36169

Технологии записи на магнитные диски

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Домены магнитных материалов используемых в продольной записи располагаются параллельно поверхности носителя. Этот эффект и используется при записи цифровых данных магнитным полем головки изменяющимся в соответствии с сигналом информации. Попытки увеличить поверхностную плотность записи путем уменьшения размеров частиц будут увеличивать отношение размера зоны неопределенности к размеру полезной зоны не в пользу последней и в конце концов неизбежно приведут к так называемому суперпарамагнитному эффекту когда частицы перейдут в однодоменное...

Русский

2013-09-21

206 KB

12 чел.

Технологии записи на магнитные диски

Продольная запись

Первые образцы жестких дисков, появившиеся в 70-х годах ХХ века, использовали технологию продольной записи информации. Для этого поверхность диска, так же, как и поверхность магнитной ленты, покрывалась слоем двуокиси хрома CrO2 или оксидом железа, обеспечивающим продольную намагниченность регистрирующего слоя. Коэрцитивная сила такого носителя Hc = 28 кА/м.

Технология нанесения оксидного слоя довольно сложная. Сначала на поверхность быстро вращающегося алюминиевого диска методом напыления наносится суспензия из смеси порошка оксида железа и расплавленного полимера. За счет действия центробежных сил она равномерно распределяется по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется, и на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения. Затем  диск окончательно полируется. Диски накопителей такого типа имеют коричневый или желтый цвет.

Как известно, магнитные материалы имеют доменную структуру, т.е. состоят их отдельных микроскопических областей - доменов, внутри которых магнитные моменты всех атомов направлены в одну сторону. В результате каждый такой домен имеет достаточно большой суммарный магнитный момент. Домены магнитных материалов, используемых в продольной записи, располагаются параллельно поверхности носителя. Если на магнитный материал не воздействует внешнее магнитное поле, ориентация магнитных моментов отдельных доменов имеет хаотичный характер и любое их направление равновероятно. Если же такой материал поместить во внешнее магнитное поле, то магнитные моменты доменов будут стремиться сориентироваться в направлении, совпадающем с направлением внешнего магнитного поля. Этот эффект и используется при записи цифровых данных магнитным полем головки, изменяющимся в соответствии с сигналом информации.

Минимальным элементом (ячейкой) памяти магнитного регистрирующего слоя, способным хранить один бит информации, является не отдельный домен, а частица (область), состоящая из нескольких десятков доменов (70-100). Если направление суммарного магнитного момента такой частицы совпадает с направлением движения магнитной головки, то такое ее состояние можно сопоставить логическому «0» данных, если направления противоположны, – логической «1».

Однако если соседние области имеют противоположное направление магнитных моментов, то домены, расположенные на границе между ними и соприкасающиеся одноименными полюсами, будут отталкиваться друг от друга и в конце концов изменят направления своих магнитных моментов каким-то непредсказуемым образом с тем чтобы принять энергетически более устойчивое положение. В результате на границе двух областей образуется зона неопределенности, уменьшающая размеры области, хранящей бит записанной информации и, соответственно, уровень полезного сигнала при считывании (рис. 5.6). Уровень шумов при этом, разумеется, увеличивается.

Попытки увеличить поверхностную плотность записи путем уменьшения размеров частиц будут увеличивать отношение размера зоны неопределенности к размеру полезной зоны не в пользу последней и, в конце концов, неизбежно приведут к так называемому суперпарамагнитному эффекту, когда частицы перейдут в однодоменное состояние и будут уже неспособны фиксировать записываемую информацию, поскольку соседние домены с противоположно направленными магнитными моментами будут изменять свою ориентацию сразу же после удаления магнитного поля записывающей головки. Материал регистрирующего слоя превратится в равномерно намагниченный по всему объему.

Таким образом, из-за наличия суперпарамагнетизма технология продольной записи, достигнув к середине первого десятилетия XXI века величины плотности записи в 120 Гбит на дюйм2, практически исчерпала свои возможности и уже не в состоянии обеспечивать существенное повышение емкости накопителей на жестких дисках. Это заставило разработчиков обратиться к другим технологиям, свободным от этого недостатка.

Перпендикулярная запись

Возможность перпендикулярной записи основана на том, что в тонких пленках, содержащих кобальт, платину и некоторые другие вещества, атомы этих веществ стремятся ориентироваться таким образом, что их магнитные оси оказываются перпендикулярными поверхности носителя. Домены, сформированные из таких атомов, также располагаются перпендикулярно поверхности носителя.

Сигнал в считывающей магнитной головке формируется только тогда, когда она пересекает силовые линии магнитного поля домена, т.е. в том месте, где эти силовые линии перпендикулярны поверхности носителя. У домена, расположенного параллельно поверхности носителя, силовые линии магнитного поля перпендикулярны поверхности только у его концов, там, где они выходят на поверхность (рис. 5.7,а). Когда головка перемещается параллельно домену и, следовательно, параллельно его силовым линиям сигнал в ней отсутствует. Уменьшать длину домена, стремясь повысить плотность записи, можно только до определенных пределов - пока не начнет сказываться суперпарамагнитный эффект. Если же домены располагаются перпендикулярно поверхности носителя, то силовые линии их магнитных полей всегда будут перпендикулярны поверхности и будут содержать в себе информацию (рис. 5.7,б). «Холостых» пробегов, обусловленных длиной домена, здесь уже не будет. Как не будет и суперпарамагнетизма, поскольку домены с противоположной намагниченностью не будут отталкиваться друг от друга. Очевидно, что плотность записи на носителе с перпендикулярной намагниченностью можно получить более высокую.

Диск, предназначенный для перпендикулярной записи, требует особой технологии изготовления. Основа пластины тщательно полируется, а затем методом вакуумного напыления на ее поверхность наносится выравнивающий слой фосфата никеля NiP толщиной порядка 10 мкм, который, во-первых, уменьшает шероховатость поверхности, во-вторых, увеличивает адгезию к последующим слоям (рис. 5.8).

Далее наносится слой магнитомягкого материала, обеспечивающий возможность считывания данных с регистрирующего слоя, и сам регистрирующий слой из материала с перпендикулярной ориентацией магнитных доменов. В качестве регистрирующего слоя может использоваться кобальт (Со), платина (Pt), палладий (Pd), их сплавы друг с другом и с хромом (Cr), а также многослойные структуры, состоящие из тонких пленок этих металлов толщиной в несколько атомов.

Поверх регистрирующего слоя наносится защитная пленка из стеклокерамики, толщиной порядка сотых долей микрона.

Запись информации на регистрирующий слой с перпендикулярной намагниченностью имеет свои особенности. Для того чтобы обеспечить приемлемый уровень сигнала и обеспечить хорошее отношение сигнал/шум, силовые линии магнитного поля, формируемого головкой записи, должны, проходя через регистрирующий слой, вновь замыкаться на сердечник головки. Для этого и служит магнитомягкий подслой, расположенный ниже регистрирующего (рис. 5.9).

По предварительным прогнозам специалистов технология перпендикулярной записи позволит реализовать плотность записи до 500 Гбит/дюйм2. При этом емкость 3,5-дюймового накопителя составит 2 Тбайта, 2,5-дюймового - 640 Гбайт, 1-дюймового - 50 Гбайт. Однако это только предварительные прогнозы. Не исключено, что верхним пределом окажется величина в 1 Тбит/дюйм2 и даже больше. Будущее покажет.

Перспективные технологии магнитной записи

Технология перпендикулярной записи в настоящее время находится в стадии активного развития и до предельных значений плотности записи здесь пока еще далеко. Однако этот момент когда-нибудь все-таки настанет. Может быть даже раньше, чем сейчас представляется. Поэтому исследования в направлении поиска новых высокоэффективных технологий магнитной записи ведутся уже сейчас.

Одной из таких технологий является термомагнитная запись HAMR (Heat Assisted Magnetic Recording), т.е. запись с предварительным нагревом носителя. Этот метод предусматривает кратковременный (1 пикосекунда) нагрев участка носителя, на который производится запись, сфокусированным лучом лазера - так же, как в магнитооптической записи. Разница между технологиями проявляется в способе чтения информации с диска. В магнитооптических приводах информация считывается лучом лазера, работающего на меньшей, чем при записи, мощности, а при термомагнитной записи информация считывается магнитной головкой так же, как с обычного жесткого диска. Да и плотность записи здесь планируется получить гораздо более высокую, чем в магнитооптических форматах MD, CD-MO или DVD-MO - до 10 Тбит/дюйм2. Поэтому в качестве регистрирующей среды здесь необходимы иные материалы. Сейчас в качестве таких материалов рассматриваются различные соединения платины, кобальта, неодима, самария и некоторых других элементов: Fe14Nd2B, CoPt, FePt, Co5Sm и пр. Такие материалы очень дороги - как из-за дороговизны входящих в их состав редкоземельных элементов, так и из-за сложности и дороговизны технологического процесса по их получению и нанесению на поверхность основы предполагаемого носителя. Конструкция головки записи/считывания в технологии HAMR также предполагается совсем иная, чем в магнитооптической записи: лазер должен располагаться с той же стороны, что и магнитная головка, а не с противоположной, как в магнитооптических рекордерах (рис. 5.10). Нагрев предполагается производить до температуры порядка 100 градусов Цельсия, а не 180.

Еще одним перспективным направлением развития магнитной записи является использование в качестве регистрирующего слоя материалов, частицы в которых выстроены в четко структурированный доменный массив (Bit Patterned Media). При такой структуре каждый бит информации будет хранится всего в одной ячейке-домене, а не в массиве из 70-100 доменов (рис. 5.11).

Такой материал можно либо создать искусственно с помощью фотолитографии (рис. 5.12), либо найти сплав с подходящей самоорганизующейся структурой.

Первый метод вряд ли получит развитие, поскольку для получения материала, допускающего плотность записи хотя бы 1 Тбит/дюйм2, размер одной частицы должен составить максимум 12,5 нм. Ни существующая, ни планируемая в ближайшие 10 лет технология литографии этого не обеспечивает. Хотя есть довольно хитроумные решения, позволяющие не сбрасывать со счетов данный подход.

Поиск самоорганизующихся магнитных материалов (SOMA - Self-Ordered Magnetic Array) – весьма перспективное направление. Уже несколько лет специалисты компании Seagate указывают на особенности сплава FePt, выпариваемого в гексановом растворителе. Полученный материал имеет идеально ровную ячеистую структуру. Размер одной ячейки – 2,4 нм. Если учесть, что каждый домен обладает высокой стабильностью, можно говорить о допустимой плотности записи на уровне 40-50 Тбит/дюйм2! Похоже, это и есть окончательный предел записи на магнитные носители [104].


S

S

S

S

S

S

S

N

N

N

N

N

N

Зоны неопределенности

Рис. 5.6. Зоны неопределенности, возникающие при продольной записи

S

N

S

S

N

N

S

S

S

N

S

S

N

N

N

N

Сигнал есть

Сигнала нет

а)

б)

Рис. 5.7. Носители с параллельной (а)

и перпендикулярной  (б) намагниченностью

Подслой из магнитомягкого материала

Основа диска (Al)

Выравнивающий слой (NiP)

Регистрирующий слой с перпендикулярной намагниченностью

Защитный слой

Рис. 5.8. Структура жесткого диска с перпендикулярной

намагниченностью

Магнитотвердый регистрирующий слой

Магнитомягкий подслой

Рис. 5.9. Запись на материал с перпендикулярной

намагниченностью

Записывающий полюс

Возврат-ный полюс полюс

Рис. 5.10. Магнитооптическая головка HARM

Рис. 5.11. Микроструктура ВРМ: 1 - область, соответствующая одному биту информации при обычной записи; 2 - массив, границы которого совпадают с границами доменов; 3 - домен, который способен хранить один бит данных

Рис. 5.12. Регистрирующий слой, полученный с помощью фотолитографии


 

А также другие работы, которые могут Вас заинтересовать

29181. Криминалистическая запечатлевающая (оперативная) фотография 43.5 KB
  Методы судебнооперативной фотографии – это совокупность правил и рекомендаций по выбору фотографических средств и условий съёмки с целью реализации поставленных задач. Метод определяет технику технические условия средства производства съёмки. Разновидности панорамной съёмки: 1 линейная панорама Применяется для съёмки объектов имеющих значительные линейные размеры большую протяжённость.
29182. Судебно-исследовательская фотография 30.5 KB
  Сфера применения – тексты которые залиты например кровью зачёркнуты или произошло наложение одного цвета на другой. Основное правило использования светофильтров: 1 для ослабления яркости необходимо использовать светофильтр того же цвета который необходимо погасить 2 для усиления яркости необходимо использовать светофильтр дополнительного цвета. Существует круг Освальда который позволяет визуально наглядно увидеть какой цвет для какого является дополнительным например: для жёлтого цвета дополнительным является оранжевый для...
29183. Виды криминалистической съемки 29 KB
  Обзорная съёмка Обзорная съёмка – это фиксация общего вида самого места происшествия. Технические способы обзорной съёмки: метрическая съёмка с глубинным и квадратным масштабом. 3 узловая съёмка Узловая съёмка – это фиксация наиболее значимых и важных объектов узлов.
29184. Опознавательная съёмка (сигналитическая фотография) 28 KB
  Однако если у человека на левой стороне лица есть какиелибо отличительные особенности то делается снимок левого профиля. В криминалистической практике часто делаются также снимок в полный рост и снимок левого полупрофиля это поворот головы вправо на 3 4. 3 снимок делается в 1 7 натуральной величины Для этого при печати добиваются того чтобы расстояние между зрачками глаз было равно 1 см.
29185. Понятие трасологии 28 KB
  Один из центральных разделов криминалистической техники в котором изучаются теоретические основы и закономерности возникновения следов разрабатываются рекомендации по применению средств и методов обнаружения изъятия и исследования следов. Трасология – отрасль криминалистической техники которая изучает закономерности образования следов – отображений и разрабатывает средства приемы и методы обнаружения изъятия фиксации и исследования этих следов в целях использования их для раскрытия расследования и предупреждения преступлений. Задачи...
29186. Способы фиксации следов рук 34 KB
  Протокол осмотра места происшествия должен содержать следующую информацию: 1 описание объекта на котором обнаружен след: наименование объекта форма размер цвет объекта характер поверхности объекта гладкая шероховатая 2 место нахождения следа на этом объекте Должны быть выбраны два постоянных ориентира нужно выделить верхнюю и нижнюю части объекта правую и левую сторону. 3 описание самого следа след нужно назвать Главное требование к протоколу – объективность = вместо формулировки найден след пальца руки целесообразнее...
29187. Понятие следа. Классификация следов в трасологии 37 KB
  Каждое преступное деяние вызывает изменение в окружающей обстановке определенные следы. Слово след имеет 4 значения: Отпечаток оттиск Остаток Последствия Нижняя часть ступни подошва ноги Криминалисты различают следы в широком и узком смысле слова. В узком смысле – это только следы отображения такие следы в которых передаются признаки оставившего их объекта и механизм их образования. по объекту следообразования: 1 следы человека – это следы рук ног зубов губ ушной раковины и т.
29188. Следы рук 40 KB
  Общие признаки папиллярных узоров: 1 тип папиллярного узора: дуговые узоры петлевые узоры завитковые узоры В основу классификации положена внешняя характеристика. Каждый папиллярный узор образуется слиянием 3х потоков папиллярных линий. Дельта – это участок папиллярного узора в котором сходятся все 3 потока папиллярных линий. 2 вид папиллярного узора: дуговой папиллярный узор делится на простой и шатровый завитковый узор: улитка двойной завиток 3 величина узора 4 крутизна изгиба рисунка 5 направление потока папиллярных линий и др.
29189. Обнаружение, фиксация и изъятие следов ног 48 KB
  Обнаружение следов обуви Следы обуви чаще видимые = применяются в основном визуальные методы их обнаружения. Фиксация следов обуви: 1 описание в протоколе осмотра места происшествия Протокол осмотра места происшествия должен содержать следующую информацию: Всегда обращается внимание на качество следов. 1 Описывается вся обстановка: количество следов месторасположение следов взаиморасположение следов относительно друг друга.