35854

Ранг матрицы. Теорема о базисном миноре

Доклад

Математика и математический анализ

Ранг матрицы Пусть прямоугольная матрица размера : . Назовем арифметическими мерными векторами упорядоченные наборы чисел строки матрицы и обозначим их через . Элементы стоящие на пересечении выбранных строк и столбцов образуют определитель порядка который называется минором порядка матрицы .

Русский

2013-09-20

169.21 KB

10 чел.

Ранг матрицы. Теорема о базисном миноре.

Ранг матрицы

Пусть - прямоугольная матрица размера :

.

Назовем арифметическими -мерными векторами упорядоченные наборы чисел, строки матрицы , и обозначим их через , ,…,.

Нулевым арифметическим вектором назовем .

Будем говорить, что система векторов линейно зависима, если , не все равные нулю, что .

Система векторов называется линейно независимой, если она не является линейно зависимой.

Определение 3. Пусть - прямоугольная матрица размера . Выберем в произвольные строк и столбцов. Элементы, стоящие на пересечении выбранных строк и столбцов, образуют определитель порядка , который называется минором порядка матрицы .

Определение 4. Наивысший порядок отличных от нуля миноров матрицы называется рангом матрицы .

Обозначение ранга : .  

Теорема 1 (о базисном миноре). Столбцы, содержащие базисный минор, линейно независимы. Любой столбец матрицы является линейной  комбинацией  базисных  столбцов  одного  и того же базисного минора.

Доказательство. Пусть и отличен от нуля минор , расположенный в первых строках и первых столбцах матрицы , т.е. в левом верхнем углу:

.

Докажем сначала, что арифметические векторы

, ,

составляют линейно независимую систему.

Допустим, что линейно зависимы, тогда , , что  , т.е. выполняется система тождеств:

                           (7.4)

Первые равенств системы (7.4) можно переписать в виде

.

Учитывая, что , получим

;

-й столбец определителя оказался линейной комбинацией остальных. Тогда - противоречие, и, следовательно, векторы линейно независимы.

Докажем теперь, что любой столбец матрицы является линейной комбинацией первых столбцов.

Рассмотрим вспомогательный определитель

,

полученный "окаймлением" минора элементами -й строки и -го  столбца, . Утверждается, что .

Действительно, возможны два случая.

Случай 1: . Тогда - минор матрицы порядка и по условию (наивысший порядок отличных от нуля миноров равен , следовательно, все миноры порядка равны нулю).

Случай 2: . Тогда содержит две одинаковые строки, следовательно, .

Итак, всегда . Разложим по последней строке.

Отметим, что если - алгебраическое дополнение к элементу из последней строки определителя , то

,

и не зависит от  ( был номером строки в матрице , а в эти элементы занимают -ю строку). Поэтому алгебраические дополнения к элементам в , , можем обозначить .

.

Полагая , получим равенств:

,

,

…………………………………………

,

или в матричной форме:

,

т.е. -й столбец матрицы оказался линейной комбинацией первых столбцов с коэффициентами .

Было принято, что .

Если , то

.

Таким образом, любой столбец матрицы является линейной комбинацией базисных столбцов.

Теорема доказана.

Замечание. Аналогичное утверждение справедливо и для строк: строки, содержащие базисный минор, линейно независимы, через них линейно выражаются все остальные строки матрицы.

Теорема 2. Если в матрице некоторый минор порядка отличен от нуля, а все окаймляющие его миноры равны нулю, то .