3531

Математический маятник

Контрольная

Физика

Математический маятник. Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести. Составляющая веса, перпендикуля...

Русский

2012-11-03

52.48 KB

60 чел.

Математический маятник.

Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести. Составляющая веса, перпендикулярная нити, равна

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения:

Момент силы относительно точки О: M = FL , и момент инерции: Момент инерции J в данном случае. Угловое ускорение:  

С учетом этих величин имеем: или Его решение ,где круговая или циклическая частота  и период колебаний

Как видим, период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний.

Физический маятник.

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной. При небольших углах отклонения α физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

. Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид:

круговая или циклическая частота  и период колебаний. 

Решение этого уравнения

Определим длину l математического маятника, при которой период его колебаний равен периоду колебаний физического маятника, т.е. или. Из этого соотношения определяем

Данная формула определяет приведенную длину физического маятника, т.е. длину такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

Колебательные движения реальной колебательной системы всегда сопровождаются силами трения и сопротивления, которые приводят к уменьшению амплитуды колебаний. Если энергия, потерянная системой, не восполняется за счет внешних сил, то колебания системы называются затухающими, свободными или собственными.

Дифференциальное уравнение свободных затухающих колебаний линейной системы определяется как (1)

где s – колеблющаяся величина, которая описывает тот или иной физический процесс, δ = const — коэффициент затухания, ω0 - циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при δ=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы. решение уравнения (1) в случае малых затуханий (ω0^2 >> δ^2 ) где — амплитуда затухающих колебаний, а А0 — начальная амплитуда. Промежуток времени Т = 1/ δ, в течение которого амплитуда затухающих колебаний становится меньше в е раз, называется временем релаксации. 

Если затухание мало, то можно условно использовать понятие периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины и будет равен Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответствующих моментам времени, которые отличаются на период, то отношение называется декрементом затухания, а его логарифм — логарифмическим декрементом затухания; Ne — число колебаний, которые совершаются за время уменьшения амплитуды в е раз. Логарифмический декремент затухания является постоянной величиной для данной колебательной системы. Для характеристики колебательной системы также применяют понятие добротности Q, которая при малых значениях логарифмического декремента будет равна (так как затухание мало (ω0^2 >> σ^2 ), то T принято равным Т0). 

Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Процесс распространения колебаний в пространстве. Волна в отличие от колебаний характеризуется не только периодичностью во времени, но и периодичностью в пространстве. Основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества в пространстве.

Упругими (или механическими) волнами называются механи-ческие возмущения, возникающие и распространяющиеся в упругой среде. К упругим волнам относятся звуковые и сейсмические волны; к электромагнитным – радиоволны, свет и рентгеновские лучи.

Продольные – это волны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.

Поперечные – это волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны λ. Длина волны равна расстоянию, на которое распространяется волна за один период: λ= vT или λ =v\ν , где λ - длина волны;

T – период волны, т.е. время, за которое совершается один полный цикл колебания; ν - частота, т.е. число периодов в единицу времени.

Направление волны определяется с помощью волнового вектора k. Направление волнового вектора совпадает с направлением вектора скорости: k= ω\v ,где ω - круговая или циклическая частота.

В акустике и оптике численное значение волнового вектора представляют в виде волнового числа: .

Уравнение плоской волны - выражение, которое определяет смещение колеблющейся точки как функцию ее координат и времени, т.е. ξ = ξ(x, у, z, t), где ξ - смещение.

Эта функция должна быть периодической как относительно t, так и относительно x, у, z.

Бегущая волна — волновое движение, при котором поверхность равных фаз (фазовые волновые фронты) перемещается с конечной скоростью (постоянной для однородной среды). С бегущей волной, групповая скорость которой отлична от нуля, связан перенос энергии, импульса или других характеристик процесса. Бегущая волна - волна, которая при распространении в среде переносит энергию (в отличие от стоячей волны). Примеры: упругая волна в стержне, столбе газа, жидкости, электромагнитная волна вдоль длинной линии, в волноводе. Бегущая волна — волновое возмущение, изменяющееся во времени  и пространстве  согласно выражению

где  — амплитудная огибающая волны,   волновое число и   фаза колебаний. Фазовая скорость  этой волны даётся выражением

где  — это длина волны.

Фазовая скорость упругих волн:

а) продольных v=sqrtE\p

б) поперечных v=sqrtG\p

где E – модуль Юнга (характеристика упругих свойств среды, обратная коэффициенту упругости);

G – модуль сдвига (он равен такому тангенциальному напряжению, при котором угол сдвига оказался бы равен 45о, если бы при столь больших деформациях не был превзойден предел упругости). Понятие фазовой скорости справедливо для монохроматических волн.

В случае, когда колебания, обусловленные отдельными волнами в каждой из точек среды, обладают разностью фаз и имеют одинаковую частоту, волны называются когерентными. Когерентные волны излучаются когерентными источниками. Когерентными источниками называют точечные источники, размерами которых можно пренебречь, излучающие в пространство волны с постоянной разностью фаз. При сложении когерентных волн возникает явление интерференции. Интерференция – это явление наложения когерентных волн, в результате которого происходит перераспределение энергии волны в пространстве. Возникает интерференционная картина, заключающаяся в том, что колебания в одних точках усиливают, а в других - ослабляют друг друга.

Наиболее часто интерференция возникает при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающая в результате такой интерференции волна называется стоячей. Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и встречная - отраженная, складываясь, образуют стоячую волну.

ξ=2ξ0coskxcosωt - уравнение стоячей волны.

Амплитуда стоячей волны A=2ξ0coskx.

1) при kx = ± nπ (n = 0, 1, 2, …) амплитуда максимальна: A = 2ξ0. Точки, в которых амплитуда смещения удваивается, называются пучностями стоячей волны;

2) при kx = ± (2n + 1)π амплитуда обращается в нуль. Эти точки называются узлами стоячей волны.

Расстояние между соседними (узлам) – длина стоячей волны λ0.

Длина стоячей волны λ0=λ\2. Таким образом, длина стоячей волны равна половине длины бегущей волны.


 

А также другие работы, которые могут Вас заинтересовать

76956. Порядок прохождения государственной гражданской службы 28.74 KB
  Порядок прохождения государственной гражданской службы. Прохождение государственной службы это система взаимосвязанных взаимообусловленных юридических фактов вызывающих возникновение изменение и прекращение государственных служебных отношений. Элементы прохождения государственной службы: прекращение государственной службы.
76957. Поощрения и ответственность государственных гражданских служащих 28.78 KB
  Поощрения и ответственность государственных гражданских служащих. Юридическая ответственность государственного служащегоозначает его обязанность претерпеть определенные лишения личного имущественного или организационного характера за совершенное правонарушение. Ответственность может быть дисциплинарной административной уголовной или материальной. Дисциплинарная ответственность вид юридической ответственности наступающей за нарушение служебной дисциплины обязанность государственных служащих претерпеть негативные последствия за совершение...
76958. Особенности прохождения государственной военной службы 27.01 KB
  Граждане обязаны состоять на воинском учете за исключением граждан: освобожденных от исполнения воинской обязанности; проходящих военную службу или альтернативную гражданскую службу; отбывающих наказание в виде лишения свободы; женского пола не имеющих военноучетной специальности; постоянно проживающих за пределами Российской Федерации. Призыву на военную службу подлежат: граждане мужского пола в возрасте от 18 до 27 лет состоящие или обязанные состоять на воинском учете и не пребывающие в запасе далее граждане не...
76959. Особенности прохождения государственной правоохранительной службы 26.82 KB
  Правоохранительная служба вид федеральной государственной службы представляющей собой профессиональную служебную деятельность граждан на должностях правоохранительной службы в государственных органах службах и учреждениях осуществляющих функции по обеспечению безопасности законности и правопорядка по борьбе с преступностью по защите прав и свобод человека и гражданина. В частности правоохранительная служба может осуществляться в органах федеральной службы безопасности федеральной службе по контролю за оборотом наркотических средств и...
76960. Формы осуществления публичного управления: понятие, содержание, классификация и характеристика каждой из групп 27.86 KB
  Формы осуществления публичного управления: понятие содержание классификация и характеристика каждой из групп. Форма государственного управления внешнее выражение деятельности органов государственного управления и их должностных лиц осуществляемое в рамках их компетенции по разрешению стоящих задач и вызывающее определенные последствия. Общие черты форм государственного управления: 1.являются способом внешнего выражения деятельности органов государственного управления и их должностных лиц; 2.
76961. Правовые формы государственного управления: понятие, виды, характеристика каждой из форм 29.31 KB
  Правовые формы государственного управления: понятие виды характеристика каждой из форм. Правовая форма государственного управления это юридически оформленное деяние органа исполнительной власти иного властного субъекта его представителя должностного лица осуществленное в рамках компетенции и влекущее юридические последствия т. Особенности государственного управления: государственное управление имеет ярко выраженный правовой характер направлено на реализацию законов и подзаконных актов; государственное управление осуществляется...
76962. Неправовые формы государственного управления: понятие, сущность, виды, значение. Соотношение с правовыми формами 26.2 KB
  Наряду с этими правовыми формами осуществления исполнительной власти выделяются также неправовые формы в виде организационных действий и материальнотехнических операций информирование инструктирование проведение совещаний консультаций и т. К неправовым формам государственного управления относятся организационные действия и материальнотехнические операции. Материальнотехнические операции разновидность внешнего проявления управленческой деятельности не влекущей юридических последствий направленная на обеспечение реализации правовых...
76963. Правовые акты государственного управления: понятие, признаки и юридическое значение. Классификация правовых актов управления 30.17 KB
  Правовые акты государственного управления: понятие признаки и юридическое значение. Классификация правовых актов управления. Правовой акт управления вид юридического акта основанное на законе одностороннее юридическивластное волеизъявление органов государственного управления и их должностных лиц принятое в установленном процессуальном порядке и направленное на установление либо возникновение изменение и прекращение административноправовых отношений. Основные черты правового акта управления: 1.
76964. Требования, предъявляемые к правовым актам государственного управления, последствия их несоблюдения 28.36 KB
  Требования предъявляемые к правовым актам государственного управления последствия их несоблюдения. Акт государственного управления это управленческий документ содержащий властное волеизъявление уполномоченного субъекта государственного управления в виде нормативного или индивидуального предписания осуществленное в рамках его компетенции и для целей решения задач управленческой деятельности принятие которого влечет определенные юридические последствия. Являясь подзаконным актом акт государственного управления должен отвечать определенным...