35974

Молодые Платформы

Контрольная

География, геология и геодезия

имеют складчатое основание палеозойского и частично позднедокембрийского возраста. В некоторых из них главная складчатость происходила в середине палеозоя эту складчатость называют КАЛЕДОНСКОЙ по старинному названию части Шотландии Каледонии где она проявилась очень отчетливо перед девоном а созданные ею складчатые структуры и пояса называют КАЛЕДОНИДАМИ. Наряду с ними есть еще более молодые складчатые области геосинклинальное развитие которых продолжалось не только в палеозое но и в течение большей части мезозоя и завершилось лишь...

Русский

2013-09-20

47 KB

13 чел.

5 билет

Молодые Платформы (геол.) имеют складчатое основание палеозойского и частично позднедокембрийского возраста. В их пределах геосинклинальная стадия развития продолжалась до начала, середины или конца палеозойской или даже начала мезозойской эры, и лишь с этого времени начиналось формирование платформенного чехла. В зависимости от возраста завершающих деформаций фундамента среди молодых Платформа (геол.) К молодым Платформа (геол.) относятся равнинные территории Западной Сибири, Северного Казахстана, Туранской низменности, Предкавказья, Западной Европы и др.

В некоторых из них главная складчатость происходила в середине палеозоя, эту складчатость называют КАЛЕДОНСКОЙ (по старинному названию части Шотландии - Каледонии, где она проявилась очень отчетливо перед девоном), а созданные ею складчатые структуры и пояса называют КАЛЕДОНИДАМИ. В других значительных частях молодых платформ главная складчатость создавалась в конце палеозоя. По древнему названию Рейнских гор, Гарца и гор Тюрингии, которые римляне именовали "Герцинскими цепями", она получила название ГЕРЦИНСКОЙ (иногда ее также именуют ВАРИССКОЙ), а для созданных ею складчатых структур применяют название ГЕРЦИНИДЫ.

Таким образом, различают две категории молодых платформ, образовавшихся из палеозойских геосинклинальных областей поверх каледонид и герцинид. Их нередко называют ЭПИКАЛЕДОНСКИМИ И ЭПИГЕРЦИНСКИМИ. Однако платформенный чехол в обоих случаях начал образовываться только с мезозоя. Платформенный режим в них начался одновременно, и имеются  по существу единые ЭПИПАЛЕОЗОЙСКИЕ МОЛОДЫЕ ПЛАТФОРМЫ. Наряду с ними есть еще более молодые складчатые области, геосинклинальное развитие которых продолжалось не только в палеозое, но и в течение большей части мезозоя, и завершилось лишь в его конце. Здесь поверх складчатого основания еще не успел образоваться осадочный чехол. Хотя геосинклинальное развитие в их пределах закончилось к началу кайнозойской эры, настоящая платформенная стадия еще не наступила. Эти области, занимающие промежуточное положение между геосинклинальной и платформенной стадиями развития, именуют ОБЛАСТЯМИ МЕЗОЗОЙСКОЙ СКЛАДЧАТОСТИ, избегая термина платформа, хотя, конечно, по существу, они представляют собой платформы в самой начальной стадии существования. Такие области распространены на обширных пространствах по окраинам побережья Тихого океана, как в Азии, так и в Северной Америке.

Предуральский краевой прогиб

Пред уральский краевой прогиб протягивается в общем долготном направлении вдольпочтивсего западного борта палеозойского сооружения Урала (кроме его самого южногоМугоджарского сегмента, к которому вплотную примыкает северо-восточная часть Прикаспийской синеклизы), а также Пай-Хоя. Длина прогиба превышает 2000 км, а ширинасоставляет 50—70, местами до 100 км. Прогиб отделяет сооружение Урала и складчатуюзону Пай-Хоя от восточного края Восточно-Европейской платформы и Печоро-Баренцевоморской области и в основном наложен на их восточные края, за  исключением северной части Полярного Урала и южной части Южного Урала, где прогиб частично налегает на западную мегазону Урала. Заложение прогиба на одних его участках произошло в конце карбона, на других — в самом начале перми, когда вдоль западного края растущего складчатого сооружения возник глубокий желоб, первоначально не компенсированный осадками, но постепенно, с востока на запад, заполнявшийся мо-лассовым   материалом.   Соответственно  доверхнекаменноугольные, а местами jh допермские отложения..в Пррдур^пьЬком прогибе сходны с одновозрастнымд^.образованиями RprTptmoff части   Русское   цдцуц_ и Печорской впадины. Выше залегают относительно глубоководные маломощные глинисто-кремнисто-карбонатные отложения верхнего карбона (не везде), ассельского, сакмарского и артинского ярусов нижней перми, которые на западном борту прогиба замещаются биогерм-ными известняками зоны барьерных рифов,  отделявших  прогиб от Русской плиты, а к востоку фациально замещаются и перекрываются сероцветными морскими молассовыми толщами, постепенно распространяющимися все дальше к западу. Кунгурские отложения выражены мощной эвапоритовой толщей, с многочисленными пластами галита, а местами и сильвина, которая в северной части прогиба фациально замещается еще более мощной паралической угленосной толщей. Верхнепермские отложения представлены   краснодветными   континентальными молассами (на севере — лимнической угленосной толщей), а триасодые, присутствующие лишь на южном окончании и в северной части прогиба,— красно- и пестроцветными континентальными молассами.

В поперечном сечении прогиб асимметричен; с востока по системе пологих краевых надвигов на него надвинуто сооружение Урала, и верхнепалеозойские отложения в восточной части прогиба, а местами по всей его ширине, согласно Ю. В. Казанцеву, смяты в относительно пологие асимметричные брахиморфные или линейные складки, осложненные многочисленными чешуйчатыми надвигами (рис. 3). Их поверхности довольно круто наклонены к востоку, но с глубиной выполажи-ваются, становятся почти горизонтальными и, возможно, смыкаются в единую поверхность срыва. Кроме того, структуру краевого прогиба осложняют многочисленные лево- и правосторонние диагональные сдвиги. В этих складчато-разрывных деформациях участвуют отложения от верхней перми (и даже нижнего триаса на южном окончании прогиба и верхнего триаса в его самой северной части) вплоть до среднего палеозоя, ордовика, венда и рифея.

В принадвиговых участках над сводами антиклиналей часто наблюдается нагнетание кунгурской соли, создающее дополнительные структурные осложнения. На западном крыле южной части прогиба кунгурская соль образует различные диапировые формы — от пологих вздутий до ядер протыкания.

Формирование всех этих структур в краевом прогибе в основном происходило в течение поздней перми и раннего триаса

Предуральский краевой прогиб отделяет складчатое сооружение Урала от Восточно-Европейской платформы и Печоро-Баренцевоморской области. Прогиб протягивается вдоль всего западного склона Урала (кроме Мугоджар). Длина его превышает 2000 км, ширина составляет 50-70 (до 100) км.

Заложение прогиба произошло в конце карбона – начале перми.

Стратиграфический его разрез имеет следующий вид:

- верхний карбон – нижняя пермь (ассельский-артинский ярусы) сложены глубоководными глинисто-кремнисто-карбонатными отложениями небольшой мощности;

- верхняя пермь представлена красноцветными континентальными молассами, на севере – лимнической угленосной толщей;

- триас (отмечен лишь на юге и севере прогиба) представлен красноцветными и пестроцветными молласами.

Строение прогиба асимметричные: восточная его часть имеет складчато-надвиговое строение (брахиформные и линейные складки, осложненные надвигами, падающими на восток), западная сложена субгоризонтально залегающими отложениями.

Предуральский краевой прогиб со сравнительно пологим залеганием осадочных толщ в западном борту и более сложным в восточном;

зона западного склона Урала с развитием интенсивно смятых и нарушенных надвигами осадочных толщ нижнего и среднего палеозоя.

Архейские образования.

На Балтийском щите в Карелии и на Кольском полуострове выходят на поверхность древнейшие отложения, представленные гнейсами и гранулитами с возрастом 2,8—3,5 млрд. лет - беломориды, представленные первичноосадочными и вулканогенными породами основного и ультраосновного состава в виде метаморфитов (гнейсы, амфиболиты, кристаллические сланцы) с многочисленными интрузиями разной формы. Высокометаморфизованные толщи образуют гнейсовые купола, впервые описанные П. Эскола около Ладоги, с пологим, почти горизонтальным залеганием отложений в сводовой части и сложной складчатостью по краям.

На беломоридах в Карелии залегает толща AR2 (лопий), представленная ультраосновными (коматииты), основными и реже средними и кислыми вулканическими породами, вмещающими массивы гипербазитов и плагиогранитов. Формирование этих типично зеленокаменных отложений закончилось ребольской складчатостью на рубеже 2,6—2,7 млрд. лет.

Аналогом лопия на Кольском полуострове являются парагнейсы и высокоглиноземистые сланцы кейвской серии.

Нижнепротерозойские образования относительно слабо развиты в фундаменте платформы и слагают линейные складчатые зоны либо изометричные прогибы. На Балтийском щите выше архейских комплексов с явным несогласием залегают толщи сумия и сариолия. Первично базальтовые, андезито-базальтовые и реже более кислые вулканиты сумия приурочены к грабенам. Конгломераты сариолия прорываются гранитами.

Около 2,3 млрд. лет район современного Балтийского щита вступает в новый этап своего развития, уже напоминающий платформенный. Накоплению сравнительно маломощных толщ ятулия, суйсария и вепсия предшествовало формирование коры выветривания. Ятулий представлен кварцевыми конгломератами, гравелитами, песчаниками, кварцитами со следами ряби и трещин усыхания. Осадочные континентальные породы переслаиваются с покровами базальтов. Отложения суйсария слагаются в низах глинистыми сланцами, филлитами, шунгитами, доломитами; в средней части — покровами оливиновых и толеитовых базальтов, пикритов, а в верхах — снова преобладают песчаники и туфосланцы. Еще выше располагаются конгломераты и полимиктовые песчаники вепсия с силлами габбро-диабазов (1,1 —1,8 млрд. лет). Общая мощность всех этих отложений составляет 1—1,2 км, и все они прорываются гранитами рапакиви (1,67 млрд. лет).

Устанавливается довольно определенная последовательность дорифейских комплексов пород. Комплекс основания представлен серыми гнейсами и ультраметаморфическими толщами беломорид (нижний архей). Выше располагается зеленокаменный протогеосинклинальный лопийский комплекс (верхний архей), который с несогласием перекрывается проторогенной толщей сумия — сариолия и протоплатформенными отложениями ятулия, суйсария и вепсия. Намечается картина, близкая к фанерозойским геосинклиналям, но очень сильно растянутая во времени.

PAGE  2


 

А также другие работы, которые могут Вас заинтересовать

32753. Физические и математические маятники 57 KB
  9 Как видим период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний. В отличие от математического маятника массу такого тела нельзя считать точечной. Будем считать что вес физического маятника приложен к его центру тяжести в точке С. С учетом всех величин входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид: 7.
32754. Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний 54 KB
  Свободные колебания такой системы представляют собой периодическое движение около положения равновесия гармонические колебания. Если трение не слишком велико то система совершает почти периодическое движение синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Если осциллятор предоставлен сам себе то говорят что он совершает свободные колебания. Если же присутствует внешняя сила зависящая от времени то говорят что осциллятор испытывает вынужденные колебания.
32755. Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность 92.5 KB
  Уравнение затухающих колебаний и его решение. Закон затухания колебаний определяется свойствами колебательных систем. Дифференциальное уравнение свободных затухающих колебаний линейной системы где s колеблющаяся величина описывающая тот или иной физический процесс δ = const коэффициент затухания ω0 циклическая частота свободных незатухающих колебаний той же колебательной системы т.1 в случае малых затуханий где Период затухающих колебаний с учетом формулы 7.
32756. Уравнение вынужденных колебаний и его решение. Векторная диаграмма. Амплитуда и фаза вынужденных колебаний 60 KB
  Уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Перейдем теперь к pассмотpению колебаний в системе на которую действует переменная во времени внешняя сила Ft. Такие колебания называют вынужденными в отличие от свободных колебаний pассмотpенных ранее.
32757. Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний 54.5 KB
  Явление возрастания амплитуды колебаний при приближении частоты вынуждающей силы w к собственной частоте колебательной системы w0 называется резонансом. При наличии трения резонансная частота несколько меньше собственной частоты колебательной системы. Другие механические системы могут использовать запас потенциальной энергии в различных формах.2 Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы частоты вынуждающего переменного напряжения к частоте равной или близкой собственной частоте...
32758. Гидродинамика. Линии тока. Уравнение Бернулли 61 KB
  Гидродинамика раздел физики сплошных сред изучающий движение идеальных и реальных жидкости и газа. Если движение жидкости не содержит резких градиентов скорости то касательными напряжениями и вызываемым ими трением можно пренебречь и при описании течения. Если вдобавок малы градиенты температуры то можно пренебречь и теплопроводностью что и составляет приближение идеальной жидкости. В идеальной жидкости таким образом рассматриваются только нормальные напряжения которые описываются давлением.
32759. Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля 42 KB
  Число Рейнольдса. Ламинарное течение возможно только до некоторого критического значения числа Рейнольдса после которого оно переходит в турбулентное. Критическое значение числа Рейнольдса зависит от конкретного вида течения течение в круглой трубе обтекание шара и т. Число Рейнольдса Число Рейнольдса безразмерное соотношение которое как принято считать определяет ламинарный или турбулентный режим течения жидкости или газа.
32760. Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах 40 KB
  Равновесные состояния и процессы их изображение на термодинамических диаграммах. Состояние системы задается термодинамическими параметрами параметрами состояния. Обычно в качестве параметров состояния выбирают: объем V м3; давление Р Па Р=dFn dS где dFn модуль нормальной силы действующей на малый участок поверхности тела площадью dS 1 Па=1 Н м2; термодинамическую температуру Т К Т=273. Под равновесным состоянием понимают состояние системы у которой все параметры состояния имеют определенные значения не изменяющиеся с...
32761. Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева 59.5 KB
  Основное уравнение молекулярнокинетической теории идеального газа Это уравнение связывает макропараметры системы – давление p и концентрацию молекулс ее микропараметрами – массой молекул их средним квадратом скорости или средней кинетической энергией: Вывод этого уравнения основан на представлениях о том что молекулы идеального газа подчиняются законам классической механики а давление – это отношение усредненной по времени силы с которой молекулы бьют по стенке к площади стенки. Учитывая связь между концентрацией молекул в газе и его...