36168

Магнитные головки для записи информации на жесткий диск

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Вначале это были монолитные головки. Композитные головки выполнены из феррита на подложке из стекла или твердой керамики и имеют меньшие размеры в сравнении с монолитными. Дальнейшим развитием технологии композитных головок стали так называемые головки MIGтипа MIG Metal In Gap.

Русский

2013-09-21

112 KB

8 чел.

Магнитные головки для записи информации на жесткий диск

Запись и считывание данных с появившихся еще в 70-х годах ХХ века оксидных дисков осуществлялось с помощью миниатюрной ферритовой головки индукционного типа. Вначале это были монолитные головки. Однако сложность обработки хрупкого феррита не позволяла получать изделия достаточно миниатюрных размеров и вскоре от монолитных головок отказались в пользу так называемых композитных головок.

Композитные головки выполнены из феррита на подложке из стекла или твердой керамики и имеют меньшие размеры в сравнении с монолитными. Ширина сердечника и магнитного зазора стеклоферритовых головок также гораздо меньше, чем у монолитных, что обеспечивает возможность увеличения плотности записи и снижения  их чувствительности к внешним магнитным полям. Миниатюрные размеры таких головок и их малый вес позволили уменьшить зазор между головкой и поверхностью диска и, как следствие, повысить плотность записи на диск.

Дальнейшим развитием технологии композитных головок стали так называемые головки MIG-типа (MIG - Metal In Gap). При их производстве на поверхности ферритовых полусердечников, образующих рабочий зазор, наносится тонкий (1,5…2,0 мкм) слой сендаста или альфенола, обладающих высокими значениями индукции насыщения (сендаст - 12000 Гс, альфенол - 18000 Гс, феррит - 3000 Гс). По этой причине головки MIG-типа можно использовать для записи на носители с большой коэрцитивной силой и, таким образом, значительно увеличить плотность записи.

Благодаря своим преимуществам головки MIG-типа полностью заменили традиционные стеклоферритовые головки в высококачественных накопителях.

К началу 80-х годов была разработана технология изготовления тонкопленочных головок (TF - Thin Film), которые гораздо меньше ферритовых по размерам и обладают лучшими рабочими характеристиками.

Тонкопленочные головки изготавливаются методом фотолитографии, т.е. по той же самой технологии, что и интегральные схемы. В процессе производства на одной подложке формируют сразу несколько тысяч головок, после чего подложку разрезают на отдельные фрагменты, которые и используют в качестве головок. В результате головки получаются миниатюрными и очень легкими.

Магнитный сердечник головки формируется на поверхности керамической подложки методом электроосаждения сплава железа и никеля вокруг тонкой немагнитной пленки из алюминиевого сплава, что позволяет создавать головки с очень малым рабочим зазором. Алюминий в рабочем зазоре хорошо защищает его от повреждений (сколов краев) при случайных контактах с диском. Тонкопленочные головки обеспечивают высокую плотность записи и позволяют уменьшить ширину и шаг дорожек.

Небольшой вес и малые размеры головок позволяют значительно уменьшить расстояние между ними и поверхностями дисков в сравнении с ферритовыми и MIG-головками (0,05 мкм). В результате, повышается остаточная намагниченность участков поверхности носителя и увеличивается как амплитуда считанного сигнала, так и отношение "сигнал-шум". Благодаря небольшой высоте тонкопленочных головок при тех же размерах корпуса накопителя удается установить в него большее количество дисков. Усовершенствования технологии производства привели к снижению стоимости тонкопленочных головок, которая стала сопоставимой с ценой ферритовых головок и головок с металлом в зазоре (и к их более широкому распространению).

В начале 90-х годов были разработаны головки, принцип действия которых основан на магниторезистивном эффекте. Эффект этот состоит в том, что при движении головки над участками регистрирующего слоя с разными значениями остаточной намагниченности сопротивление чувствительного слоя оказывается различным.

Таким образом, в отличие от индуктивных головок, магниторезистивные головки восприимчивы не к изменениям намагниченности регистрирующего слоя, а к ее абсолютным значениям. Конструкция магниторезистивной головки предполагает наличие дополнительного подмагничивающего слоя, который должен обеспечивать наличие определенного уровня собственной намагниченности чувствительного слоя в отсутствии внешнего магнитного поля. Амплитуда выходного сигнала у магниторезистивных головок, по крайней мере, в несколько раз больше, чем у тонкопленочных, что позволяет использовать их для считывания информации, записанной с гораздо более высокой плотностью.

Однако есть у магниторезистивных головок и существенный недостаток - с их помощью нельзя производить запись. Они могут использоваться только для считывания данных. Поэтому для того, чтобы обеспечить возможность записи, в паре с магниторезистивными головками пришлось использовать все те же тонкопленочные индуктивные головки. Конструктивно обе головки (записывающая и считывающая) объединены в один узел (рис. 5.3).

Первыми появились простые однослойные магниторезистивные или MR-головки (MR - Magneto-Resistive), сопротивление которых изменяется в зависимости от напряженности поля, формируемого магнитограммой дорожки. Однако сопротивление таких головок способно изменяться не более чем на 10%.

Работы над магниторезистивными  головками продолжались и к 1997 году фирмой IBM был разработан и доведен до производства многослойный чувствительный элемент (сенсор) магниторезистивной головки, сопротивление которого может изменяться на 100%. Головка на его основе была названа GMR-головкой (GMR - Giant Magneto-Resistive -сверхмагниторезистивная). Амплитуда сигнала, формируемого магниторезистивными MR и GMR-головками, в отличие от обычных ферритовых и тонкопленочных головок, не зависит от скорости изменения магнитного поля, т.е. скорости считывания данных, что упрощает процесс обработки воспроизведенного сигнала и позволяет на порядок снизить количество ошибок при считывании информации c диска, а также обеспечивает возможность значительного повышения плотности записи.

GMR-сенсор состоит из четырех слоев (рис. 5.4):

  •  чувствительного (sensing layer) или свободного (free layer) слоя, который выполняется из ферромагнетика (различные сплавы железа, никеля и кобальта) - в нем носители заряда могут свободно менять свою ориентацию;
  •  проводящего слоя (conducting spacer), изготовленного из немагнитного материала; как правило, это тончайшая медная пленка толщиной в несколько атомов; этот слой необходим для уменьшения взаимного магнитного влияния соседних слоев;
  •  фиксирующего (pinned layer) кобальтового слоя; магнитная ориентация этого слоя постоянная;
  •  обменного (exchange layer) слоя, изготовленного из антиферромагнетика, т.е. вещества (например IrMn), носители магнетизма которого (ионы кристаллической решетки) имеют одинаковые, но противоположно направленные по отношению к ближайшим соседним носителям, магнитные моменты.

Направление магнитного поля внутри фиксирующего слоя всегда остается одним и тем же — это обеспечивается за счет наличия обменного слоя, намагниченность которого равна нулю, образуя так называемую доменную стенку. А вот в чувствительном слое направление магнитного поля изменяется в зависимости от направления внешнего магнитного поля. Это в свою очередь приводит к изменению общего сопротивления чувствительного и фиксирующего слоев.

Причиной такого изменения является физическое проявление одной из квантовых характеристик электрона, а именно - спина. Спин (от англ. spin — вертеть[-ся]) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Существование спина в системе тождественных взаимодействующих частиц является причиной новых квантовомеханических явлений, не имеющих аналогии в классической механике: обменного взаимодействия и обменной энергии. Любая частица может обладать двумя видами углового момента: орбитальным угловым моментом и спином. В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которая в рамках классической релятивистской механики объяснению не поддается. А поскольку на современном уровне развития науки объяснить механизм возникновения спина невозможно, приходится ограничиваться только изучением физического проявления его свойств. 

Несмотря на то, что спин не связан с реальным вращением частицы, он, тем не менее, порождает определённый магнитный момент, а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем.

 Спиновый магнитный момент электронов (в дальнейшем - просто спин) может иметь только два взаимно противоположных направления. Электроны проводимости со спином, направление которого совпадает с направлением магнитного поля внутри GMR-среды, испытывают меньшее сопротивление при движении и свободно перемещаются внутри чувствительного и фиксирующего слоев. Если направления магнитных полей в чувствительном и фиксирующем слоях противоположны друг другу, то движение электронов со спином вверх будет сдерживаться одним из этих двух слоев, а со спином вниз - другим, вследствие чего общее сопротивление чувствительного и фиксирующего слоев возрастает. В первом случае электрическое сопротивление среды будет меньше, чем во втором (рис. 5.5). Этот эффект и используется в работе GMR-сенсора, который по своей физической сущности является спиновым вентилем (спиновым диодом).

Следует отметить, что сопротивление чувствительно слоя GMR-сенсора изменяется также и вследствие MR-эффекта, однако доминирует в этом случае GMR-эффект.

GMR-сенсор - изделие весьма миниатюрное, толщина каждого из слоев (кроме немагнитного проводящего) - порядка 10 нм, а общая толщина четырехслойного датчика - порядка 30 нм. Ширина считывающего элемента - 0,3-0,5 мкм [103].

Индуктивная головка записи

Магниторезистивная головка чтения

кран

Домены

Рис. 5.3. Комбинированная магнитная головка

Обменный слой

Проводящий слой

Фиксирующий слой слой

Чувствительный слой

Участки регистрирующего слоя с различной намагниченностью

Рис. 5.4. Структура GMR-сенсора

Фиксирующий слой

Чувствительный слой

Проводящий слой

Фиксирующий слой

Чувствительный слой

Проводящий слой

+V

–V

–V

+V

Сопротивление GMR-сенсора мало

Сопротивление GMR-сенсора велико

Рис. 5.5. Принцип работы GMR-сенсора


 

А также другие работы, которые могут Вас заинтересовать

48118. Корреляционно–регрессионный анализ связей социально–экономических явлений 405 KB
  В среднем по совокупности 20 9525 ПОЛЕ КОРРЕЛЯЦИИ Рисунок 3 – Зависимость производственной себестоимости 1 ц зерна от объема ЭМПИРИЧЕСКАЯ ЛИНИЯ РЕГРЕССИИ Рисунок 4 – Зависимость уровня заработной платы рабочих сельскохозяйственных предприятий региона от производительного стажа их работы ПОКАЗАТЕЛИ ТЕСНОТЫ СВЯЗИ 1 Коэффициент корреляции знаков Фехнера: где nа число совпадений знаков отклонений индивидуальных значений признаков от их среднего значения; nв число несовпадений...
48119. Показатели вариации и анализ вариационных рядов 244.5 KB
  Ширина интервала Число кредитных организаций Плотность распределения до 3 3 150 50 3– 10 7 254 363 10– 30 20 316 158 30– 60 30 256 85 60– 150 90 144 16 150–300 150 90 06 300 и выше 150 112 07 Итого – 1322 – ПОКАЗАТЕЛИ ЦЕНТРА РАСПРЕДЕЛЕНИЯ Средняя арифметическая для дискретного ряда распределения: где –варианты значений признака; – частота повторения данного варианта. Средняя арифметическая для интервального ряда распределения: где – середина соответствующего интервала; – частота или частость ряда. 1 –...
48120. Основы алгоритмизации. Основы программирования 2.4 MB
  Для ввода данных в компьютер используется: клавиатура набор данных вручную; жесткий диск ввод данных из файла. Для вывода данных из компьютера используется: экран монитора для визуализации; принтер для документирования; жесткий диск для сохранения данных в файле. Алгоритм как вычислительный процесс – это точное предписание определяющее вычислительный процесс ведущий от варьируемых исходных данных к искомому результату рис. Определенность – предписания алгоритма должны быть точными и понятными обеспечивать...
48121. РЯДЫ ДИНАМИКИ 514.5 KB
  –Виды рядов динамики Таблица 1– Показатели размера крестьянских фермерских хозяйств в Тамбовской области в 20032007 годы Показатели Вид ряда 2003 г. 1594 104 843 802 691 649 Приемы приведения уровней динамического ряда к сопоставимому виду: смыкание рядов динамики; приведение уровней к одному основанию; приведение сравниваемых показателей к однородной структуре; замена абсолютных показателей относительными; приведение...
48122. СТАТИСТИЧЕСКИЕ ТАБЛИЦЫ И ГРАФИКИ 319.5 KB
  ПЕРЕЧНЕВАЯ ТАБЛИЦА ПО ВИДОВОМУ ПРИЗНАКУ Таблица 2 Ресурсы ФГУП учхозплемзавода Комсомолец Мичуринского района Тамбовской области. ПЕРЕЧНЕВАЯ ТАБЛИЦА ПО ТЕРРИТОРИАЛЬНОМУ ПРИЗНАКУ Таблица 3– Потребление основных продуктов питания населением областей Центрально–Чернозёмного района в 2010 году на душу населения; килограммов Область Мясо и мясопродукты Молоко и молокопродукты Хлебные продукты Фрукты и ягоды Белгородская 62 249 140 46...
48123. Статистические показатели 155.5 KB
  Индивидуальные значения признака частота повторения значений признака в совокупности весы Методика расчёта различных видов степенных средних величин Вид степенной средней Показатель степени Формула расчёта простая взвешенная Средняя гармоническая 1 Средняя геометрическая 0 Средняя арифметическая 1 Средняя квадратическая 2 ПРАВИЛО МАЖОРАНТНОСТИ СРЕДНИХ СВОЙСТВА СРЕДНЕЙ АРИФМЕТИЧЕСКОЙ ВЕЛИЧИНЫ средняя арифметическая постоянной величины равна этой постоянной: нулевое алгебраическая сумма линейных отклонений...
48124. Организация труда. Учебное пособие 780.5 KB
  Управление трудовыми ресурсами Днепропетровск – 2003 Организация труда опорный конспект лекций: Учебное пособие. Опорный конспект лекций подготовлен в соответствии с учебной программой курса Организация труда. Раскрыты сущность и краткое содержание основных понятий организации труда.
48125. ЕКОНОМІЧНЕ МИСЛЕННЯ 3.05 MB
  По суті економічна свідомість – це відображення економічного буття суспільства тобто виробництва організації й розподілу економічних благ. Причому у ньому відображені насамперед умови господарського життя людей відносини між класами соціальними групами із приводу власності на засоби виробництва. Саме вони змушують людину постійно вдосконалювати варіанти виробництва шукати нові шляхи створення нових благ. З іншого боку – щоб ці потреби задовольнити необхідні ресурси які в кожний даний момент часу обмежені тобто їх завжди менше ніж...