353

Построить фильтр низких и высоких частот

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для создания полосового или режекторного типа фильтров можно каскадно соединить ФНЧ и ФВЧ. Но такими типами, зачастую, не пользуются из-за плохих характеристик. Тут есть несколько вариаций. Наверное, самый простой — это фильтр Вина-Робинсона.

Русский

2012-12-07

567 KB

91 чел.

 Экспериментальные исследования лабораторной работы

 Определение статических параметров

Проводимые измерения:

  1.  Измерение входных токов операционного усилителя (ОУ).
  2.  Оценка величин среднего входного тока и разности входных токов активного фильтра (АФ).
  3.  Измерение частоты среза АФ,
  4.  Измерение амплитудно-частотную характеристику АФ.
  5.  Вычисление выходного сопротивления ОУ.

Исследования будем проводить на следующих фильтрах с различной полосой пропускания:

  1.  Фильтрах нижних частот (ФНЧ) — пропуская сигнал, который ниже определенной частоты (ее еще именуют частотой среза).
  2.  Фильтрах высоких частот (ФВЧ) — пропуская сигнал выше частоты среза.
  3.  Полосовых фильтрах — пропуская только определенный диапазон частот.
  4.  Режекторных фильтра — задерживаая только определенный диапазон частот

Используемые приборы и элементы

Вольтметр, амперметр, осциллограф, источник напряжения, ОУ ТL071, резисторы, конденсаторы.

А самый простой — это «табличный» метод показаны в таблице.


Т а б л и ц а 1 – расчет АФ для ФНЧ


 Задание 1. Построить фильтр низких частот второго порядка с частотой среза 150 Гц по характеристике Баттерворда.
Имея фильтр n-ного четного порядка, это означает, что в нем будет n/2 ОУ. В данном задании — один указанном на рисунке 1.

Рисунок 1 – Схема активного ФНЧ

Для данного типа расчета берется во внимание, что R1 = R2, C1 = C2.
Смотрим в табличку. Видим, что К = 1.586. Это нам пригодится чуть позже.
Для фильтра низких частот справедливо:

,

где fc  частота среза.

Сделав подсчет, получаем RC=0.0011. Теперь займемся подбором элементов. С ОУ определились — «идеальный» в количестве 1 шт. Из предыдущего равенства можно предположить, что нам не принципиально, какой элемент выбирать «первым». Начнем с резистора. Лучше всего, чтоб его значение сопротивления были в пределах от 2кОм до 500кОм. На глаз, пусть он будет 11 кОм. Соответственно, емкость конденсатора станет равной 0.1 мкФ. Для резисторов обратной связи значение R берем произвольно. Я обычно беру 10 кОм. Тогда, для верхнего значение К возьмем из таблицы. Следовательно, нижний будет иметь значение сопротивления R = 10 кОм, а верхний 5.8 кОм.

Задание 2ю Построить фильтр высоких частот четвертого порядка с частотой среза 800 Гц по характеристике Бесселя.
Раз фильтр четвертого порядка, то в схеме будет два ОУ показанной на рисунке 2. Тут все совсем не сложно. Каскадно включаем 2 схемы ФВЧ.

Рисунок 2 – Схема активного ФВЧ четвертого порядка

Как видим, для фильтра четвертого порядка у нас аж 2 значения К. Логично, что первое предназначается для первого каскада, второе — для второго. Значения К равны 1.432 и 1.606 соответсвенно. Таблица была для фильтров низких частот. Для расчета ФВЧ надо кое-что изменить. Коэффициенты К остаются такими же в любом случае. Для характеристик Бесселя и Чебышева изменяется параметр fH - нормирующая частота. Она будет равна 1/ fH.

Для фильтров Чебышева и Бесселя как для нижних частот, так и для высоких справедлива одна и та же формула

Учтите, что для каждого отдельного каскада придется считать отдельно.
Для первого каскада

Пусть С = 0.01 мкФ, тогда R = 28.5 кОм. Резисторы обратной связи: нижний, как обычно, 10 кОм; верхний — 840 Ом.

Для второго каскада

Емкость конденсатора оставим неизменной. Раз С = 0.01 мкФ, то R = 32 кОм. 

Рисунок 2 – АЧХ активного ФВЧ четвертого порядка

Для создания полосового или режекторного типа фильтров можно каскадно соединить ФНЧ и ФВЧ. Но такими типами, зачастую, не пользуются из-за плохих характеристик.
Для полосовых и режекторных фильтров также можно использовать «табличный метод», но тут немного другие характеристики.
Приведу сразу табличку и немного ее объясню. Чтоб сильно не растягивать — значения взяты сразу для полосового фильтра четвертого порядка.

Т а б л и ц а 1 – расчет АФ для полосового фильтра четвертого порядка

a1 и b1 — расчетные коэффициенты. Q — добротность. Это новый параметр. Чем значение добротности больше — тем более «резким» будет спад. Δf — диапазон пропускаемых частот, причем выборка идет на уровне -3 дБ. Коэффициент α — еще один расчетный коэффициент. Его можно найти используя формулы, которые довольно легко найти в интернете. 

Задание # 3. Построить полосовой фильтр четвертого порядка по характеристике Баттерворда с центральной частотой 10 кГц, шириной пропускаемых частот 1 кГц и коэффициентом усиления в точке центральной частоты равным 1.

Фильтр четвертого порядка. Значит два ОУ. Типовую схему приведу сразу с расчетными элементами.

Рисунок 3 – Полосовой фильтр четвертого прядка

Для первого фильтра центральная частота определяется как

Для второго фильтра

Конкретно в нашем случае, опять же из таблицы, определяем, что добротность Q = 10. Рассчитываем добротность для фильтра. Причем, стоит отметить, что добротность обоих будет равна

Поправка усиления для области центральной частоты:

Финальная стадия — расчет компонентов.

Пусть конденсатор будет равен 10 нФ. Тогда, для первого фильтра

В том же порядке, что и (1) находим R22 = R5 = 43.5 кОм, R12 = R4 = 15.4 кОм, R32 = R6 = 54.2 Ом. Только учтите, что для второго фильтра используем  fc2..

Ну и на последок, АЧХ.

Следующая остановка — полосно-заграждающие фильтры или режекторные.
Тут есть несколько вариаций. Наверное, самый простой — это фильтр Вина-Робинсона (англ. Active Wien-Robinson Filter). Типовая схема — тоже фильтр 4го порядка.

Наше последнее задание.

Задание # 4. Построить режекторный фильтр с центральной частотой 90 Гц, добротностью Q = 2 и коэффициентом усиления в полосе пропускания равным 1.

Прежде всего, произвольно выбираем емкость конденсатора. Допустим, С = 100 нФ.
Определим значение R6 = R7 = R

Логично, что «играясь» с этими резисторами, мы можем изменять диапазон частот нашего фильтра.
Далее, нам надо определить промежуточные коэффициенты. Находим их через добротность.

α=3Q-1=6-1=5

β=-A03Q=-6

Выберем произвольно резистор R2. В данном конкретном случае, лучше всего, чтобы он равнялся 30 кОм.
Теперь можем найти резисторы, которые будут регулировать коэффициент усиления в полосе пропускания.

И на последок, необходимо произвольно выбрать R5 = 2R1. У меня в схеме эти резисторы имеют значение 40 кОм и 20 кОм соответственно. 

Собственно, АЧХ:


 

А также другие работы, которые могут Вас заинтересовать

79670. Higher education in the USA 16.29 KB
  Most of the students bout 80 per cent study t public institutions of higher eduction becuse tuition fees here re much lower. In the US higher eduction is period of dvnced study following the completion of secondry eduction.
79671. Pollution 16.58 KB
  In this world round us there re two things tht do not belong to ny one country: ir nd ocen wter. Mny ships sil in the ocen wter fishing ships some ships crrying people some crrying oil. In cse of ship’s losing some of the oil in the wter the wter becomes dirty. we must lern to protect the wter the ir nd the erth from pollution.
79672. My working day 15.6 KB
  I am usually get up at 6 o’clock. I go to the bathroom, wash my face and clean my teeth. At half past 6 I have breakfast.
79673. Higher education in Great Britain 16.91 KB
  In lecture the student is one of lrge number of students. In seminr he rises problem nd discusses them with his fellow students. If students pss their finl exm t the end of threeyer course they get their first degree. Students with first degree become Bchelors of rts or Sciene nd cn put B.
79674. My university 18.07 KB
  I`d like to tell you about my university. The Krasnodar Polytechnic Institute was founded in 1930. It is one of the oldest higher educational institutions in Krasnodar.
79675. Great Britain 18.08 KB
  Winters in Gret Britin re not cold nd summers re not hot. Gret Britin is highly developed industril country. Gret Britin is country with old culturl trditions nd customs.
79676. Alfred Nobel 19.57 KB
  Most of the fmily returned to Sweden in 1859 where lfred rejoined them in 1863 beginning his own study of explosions in his fther’s lbortory.
79677. Формирование организационной культуры в Челябинской епархии 1.89 MB
  Организационная культура представляет собой опыт коллективной деятельности. А именно: опыт организации коллективной деятельности, опыт управления ею. Этот опыт может быть зафиксирован как в писаных документах, правилах, регламентах, уставах, так и в неписаных обычаях, нормах, привычках, устных преданиях и других формах регулирования поведения людей.
79678. Система нематериального стимулирования персонала для повышения эффективности работы организации 203 KB
  Сравнительный анализ российского и зарубежных опытов к мотивации персонала. Корпоративные мотиваторы. Потребности сотрудников и персональная мотивация. Внедрение поддержка и коррекция системы мотивации в компании...