уравнением х у = 0. Подберём так чтобы для значений х и у соответствующи экстремуму функции f х у вторая скобка в равенстве 5 обратилась в нуль метод Лагранжа. Метод неопределенных множителей Лагранжа Пусть функции fx1 x2 xn и Fix1 x2 xn i = 12 k дифференцируемы в некоторой области D с Rn .
30564. Сходимость числового ряда. Гармонический ряд. Общий член и остаток ряда. Признаки сходимости рядов 133.5 KB
  Гармонический ряд. Общий член и остаток ряда. Признаки сходимости рядов Определения.
30566. Функциональные ряды. Основные понятия и определения. Равномерная сходимость функциональных рядов. Признак Вейерштрасса. Свойства равномерно сходящихся рядов 31.56 KB
  Функциональная последовательность равномерная сходимость и свойства Определение: равномерно сходящийся к fx на X если выполняется неравенство Замечание: если последовательность функции равномерно сходится к функции то она и просто сходится к ней. О равномерной сходимости функции: для того чтобы равномерно сходилась на X к fx необходимо и достаточно чтобы выполнялось неравенство Равномерно сходящиеся функциональные ряды Определение: равномерно сходящийся на X если последовательность его частичных сумм равномерно...
30567. Основная тригонометрическая система функций. Ряды Фурье по ортогональным системам функций. Тригонометрические ряды Фурье. Признаки сходимости тригонометрических рядов Фурье. Тригонометрические ряды Фурье для четных и нечетных функций 142.57 KB
  Тригонометрический ряд 1 называется рядом Фурье для функции на отрезке а коэффициенты вычисляемые по формулам 2 3 4 называются коэффициентами Фурье. кусочномонотонна тогда ряд Фурье функции определяемый формулами 1 2 3 4 сходится почти всюду кроме точек разрыва к fx. Для четной функции Для нечетной функции Выступление Пусть функция определена на ℝ. Наименьшее из таких чисел Т называют периодом функции.
30568. Свойства функции распределения 51.52 KB
  Свойства функции распределения : Свойство 1: 0 ≤ Fx ≤ 1. Свойство2: Fx2 ≥ Fx1 если x2 x1. Свойство3: 1Fx = 0 при x ≤ ; 2 Fx = 1 при x ≥ b. Свойство4: Fx0 = Fx0 0.