353

Построить фильтр низких и высоких частот

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для создания полосового или режекторного типа фильтров можно каскадно соединить ФНЧ и ФВЧ. Но такими типами, зачастую, не пользуются из-за плохих характеристик. Тут есть несколько вариаций. Наверное, самый простой — это фильтр Вина-Робинсона.

Русский

2012-12-07

567 KB

91 чел.

 Экспериментальные исследования лабораторной работы

 Определение статических параметров

Проводимые измерения:

  1.  Измерение входных токов операционного усилителя (ОУ).
  2.  Оценка величин среднего входного тока и разности входных токов активного фильтра (АФ).
  3.  Измерение частоты среза АФ,
  4.  Измерение амплитудно-частотную характеристику АФ.
  5.  Вычисление выходного сопротивления ОУ.

Исследования будем проводить на следующих фильтрах с различной полосой пропускания:

  1.  Фильтрах нижних частот (ФНЧ) — пропуская сигнал, который ниже определенной частоты (ее еще именуют частотой среза).
  2.  Фильтрах высоких частот (ФВЧ) — пропуская сигнал выше частоты среза.
  3.  Полосовых фильтрах — пропуская только определенный диапазон частот.
  4.  Режекторных фильтра — задерживаая только определенный диапазон частот

Используемые приборы и элементы

Вольтметр, амперметр, осциллограф, источник напряжения, ОУ ТL071, резисторы, конденсаторы.

А самый простой — это «табличный» метод показаны в таблице.


Т а б л и ц а 1 – расчет АФ для ФНЧ


 Задание 1. Построить фильтр низких частот второго порядка с частотой среза 150 Гц по характеристике Баттерворда.
Имея фильтр n-ного четного порядка, это означает, что в нем будет n/2 ОУ. В данном задании — один указанном на рисунке 1.

Рисунок 1 – Схема активного ФНЧ

Для данного типа расчета берется во внимание, что R1 = R2, C1 = C2.
Смотрим в табличку. Видим, что К = 1.586. Это нам пригодится чуть позже.
Для фильтра низких частот справедливо:

,

где fc  частота среза.

Сделав подсчет, получаем RC=0.0011. Теперь займемся подбором элементов. С ОУ определились — «идеальный» в количестве 1 шт. Из предыдущего равенства можно предположить, что нам не принципиально, какой элемент выбирать «первым». Начнем с резистора. Лучше всего, чтоб его значение сопротивления были в пределах от 2кОм до 500кОм. На глаз, пусть он будет 11 кОм. Соответственно, емкость конденсатора станет равной 0.1 мкФ. Для резисторов обратной связи значение R берем произвольно. Я обычно беру 10 кОм. Тогда, для верхнего значение К возьмем из таблицы. Следовательно, нижний будет иметь значение сопротивления R = 10 кОм, а верхний 5.8 кОм.

Задание 2ю Построить фильтр высоких частот четвертого порядка с частотой среза 800 Гц по характеристике Бесселя.
Раз фильтр четвертого порядка, то в схеме будет два ОУ показанной на рисунке 2. Тут все совсем не сложно. Каскадно включаем 2 схемы ФВЧ.

Рисунок 2 – Схема активного ФВЧ четвертого порядка

Как видим, для фильтра четвертого порядка у нас аж 2 значения К. Логично, что первое предназначается для первого каскада, второе — для второго. Значения К равны 1.432 и 1.606 соответсвенно. Таблица была для фильтров низких частот. Для расчета ФВЧ надо кое-что изменить. Коэффициенты К остаются такими же в любом случае. Для характеристик Бесселя и Чебышева изменяется параметр fH - нормирующая частота. Она будет равна 1/ fH.

Для фильтров Чебышева и Бесселя как для нижних частот, так и для высоких справедлива одна и та же формула

Учтите, что для каждого отдельного каскада придется считать отдельно.
Для первого каскада

Пусть С = 0.01 мкФ, тогда R = 28.5 кОм. Резисторы обратной связи: нижний, как обычно, 10 кОм; верхний — 840 Ом.

Для второго каскада

Емкость конденсатора оставим неизменной. Раз С = 0.01 мкФ, то R = 32 кОм. 

Рисунок 2 – АЧХ активного ФВЧ четвертого порядка

Для создания полосового или режекторного типа фильтров можно каскадно соединить ФНЧ и ФВЧ. Но такими типами, зачастую, не пользуются из-за плохих характеристик.
Для полосовых и режекторных фильтров также можно использовать «табличный метод», но тут немного другие характеристики.
Приведу сразу табличку и немного ее объясню. Чтоб сильно не растягивать — значения взяты сразу для полосового фильтра четвертого порядка.

Т а б л и ц а 1 – расчет АФ для полосового фильтра четвертого порядка

a1 и b1 — расчетные коэффициенты. Q — добротность. Это новый параметр. Чем значение добротности больше — тем более «резким» будет спад. Δf — диапазон пропускаемых частот, причем выборка идет на уровне -3 дБ. Коэффициент α — еще один расчетный коэффициент. Его можно найти используя формулы, которые довольно легко найти в интернете. 

Задание # 3. Построить полосовой фильтр четвертого порядка по характеристике Баттерворда с центральной частотой 10 кГц, шириной пропускаемых частот 1 кГц и коэффициентом усиления в точке центральной частоты равным 1.

Фильтр четвертого порядка. Значит два ОУ. Типовую схему приведу сразу с расчетными элементами.

Рисунок 3 – Полосовой фильтр четвертого прядка

Для первого фильтра центральная частота определяется как

Для второго фильтра

Конкретно в нашем случае, опять же из таблицы, определяем, что добротность Q = 10. Рассчитываем добротность для фильтра. Причем, стоит отметить, что добротность обоих будет равна

Поправка усиления для области центральной частоты:

Финальная стадия — расчет компонентов.

Пусть конденсатор будет равен 10 нФ. Тогда, для первого фильтра

В том же порядке, что и (1) находим R22 = R5 = 43.5 кОм, R12 = R4 = 15.4 кОм, R32 = R6 = 54.2 Ом. Только учтите, что для второго фильтра используем  fc2..

Ну и на последок, АЧХ.

Следующая остановка — полосно-заграждающие фильтры или режекторные.
Тут есть несколько вариаций. Наверное, самый простой — это фильтр Вина-Робинсона (англ. Active Wien-Robinson Filter). Типовая схема — тоже фильтр 4го порядка.

Наше последнее задание.

Задание # 4. Построить режекторный фильтр с центральной частотой 90 Гц, добротностью Q = 2 и коэффициентом усиления в полосе пропускания равным 1.

Прежде всего, произвольно выбираем емкость конденсатора. Допустим, С = 100 нФ.
Определим значение R6 = R7 = R

Логично, что «играясь» с этими резисторами, мы можем изменять диапазон частот нашего фильтра.
Далее, нам надо определить промежуточные коэффициенты. Находим их через добротность.

α=3Q-1=6-1=5

β=-A03Q=-6

Выберем произвольно резистор R2. В данном конкретном случае, лучше всего, чтобы он равнялся 30 кОм.
Теперь можем найти резисторы, которые будут регулировать коэффициент усиления в полосе пропускания.

И на последок, необходимо произвольно выбрать R5 = 2R1. У меня в схеме эти резисторы имеют значение 40 кОм и 20 кОм соответственно. 

Собственно, АЧХ:


 

А также другие работы, которые могут Вас заинтересовать

34336. Области применения серной кислоты и технико-экономические показатели ее производства 32.5 KB
  Области применения серной кислоты и техникоэкономические показатели ее производства. Производство серной кислоты одной из самых сильных и дешевых кислот имеет важное народнохозяйственное значение обусловленное ее широким применением в различных отраслях промышленности. Контактным способом получают около 90 от общего объема производства кислоты так как при этом обеспечивается высокая концентрация и чистота продукта. В качестве сырья для производства серной кислоты применяются элементарная сера и серный колчедан; кроме того широко...
34337. Производство аммиака и азотной кислоты 35 KB
  Производство аммиака и азотной кислоты В соответствии с принципом ЛеШателье при повышении давления и уменьшении температуры равновесие этой реакции смещается в сторону образования аммиака. Основным агрегатом установки для производства аммиака служит колонна синтеза Производство азотной кислоты: Азотная кислота одна из важнейших минеральных кислот. Такая смесь кипит без изменения концентрации кислоты. Современное производство азотной кислоты основано на процессах окисления аммиака и последующей переработке оксидов азота.
34338. Пр-во азотных мин.удобрений и их классификация 30.5 KB
  Прво азотных мин. Большинство азотных удобрений получают нейтрализацией кислот щёлочами.глубину потери – 225; поглощается по типу обменной адсорбции Карбамид мочевина 2NH3CO2=NH2COONH4= =CONH22H2O 2000C; 20 МПа 466 Лучшее удобрение для внекорневой подкормки растений Аммиачная селитра NH3HNO3=NH4NO3Q 3435 Закисляет почву гигроскопична слеживается взрывоопасна Сульфат аммония 2NH3H2SO4=NH42SO4Q 20521 Эффективен под орошаемые культуры рис хлопчатник Среди азотных удобрений самая большая массовая доля азота в...
34339. Фосфорная кислота 24 KB
  Н3РО4 безводная фосф кислота представляет собой бесцветное вещество плавящиеся при температуре 42. Однако на практике имеют дело с жидкой Н3РО4 что объясняется склонностью Н3РО4 к переохлаждению при темп 121С При небольшом переохлаждении она представляет собой густую сиропоподобную жидкость плотностью 188 г см^3 При нагревании водные растворы ортофосф кислоты теряют воду образуя пирафосфорная а затем метофосф кислота. Безводная ортофосф кислота очень агрессивна.
34340. Особенности производства калийных удобрений 29 KB
  Выделение хлористого калия из сильвинитовых руд может быть основано на различии механических физических или химических свойств составляющих компонентов. Переработка сильвинитов для получения хлористого калия по галургическому методу основана на физикохимических особенностях системы NCl КС1 Н2О. Эта особенность системы NCl КС1 Н2О используется для производства хлористого калия из сильвинитов по галургическому методу. Рационально построенная схема производства хлористого калия из сильвинита должна учитывать следующие технологические...
34341. Фосфорные минеральные удобрения 24 KB
  Фосфорные минеральные удобрения Фосф. К фосфорным удобрениям относятся простой и двойной суперфосфат принадлежащие к классу водорастворимых удобрений и комплексные удобрения. Фосфор вносят в почву и с помощью сложного удобрения аммофоса. Фосфорные удобрения получают как физическими так и химическими методами.
34342. Технология производства и экономическая эффективность выпуска и использования пластмасс 30.5 KB
  Технология производства и экономическая эффективность выпуска и использования пластмасс. Изделия из пластмасс наиболее часто получают методами горячего прессования литья под давлением экструзии выдувания обработки резанием. Прессование применяется главным образом для переработки термореактивных пластмасс. термореактивная смола переводится в плавкое состояние при котором и происходит вторая стадия процесса формование; затем происходит реакция поликонденсации и пластмасса отверждается становясь неплавкой и нерастворимой.
34343. Сырьевые материалы и основы производства резины 28 KB
  Резину изготавливают с помощью вулканизации. В результате вулканизации каучук превращается в прочную эластичную упругую массу – резину. В результате вулканизации молекулы каучука сливаются между собой дисульфидными мостиками в одну трехмерную макромолекулу. Большую роль играют так называемые ускорители вулканизации – органические соединения содержащие серу или азот меркаптобензтиазол дифенилгуанидин и др.
34344. Основные свойства и назначения природных и искусственных строительных материалов 21 KB
  Основные свойства и назначения природных и искусственных строительных материалов. Основные свойства строительных материалов можно разделить на несколько групп. К 1ой группе относятся физические свойства материалов: плотность и пористость. Ко 2й свойства характеризующие устойчивость материала к воздействию воды и низких температур: водопоглощение влажность влагоотдача гигроскопичность водопроницаемость водо морозостойкость.