35546

Исследование свойств графов. Построение основных матриц. Решение системы линейных алгебраических уравнений методом графов

Практическая работа

Математика и математический анализ

Исключив общее ребро е из двух несовпадающих циклов, мы превратим эти циклы в две несовпадающие простые цепи, объединение которых, в силу свойств цепей, будет содержать простой цикл (естественно, без ребра е).

Русский

2013-09-16

306 KB

20 чел.

РГЗ №1 «Исследование свойств графов. Построение основных матриц. Решение системы линейных алгебраических уравнений методом графов».

ВАРИАНТ 16.

ЗАДАЧА 1.

Показать, что если два различных цикла графа содержат ребро e, то в графе существует цикл, не содержащий е.

РЕШЕНИЕ:

Исключив общее ребро е из двух несовпадающих циклов, мы превратим эти циклы в две несовпадающие простые цепи, объединение которых, в силу свойств цепей, будет содержать простой цикл (естественно, без ребра е).  

ЗАДАЧА 2.

 По заданному орграфу построить матрицы:

  •  инцидентности;
  •  БРМ;
  •  БЦ;
  •  смежности.

РЕШЕНИЕ:

Хочу отметить, что в условии задачи неправильно пронумерованы ребра орграфа – всего в графе 8 ребер, но их нумерация на рисунке заканчивается не 8-м номером, а 9-м. В связи с этим будем считать, что орграф на самом деле такой:

 

а) Матрица инцидентности орграфа:

1

2

3

4

5

6

7

8

-1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

-1

0

-1

0

0

0

0

0

0

-1

0

0

-1

-1

0

-1

0

0

0

-1

0

1

1

0

0

1

1

0

0

0

б) Легко увидеть, что остовом D данного графа является:

Отметим, что хордами для данного остова D будут являться ребра 1,4,8.

Для нахождения базисного разрезающего множества найдем разрезы графа G. Для этого удалим ребро остова D. Множество вершин при этом распадается на два непересекающихся подмножества  и . Множество всех ребер в , каждое из которых соединяет вершину из  с вершиной из , является разрезом графа . Множество разрезов графа G образуют базисное разрезающее множество графа G, которое можно записать в виде матрицы.

Базисная система разрезов для графа  и остовного дерева  состоит из разрезов:  . Запишем матрицу БРМ:

2

3

5

6

7

1

4

8

K1

1

0

0

0

0

0

1

0

K2

0

1

0

0

0

1

1

0

K3

0

0

0

1

0

0

1

1

K4

0

0

0

0

1

0

1

1

K5

0

0

1

0

0

1

1

0

в) Базисной системой циклов для данного остова  графа  называется множество всех циклов графа , каждый из которых содержит только одну хорду . Эта система образует базис пространства циклов. В нашем графе циклы R1 ={1,3,5}, R2={2,3,4,5,6,7}, R3={4,6,7} являются базисными, соответственно матрица БЦ относительно остова D имеет вид:

1

4

8

2

3

5

6

7

1

0

0

0

1

1

0

0

R1

0

1

0

1

1

1

1

1

R2

0

0

1

0

0

0

1

1

R3

  

г) Матрица смежности орграфа:

0

0

1

0

1

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

1

0

0

ЗАДАЧА 3.

Решить систему методом Коутса:

          если n - четно

где:

n - номер варианта;=16

k - дата (день) рождения,=20

m - месяц (его номер) рождения студента.=10

С учетом моих данных имеем систему:

  или

РЕШЕНИЕ:

Наша система уравнений в матричном виде имеет вид:

Матрица  , которая  получается добавлением –B к правой части матрицы A и затем нулевой строки к нижней части получившейся матрицы, имеет вид:

Транспонированная матрица будет матрицей смежности графа Коутса, соответствующего нашей системе уравнений:

 

Построим по полученной матрице смежности граф Коутса :

 

Граф Коутса для исходной матрицы A имеет вид:

Решение уравнения определим по формуле:

, где - 1-факториальное соединение вершины с вершиной в графе ; H – 1-фактор графа ;  и  - число циклов в  и соответственно.

Приведем 1- факторы графа  со своими весовыми произведениями:

1-фактор

Весовое произведение

-1120

-512

Значит:

Пользуясь изложенной формулой найдем, например, соотношение .

Приведем 1-факториальные соединения с (в скобки заключаются также вершины, лежащие в ориентированном пути):

1-факториальное соединение

Весовое произведение

320

896

Значит:

Получаем, что :

Аналогично приведем 1-факториальные соединения с :

1-факториальное соединение

Весовое произведение

128

784

Значит:

Получаем, что :

1-факториальные соединения с :

1-факториальное соединение

Весовое произведение

960

-1680

-1960

-320

2688

-768

Значит:

Получаем, что: .

Ответ: ,  - свободная переменная.

  Заданная система уравнений имеет множество решений.


-4

7

6

5

3

2

8

7

6

5

4

3

2

1

EMBED Equation.3  

-6

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

8

9

7

6

5

4

3

2

1

-14

-4

14

EMBED Equation.3  

EMBED Equation.3  

-4

20

14

EMBED Equation.3  

16

-12

EMBED Equation.3  

10

8

16

-12

EMBED Equation.3  

10

8

20

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

69733. Покажчик this 22.5 KB
  Кожний об’єкт містить свій екземпляр полів класу. Методи класу знаходяться в пам’яті в єдиному екземплярі і використовуються всіма об’єктами сумісно, тому необхідно забезпечити роботу методів з полями саме того об’єкта, для якого вони були викликані.
69734. Перевантаження операцій new і delete 50.5 KB
  Поведінка перевантажених операцій повинна відповідати діям, які виконуються ними за замовчуванням. Для операції new це означає, що вона повинна повертати правильне значення, коректно обробляти запит на виділення пам’яті нульового розміру і породжувати виключення при неможливості...
69735. Віртуальні методи 45 KB
  Це не завжди можливо, оскільки в різний час покажчик може посилатися на об’єкти різних класів ієрархії, і під час компіляції програми конкретний клас може бути невідомий. Можна навести як приклад функцію, параметром якої є покажчик на об’єкт базового класу.
69736. Використання шаблонів класів 32.5 KB
  Щоб створити за допомогою шаблона конкретний об’єкт конкретного класу (цей процес називається інстанціонуванням), при описі об’єкту після імені шаблона в кутових дужках перераховуються його аргументи...
69737. Області значень 44 KB
  Область значень — це інтервал від мінімального до максимального значення, яке може бути представлена в змінній даного типу. В таблиці 1 приведений розмір займаємої пам’яті і області значень змінних для кожного типу. Оскільки змінних типу void не існує, він не включений в цю таблицю.
69738. Програми друку граничних констант 38 KB
  Введених засобів препроцесора і мови цілком достатньо для програми, що виводить на друк (на екран дісплея) значення констант, що визначають в конкретній системі (для конкретного компілятора) межі зміни даних різних типів.
69739. Мультиплікативні операції 26 KB
  Типи першого і другого операндів можуть відрізнятися, при цьому виконуються перетворення операндів за замовчуванням. Типом результату є тип операндів після перетворення.
69740. Пріоритет і порядок виконання 50 KB
  Пріоритет і асоціативність операцій мови Сі впливаяють на порядок групування операндів і обчислення операцій у виразі. Пріоритет операцій суттєвий тільки за наявності декількох операцій, що мають різний приоритет. Вирази з більш пріоритетними операціями обчислюються першими.
69741. Ініціалізація масивів 24.5 KB
  Якщо у визначенні масиву явно вказаний його розмір, то кількість початкових значень не може бути більше кількості елементів в масиві. Якщо кількість початкових значень менше ніж оголошена довжина масиву, то початкові значення отримають тільки перші елементи масиву...