3560

Изучение внешнего фотоэффекта

Лабораторная работа

Физика

Цель работы: изучение внешнего фотоэффекта. Задача: определение световой и вольт-амперной характеристики фотоэлемента. Техника безопасности: напряжение 220 В подается от сети на трансформатор и выпрямитель, поэтому соответствующие токоведущие...

Русский

2012-11-03

67.5 KB

92 чел.

Цель работы: изучение внешнего фотоэффекта.

Задача: определение световой и вольт-амперной характеристики фотоэлемента.  

Техника безопасности: напряжение 220 В подается от сети на трансформатор и выпрямитель, поэтому соответствующие токоведущие части должны быть закрыты.

Приборы и принадлежности: экспериментальная схема, состоящая из фотоэлемента, осветительной лампочки, источников питания фотоэлемента и лампочки, микроамперметра, вольтметра; оптическая скамья, на которой закреплены фотоэлемент и осветительная лампочка.

ВВЕДЕНИЕ

Внешним фотоэффектом называется явление испускания электронов из вещества под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках).

Основные закономерности внешнего фотоэффекта, полученные из эксперимента (законы Столетова), следующие.

  1.  Число выбитых из вещества электронов пропорционально интенсивности падающего электромагнитного излучения (при его фиксированной частоте).
  2.  Начальная скорость выбитых из вещества электронов не зависит от интенсивности падающего электромагнитного излучения, а определяется только его частотой.
  3.  Для каждого вещества существует своя минимальная частота падающего электромагнитного излучения, при которой возникает фотоэффект.

Явление внешнего фотоэффекта было объяснено А. Эйнштейном. Он предположил, что электромагнитное излучение распространяется в виде отдельных порций – квантов. Падающий на вещество квант с энергией       (h = 6,62 ∙ 10 – 34 Дж ∙ с – постоянная Планка, ν – частота падающего электромагнитного излучения) может поглотиться электроном. При этом энергия кванта передается электрону, причем часть ее затрачивается на работу по удалению электрона из вещества (работа выхода А) и оставшаяся часть идет на сообщение кинетической энергии  вылетевшему электрону  (здесь m – масса электрона, v – скорость, с которой электрон вылетает из вещества).

Закон сохранения энергии в данном процессе записывается в следующем виде:

                                                                            (1)

и называется уравнением Эйнштейна для фотоэффекта.

Уравнение Эйнштейна легко объясняет все закономерности внешнего фотоэффекта, открытые Столетовым. Действительно, чем больше интенсивность падающего электромагнитного излучения, тем больше квантов падает на вещество и взаимодействует с электронами вещества и, следовательно, тем больше выбивается электронов. Поскольку работа выхода электрона для каждого вещества постоянна, то из уравнения Эйнштейна (1) видно, что чем больше частота падающего электромагнитного излучения, тем больше скорость выбитого электрона. И наконец, как видно из уравнения (1), для того чтобы внешний фотоэффект имел место, энергия падающего кванта должна превышать работу выхода электрона из вещества ( > А). Следовательно, внешний фотоэффект имеет место лишь в том случае, когда частота падающего электромагнитного излучения превышает некоторую минимальную частоту, определяемую из уравнения

0 = А.                                                  (2)

Поскольку частота и длина волны λ связаны соотношением

,                                                   (3)

где с – скорость света, то можно также сказать, что внешний фотоэффект наблюдается в том случае, если длина волны падающего электромагнитного излучения λ меньше длины волны λ0, определяемой из соотношения

.                                                (4)

Минимальная частота ν0 (или максимальная длина волны λ0), при которой возможен внешний фотоэффект, называется красной границей фотоэффекта:

,                            .                             (5)

На явлении внешнего фотоэффекта основано действие вакуумного фотоэлемента (рис. 1). Он представляет собой стеклянный баллон,  из которо-

го  отка

чан воздух. Часть внутренней поверхности баллона покрыта фоточувствительным слоем, служащим фотокатодом. Для регистрации видимого и инфракрасного излучения используется кислородно-цезиевый фоточувствительный   слой.   В    качестве  анода

Рис. 1. Устройство фотоэлемента

обычно используется кольцо или сетка, помещаемая в центре баллона. Фотоэлемент включается в цепь батареи. При попадании на фотокатод электромагнитного излучения из него выбиваются электроны, которые летят к аноду. В результате по цепи протекает электрический ток.

Зависимость фототока от напряжения  (вольт-амперная  характеристи-

ка) изображена на рис. 2. Электроны вылетают из фотокатода в различных   направлениях, но приложенное напряжение заставляет их перемещаться к аноду. С ростом напряжения фототок возрастает, т.е. все большее количество выбитых электронов достигает анода. Максимальное значение фототока Jн (называемое фототоком насыщения), определяется таким значением U, при котором все электроны, испускаемые фотокатодом,   достигают   анода.   По-

скольку  вылетевшие  из  фотокатода электроны обладают некоторой начальной скоростью v и отличной от нуля кинетической энергией, то они могут достигать анода при   U = 0, т.е. при U = 0 фототок не прекращается. Для того чтобы Jф = 0, необходимо приложить задерживающее напряжение U3, т.е. на анод подать небольшой отрицательный потенциал.

Кроме внешнего фотоэффекта еще существуют внутренний фотоэффект и вентильный фотоэффект.

Внутренним фотоэффектом называется переход электронов в полупроводниках или диэлектриках из связанных состояний в свободные  (без вылета наружу) под действием электромагнитного излучения. В результате внутреннего фотоэффекта концентрация свободных электронов в веществе возрастает и увеличивается его проводимость.

Вентильным фотоэффектом называется возникновение электродвижущей силы (генерации электронов и дырок) при облучении электромагнитным излучением контакта двух разных полупроводников или полупроводника и металла.

ОПИСАНИЕ УСТАНОВКИ

Схема установки, на которой проводится исследование фотоэлемента, приведена на рис. 3. Питание фотоэлемента  Ф  осуществляется   от   выпря-

мителя. Выпрямленное напряжение регулируется потенциометром П и измеряется вольтметром U. Величина фототока Jф измеряется микроамперметром μА. Лампа Л осветителя питается от автотрансформатора АТ. Фотоэлемент и осветитель закреплены стопорными винтами на оптической  скамье,  причем  осветитель может перемещаться по ней.

        

        Рис. 3. Схема установки для

        исследования фотоэлемента

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

  1.  Определить самостоятельно основные метрологические характеристики микроамперметра (ток измеряется в мкА) и вольтметра (напряжение измеряется в В). Результаты занести в табл. 1.
  2.  Подать напряжение на фотоэлемент; включить осветитель.
  3.  Снять вольт-амперную характеристику. Для этого установить осветитель на расстоянии 40 см от фотоэлемента и, меняя напряжение на фотоэлементе от 10 В до 140 В через 10 В, измерить соответствующее значение фототока Jф. При этом стрелка микроамперметра не должна зашкаливать. Если стрелка микроамперметра зашкаливает, установить расстояние между фотоэлементом и осветителем 50 см и повторить измерения. Результаты измерений занести в табл. 2. Построить на миллиметровке график зависимости Jф от U.
  4.  Снять световую характеристику. Для этого установить на фотоэлементе постоянное напряжение 140 В. Изменяя расстояние ℓ от осветителя до фотоэлемента от 80 см до 40 см через каждые 5 см, измерить значения фототока Jф. Для каждого значения вычислить световой поток Ф по формуле    

,

где I – сила света лампы осветителя; S – площадь фотокатода.

В единицах СИ значение S измеряется в м2, ℓ в м, I в кд, световой поток Ф в лм. Значения силы света лампы и диаметра фотокатода указаны на установке. Полученные значения ℓ, Ф и Jф занести в табл. 3. Построить на миллиметровке график зависимости Jф от Ф.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Почему фототок пропорционален световому потоку?
  2.  Почему скорость фотоэлектронов не зависит от величины светового потока?
  3.  Объясните уравнение Эйнштейна для фотоэффекта.
  4.  Что такое красная граница фотоэффекта?
  5.  При попадании на некоторое вещество красного света внешний фотоэффект наблюдался. Будет ли наблюдаться фотоэффект при облучении этого же вещества синим светом?

СПИСОК ЛИТЕРАТУРЫ

  1.  Трофимова Т. И. Курс физики. М.: Высшая школа, 1999. 542 с.
  2.  Савельев И. В. Курс общей физики: В 3 т. М.: Наука, 1989. Т. 3. 320 с.

ОБРАЗЕЦ ОТЧЕТА

Лабораторная работа № 55

Исследование фотоэлемента

Цель работы:

Задача:

Приборы и принадлежности:

Таблица 1

Основные метрологические характеристики приборов

 

Прибор  

Диапазон

измерений

Цена деления шкалы прибора

Погрешность измерения

Микроамперметр

Вольтметр

Основные понятия и законы:

Таблица 2

Вольт-амперная характеристика

 

U (B)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

JФ (мкА)

График зависимости JФ от U

Вычисление значений светового потока Ф при разных  расстояниях между осветителем и фотоэлементом

Таблица 3

Световая характеристика

ℓ (см)

80

75

70

65

60

55

50

45

40

Ф (лм)

Jф (мкА)

График зависимости Jф от Ф

Выводы:


 

А также другие работы, которые могут Вас заинтересовать

33825. Родоплеменные религии: тотемизм, табу, магия, фетишизм и анимизм 25.8 KB
  С этой обрядностью связаны все важные этапы в жизни человека: рождение посвящение введение юноши в число взрослых охотников смерть. Наряду с тотемизмом и табу значительное место в жизнедеятельности первобытного человека занимала магия греч. mgic колдовство чародейство совокупность представлений и обрядов в основе которых лежит вера в таинственные силы с помощью которых путем определенных символических действий возможно оказать влияние на людей предметы ход событий в нужном для человека направлении. Он считал что магия не...
33826. Зороастризм и маздеизм 19.6 KB
  Но в наиболее ранних персидских текстах ахеменидских надписях о нем не упоминается хотя в этих текстах есть немало связываемых с его именем идей в частности в связи с прославлением АхураМазды. Будем условно именовать ее маздеизмом – по имени АхураМазды. Третьей в верховной первоначальной триаде древнеиранских богов была Ардвисура Анахита богиня воды и плодородия воспринимавшаяся в качестве дочери АхураМазды. Хотя его подчас считают не имеющим прямого отношения к маздеизму и тем более зороастризму более поздние мифы приписывают именно...
33827. Индуизм — ведущая религия Древней Индии 23.27 KB
  Исследователи выявляют несколько исторических форм индуизма. Основы индуизма заложены в ведической религии которую принесли на территорию полуострова Индостан племена ариев вторгшиеся туда в середине II тысячелетия до н. Во втором направлении индуизма вишнуизме образ бога Вишну предстает прежде всего как хранителя мирового порядка. Третий член троицы высших божеств индуизма Брахма рассматривается как первопричина мира и творец человечества из различных частей которого произошли разные касты: из уст брахманы из рук кшатрии из бедер ...
33828. Легенда о Будде 22.32 KB
  Умерь свои страсти будь добрым и благожелательным – и это перед каждым а не только перед посвященными брахманами как в брахманизме откроет путь к истине а при условии длительных дальнейших усилий в этом направлении – к конечной цели буддизма нирване. Даже многие известные брахманы отказывались от своего учения и становились в число проповедников буддизма. Словом число последователей буддизма нарастало как снежный ком и в короткий срок согласно легенде это учение стало наиболее влиятельным и популярным в древней Индии. Если...
33829. Возникновение буддизма. Буддийское вероучение и культ 21.12 KB
  Возникновение буддизма. Для того чтобы понять истоки возникновения буддизма особенности его вероучения и культа необходимо вспомнить какой была религиозная жизнь населения Индии того периода. Основателем буддизма была реальная историческая личность Сиддхартха Гаутама из рода Гаутама принадлежавший к варне кшатриев. Второй важной особенностью буддизма также сближающей его со всеми другими мировыми религиями является перемещение акцента с коллективной на индивидуальную религиозную жизнь.
33830. Тхерава́да современный буддизм в Южной и Юго-Восточной Азии 15.87 KB
  Цель последователя Тхеравады достижение состояния полностью свободного от всех загрязнений и заблуждений. По сравнению с махаяной для Тхеравады характерно применение рационалистического подхода и сравнительная простота ритуала. В современном мире насчитывается порядка 100 млн последователей Тхеравады. Согласно учению тхеравады принц Сиддхартха Гаутама Шакьямуни был земным существом родившимся как человек но жившим и умершим как Будда.
33831. СИКХИЗМ 17.18 KB
  Медитация на эту тему обязательно входит в повседневную дисциплину сикхов – нам симран напоминание божественного имени которая может заключаться в простом повторении священных слов таких как сат нам истинный есть имя или вахигуру популярное у сикхов современное наименование Бога в распевании стихов гуру или во внутренней медитации. Во многом эту доктрину дополнили натхи последователи полумифического гуру 12 в. Позднейшие гуру.
33832. Джайнизм 18 KB
  Дело в том что одной из основополагающих джайнизма всего зароков пять является ахимса – не причинение вреда ничему живому. Основоположником джайнизма считается Шри Махавир что в переводе означает Великий Герой. И даже если правда которую всегда обязан говорить истинный последователь джайнизма может причинить боль и обиду то лучше от такой правды воздержаться. В джайнизме как и большинстве религий Индии нет такого понятия как молитва.
33833. Иудаизм 18.57 KB
  Иудаизм называют национальной религией евреев. Историки отмечают что формирование иудаизма как национальной религии евреев началось задолго до XIII века когда их кочевые племена вторглись на территорию Палестины. Однако многобожие у евреев просуществовало еще несколько столетий о чем свидетельствует указ царя Иосифа от 622 г. Во время вавилонского пленения иудаизм становится идейной основой борьбы евреев за освобождение и восстановление собственной государственности принявшей форму движения к возврату на землю предков.