3531

Математический маятник

Контрольная

Физика

Математический маятник. Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести. Составляющая веса, перпендикуля...

Русский

2012-11-03

52.48 KB

56 чел.

Математический маятник.

Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести. Составляющая веса, перпендикулярная нити, равна

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения:

Момент силы относительно точки О: M = FL , и момент инерции: Момент инерции J в данном случае. Угловое ускорение:  

С учетом этих величин имеем: или Его решение ,где круговая или циклическая частота  и период колебаний

Как видим, период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний.

Физический маятник.

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной. При небольших углах отклонения α физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

. Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид:

круговая или циклическая частота  и период колебаний. 

Решение этого уравнения

Определим длину l математического маятника, при которой период его колебаний равен периоду колебаний физического маятника, т.е. или. Из этого соотношения определяем

Данная формула определяет приведенную длину физического маятника, т.е. длину такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Колебательные движения реальной колебательной системы всегда сопровождаются силами трения и сопротивления, которые приводят к уменьшению амплитуды колебаний. Если энергия, потерянная системой, не восполняется за счет внешних сил, то колебания системы называются затухающими, свободными или собственными.

Дифференциальное уравнение свободных затухающих колебаний линейной системы определяется как (1)

где s – колеблющаяся величина, которая описывает тот или иной физический процесс, δ = const — коэффициент затухания, ω0 - циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы. решение уравнения (1) в случае малых затуханий (ω0^2 >> δ^2 ) где — амплитуда затухающих колебаний, а А0 — начальная амплитуда. Промежуток времени Т = 1/ δ, в течение которого амплитуда затухающих колебаний становится меньше в е раз, называется временем релаксации. 

Если затухание мало, то можно условно использовать понятие периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины и будет равен Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, которые отличаются на период, то отношение называется декрементом затухания, а его логарифм — логарифмическим декрементом затухания; Ne — число колебаний, которые совершаются за время уменьшения амплитуды в е раз. Логарифмический декремент затухания является постоянной величиной для данной колебательной системы. Для характеристики колебательной системы также применяют понятие добротности Q, которая при малых значениях логарифмического декремента будет равна (так как затухание мало (ω0^2 >> σ^2 ), то T принято равным Т0). 

Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Процесс распространения колебаний в пространстве. Волна в отличие от колебаний характеризуется не только периодичностью во времени, но и периодичностью в пространстве. Основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества в пространстве.

Упругими (или механическими) волнами называются механи-ческие возмущения, возникающие и распространяющиеся в упругой среде. К упругим волнам относятся звуковые и сейсмические волны; к электромагнитным – радиоволны, свет и рентгеновские лучи.

Продольные – это волны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.

Поперечные – это волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны λ. Длина волны равна расстоянию, на которое распространяется волна за один период: λ= vT или λ =v\ν , где λ - длина волны;

T – период волны, т.е. время, за которое совершается один полный цикл колебания; ν - частота, т.е. число периодов в единицу времени.

Направление волны определяется с помощью волнового вектора k. Направление волнового вектора совпадает с направлением вектора скорости: k= ω\v ,где ω - круговая или циклическая частота.

В акустике и оптике численное значение волнового вектора представляют в виде волнового числа: .

Уравнение плоской волны - выражение, которое определяет смещение колеблющейся точки как функцию ее координат и времени, т.е. ξ = ξ(x, у, z, t), где ξ - смещение.

Эта функция должна быть периодической как относительно t, так и относительно x, у, z.

Бегущая волна — волновое движение, при котором поверхность равных фаз (фазовые волновые фронты) перемещается с конечной скоростью (постоянной для однородной среды). С бегущей волной, групповая скорость которой отлична от нуля, связан перенос энергии, импульса или других характеристик процесса. Бегущая волна - волна, которая при распространении в среде переносит энергию (в отличие от стоячей волны). Примеры: упругая волна в стержне, столбе газа, жидкости, электромагнитная волна вдоль длинной линии, в волноводе. Бегущая волна — волновое возмущение, изменяющееся во времени  и пространстве  согласно выражению

где  — амплитудная огибающая волны,   волновое число и   фаза колебаний. Фазовая скорость  этой волны даётся выражением

где  — это длина волны.

Фазовая скорость упругих волн:

а) продольных v=sqrtE\p

б) поперечных v=sqrtG\p

где E – модуль Юнга (характеристика упругих свойств среды, обратная коэффициенту упругости);

G – модуль сдвига (он равен такому тангенциальному напряжению, при котором угол сдвига оказался бы равен 45о, если бы при столь больших деформациях не был превзойден предел упругости). Понятие фазовой скорости справедливо для монохроматических волн.

В случае, когда колебания, обусловленные отдельными волнами в каждой из точек среды, обладают разностью фаз и имеют одинаковую частоту, волны называются когерентными. Когерентные волны излучаются когерентными источниками. Когерентными источниками называют точечные источники, размерами которых можно пренебречь, излучающие в пространство волны с постоянной разностью фаз. При сложении когерентных волн возникает явление интерференции. Интерференция – это явление наложения когерентных волн, в результате которого происходит перераспределение энергии волны в пространстве. Возникает интерференционная картина, заключающаяся в том, что колебания в одних точках усиливают, а в других - ослабляют друг друга.

Наиболее часто интерференция возникает при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающая в результате такой интерференции волна называется стоячей. Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и встречная - отраженная, складываясь, образуют стоячую волну.

ξ=2ξ0coskxcosωt - уравнение стоячей волны.

Амплитуда стоячей волны A=2ξ0coskx.

1) при kx = ± nπ (n = 0, 1, 2, …) амплитуда максимальна: A = 2ξ0. Точки, в которых амплитуда смещения удваивается, называются пучностями стоячей волны;

2) при kx = ± (2n + 1)π амплитуда обращается в нуль. Эти точки называются узлами стоячей волны.

Расстояние между соседними (узлам) – длина стоячей волны λ0.

Длина стоячей волны λ0=λ\2. Таким образом, длина стоячей волны равна половине длины бегущей волны.


 

А также другие работы, которые могут Вас заинтересовать

36697. Использование команд GRANT и REVOKE для задания привилегий пользователей 49 KB
  Откройте их с помощью команд [ltF3] и [ltF4] и зайдите в систему под именем любого пользователя например user. Работу в СУБД MySQL от имени пользователей root user3 и user4 необходимо вести параллельно подключившись с разных терминалов открытых в начале выполнения лабораторной работы. В лабораторной работе создаваемые пользователи обозначаются user3 и user4. То есть вам необходимо подставить вместо user3 и user4 имена ivnov3 и ivnov4.
36698. ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА - ДЕЗОРМА 73 KB
  Основные теоретические положения к данной работе основополагающие утверждения: формулы схематические рисунки: Для определения отношения Сp Cv в случае воздуха в данной лабораторной работе применен метод предложенный Клеманом и Дезормом в котором использовано охлаждение газа при его адиабатическом расширении. Быстрое сжатие и быстрое расширение газа приблизительно можно рассматривать как адиабатический процесс. Отсюда видно что при адиабатическом сжатии температура газа повышается за счет работы внешних сил а при адиабатическом...
36699. Определение параметров импульсных сигналов, используемых для электростимуляции 495 KB
  Связь амплитуды формы импульса частоты следования импульсов длительности импульсного сигнала с раздражающим действием импульсного тока. Какова будет сила тока в начале разрядки конденсатора Через 6 мс напряжение на конденсаторе упадет до 250 В. Цель работы: Используя осциллограф С819 источник питания постоянного тока Б545 дифференцирующие и интегрирующие цепи.
36700. Изучение действия СВЧ поля на вещество 551 KB
  Переменные токи наведенные электрическим полем создают в диполе стоячую волну с пучностью тока в его середине. Они препятствуют ответвлению в гальванометр высокочастотного тока свободно пропуская выпрямленный.Исследование нагревания токами СВЧ электролита и диэлектрика.Делают вывод о влиянии СВЧ поля на вещество Воздействие переменными токами Первичное действие переменного тока и электромагнитного поля на биологические объекты в основном заключается в периодическом смещении ионов растворов электролитов и изменении поляризации...
36701. Градуирование электростатического вольтметра с помощью электрометра Томсона 396 KB
  Градуирование электростатического вольтметра с помощью электрометра Томсона. Цель работы: Градуирование шкалы электростатического вольтметра с помощью абсолютного электрометра Томсона т. Основные теоретические положения к данной работе основополагающие утверждения: формулы...
36702. Определение омического сопротивления при помощи моста Уитстона 306.5 KB
  Определение омического сопротивления при помощи моста Уитстона. Цель работы: Экспериментальное определение сопротивления проводников и проверка закона Ома с помощью моста постоянного тока. Однако существует одно определенное...
36703. Определение собственной люминесценции белка 1.1 MB
  Характеристики люминесценции спектр длительность квантовый выход. Задачи Исследование спектров люминесценции Спектром люминесценции называется кривая зависимости интенсивности люминесценции от длины волны или частоты: I = f  Интенсивность люминесценции выражается обычно в величинах пропорциональных энергии или числу квантов. Качественный и количественный анализ веществ в растворе и в живой клетке может производиться по спектрам люминесценции аналогично тому как это было описано выше для спектров поглощения.
36704. ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ 290 KB
  ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №22 ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ Цель работы: Определение опытным и расчетным путем индукции магнитного поля на оси соленоида с помощью законов движения электрона в электрическом и магнитном полях. С соленоид служащий для создания магнитного поля; А амперметр для...
36705. Изучение затухающих электромагнитных колебаний в колебательном контуре с помощью осциллографа 550 KB
  Изучение с помощью электронного осциллографа электромагнитных колебаний, возникающих в колебательном контуре, содержащем индуктивность, емкость и активное сопротивление; изучение условий возникновения затухающих колебаний в контуре; расчет основных физических величин, характеризующих эти колебания.