36201

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ЗДАНИЯМ. ВНЕШНИЕ ВОЗДЕЙСТВИЯ НА ЗДАНИЕ

Доклад

Архитектура, проектирование и строительство

ТРЕБОВАНИЯ ПРЕДЪЯВЛЯЕМЫЕ К ЗДАНИЯМ. 81 Здания любого типа должны в максимальной степени удовлетворять: функциональным требованиям техническим требованиям экономическим требованиям архитектурнохудожественным требованиям Требования к функциональной целесообразности Полное соответствие своему назначению. Этому требованию должно подчиняться как объемнопланировочное решение состав и размеры помещений их взаимосвязь так и конструктивное решение конструктивная схема здания...

Русский

2013-09-21

28.01 KB

33 чел.

8.ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ЗДАНИЯМ. ВНЕШНИЕ ВОЗДЕЙСТВИЯ НА ЗДАНИЕ.                        8(1)

Здания любого типа должны в максимальной степени удовлетворять:

  1.  
  1.   функциональным требованиям
  2.   техническим требованиям
  3.   экономическим требованиям
  4.   архитектурно-художественным требованиям

Требования к функциональной целесообразности

Полное соответствие своему назначению. Этому требованию должно подчиняться как объемно-планировочное решение (состав и размеры помещений, их взаимосвязь), так и конструктивное решение (конструктивная схема здания, материал основных конструкций, отделочные материалы).

Функциональное назначение здания определяет требования к освещенности, температуре, звукоизоляции, вентиляции, отоплению, водо- и газоснабжению, канализации, лифтам, бытовому оборудованию, теле- и радиофикации, к отделке помещений и благоустройству здания и др.

Проект должен обеспечивать максимальную оптимальную среду для человека в процессе осуществления им функций, для которых здание предназначено. Параметры среды- габариты помещений здания в соответствии с их назначением, состояние воздушной среды (температурно-влажностные характеристики, показатели воздухообмена), световой режим (показатели необходимой естественной или искусственной освещенности), звуковой режим (условие слышимости в помещении и защита его от шумов, проникающих из внешней среды) - устанавливаются для каждого вида здания строительными нормами и правилами (СНиП).

Требования к технической целесообразности

Требования к технической целесообразности проектного решения подразумевает выполнение его конструкции в полном соответствии с законами строительной механики, физики и химии. Для этого проектировщику необходимо выявить и точно учесть все внешние воздействия на здания.

Внешние воздействия на здания условно подразделяют на силовые и несиловые.

К силовым относятся следующие виды нагрузок и воздействий:

  1.  Постоянные нагрузки - от собственного веса конструкции здания и давления грунта основания на его подземную часть;
  2.  Длительно действующая временная нагрузка - от стационарного технологического оборудования, перегородок, длительно хранимых грузов (книгохранилища), воздействия неравномерных деформаций грунтов основания и т.д.
  3.  Кратковременные нагрузки - от массы подвижного оборудования, людей, мебели, снега, ветра и т.д.
  4.  Особые воздействия – от сейсмических явлений, взрывов, просадочности лессового или протаявшего, мерзлого грунтового основания здания, воздействие деформации земной поверхности в районах влияния горных выработок и т.д.

К несиловым воздействиям относятся:

  1.  Переменные температуры наружного воздуха, вызывающие линейные температурные деформации, изменения размеров наружных конструкций здания или температурные усилия в них. При стесненности проявления температурных деформаций жесткого закрепления конструкции;
  2.  Атмосферная и грунтовая влага на материал конструкции приводящая к изменениям физических параметров, а иногда структуры материалов вследствие их атмосферной коррозии , а так же воздействия парообразной влаги воздуха в помещении на материал наружных ограждений;
  3.  Солнечная радиация, влияющая на световой и температурный режим помещений и вызывающая изменение физико-технических свойств. поверхностных слоев конструкции.(старение пластмасс, плавление битумных материалов)
  4.  Инфильтрация наружного воздуха не плотности ограждений конструкций, влияющих на их теплоизоляционные свойства. и температурно-влажностный режим помещения.
  5.  Химическая агрессия водорастворимых примесей в воздушной среде кот. в растворенном атмосферной влагой состоянии вызывает разрушение (хим. агрессию) поверхностных слоев материалов конструкций;
  6.  Разнообразные шумы от источников вне и внутри зданий, нарушающих нормальный акустический режим помещений;
  7.  Биологическое воздействие - от микроорганизмов и насекомых до разрушающих конструкции из органических материалов.

При проектировании конструкций зданий должно предусматриваться их сопротивление всем перечисленным воздействиям. Это требование обеспечивается прочностью, устойчивостью и жесткостью несущих конструкций, долговечностью и стабильностью эксплуатационных качеств ограждающих конструкций.

  1.  Прочность - способность воспринимать силовые нагрузки и воздействия без разрушения.
  2.  Устойчивость - способность конструкции сохранять равновесие при силовых нагрузках и воздействиях.
  3.  Жесткость - способность конструкции осуществлять свои статические функции с малыми заранее заданными величинами деформации.
  4.  Долговечность - предельный срок сохранения физических качеств конструкции здания в процессе эксплуатации.

Долговечность конструкции зависит от:

  1.  ползучести - процесса малых непрерывных деформаций материала конструкции при длительном загружении;
  2.  морозостойкости - сохранения влажными материалами необходимой прочности при многократном чередовании замораживания и оттаивания.
  3.  влагостойкости - способности материалов противостоять воздействию влаги без существенного снижения прочности следственного расслоения, возбуждения, коробления и растрескивания.
  4.  коррозионостойкости - способности материалов сопротивляться разрушению, вызываемому химическими, физическими или электрохимическими процессами.
  5.  биостойкости - способности органических материалов противостоять разрушающим воздействиям микроаргонизмов и насекомых.

  1.  Стабильность эксплуатационных качеств, к которым относятся: тепло, звукоизоляция и воздухопроницаемость ограждения - способность конструкции сохранять постоянный уровень изоляционных свойств в течение проектного срока службы здания или конструктивного элемента. Методика расчета долговечности конструкции не создана. Поэтому применяется условная оценка долговечности по предельному сроку службы здания.

По этому признаку здания и сооружения разделяют на 4 степени:

  1.  срок службы более 100 лет (высотки)
  2.  срок службы от 50 до 100 лет
  3.  срок службы от 20 до 50 лет
  4.  срок службы до 20 лет (временные здания и сооружения)

Кроме того классификация конструкций зданий осуществляется по принципу пожарной безопасности, которая определяется возгораемостью конструкций и их огнеопасностью.

По возгораемости конструкций различают материалы:

  1.  несгораемые - не воспламеняются, не тлеют и не обугливаются под действием  огня или высоких температур;
  2.  трудно сгораемые - с трудом воспламеняются, тлеют и обугливаются, но процессы горения и тления прекращаются при устранении огня или высоких температур;
  3.  сгораемые - воспламеняются или тлеют под действием  огня или высоких температур, и эти процессы не прекращаются после удаления источников огня.

Пределы огнестойкости строительных конструкций определяются длительностью (в часах) испытаний конструкций на огнестойкость до возникновения одного из следующих предельных состояний: обрушение, образование в конструкции сквозных трещин или отверстий, повышенная температура.

Требования к экономической целесообразности

На экономические показатели жилой застройки влияют этажность зданий, планировочная и конструктивная схемы, протяженность здания, площадь квартир, плотность застройки, благоустройство, в том числе инженерные коммуникации, улицы, дороги, транспорт, общегородские подводящие сети, зеленые насаждения.

Класс здания назначают при проектировании в соответствии с его народно-хозяйственной и градостроительной ролью.

  1.  К I классу относятся крупные общественные здания (театры, музеи, цирк), правительственные здания, жилые дома высотой более 9 этажей.
  2.  Ко II классу - общественные здания массового строительства и дома не свыше 5 этажей.
  3.  К III классу - дома не свыше 5 этажей и общественные здания малой вместимости.
  4.  К IV классу - малоэтажные жилые дома и временные общественные здания.

Основные конструкции здания I класса должны иметь 1-ую степень долговечности и огнестойкости; II класса - 2-ую степень; III класса - 2-ую степень долговечности и 3-ью степень огнестойкости; IV класса - 3-ью степень долговечности и без огнестойкости.

Архитектурно-художественные требования

Архитектурно-художественные требования к проектному решению заключаются в необходимости соответствия внешнего вида здания, его назначения и формирования объемов и интерьеров здания по законам красоты.

Эстетические требования к зданию связаны с понятием красоты в архитектуре или архитектурной выразительности, поскольку архитектура создает наряду с утилитарными ценностями художественные образы. Произведения архитектуры существуют в системе (ансамбле), где архитектура возглавляет другие искусства, определяя их синтез.

8(2)


 

А также другие работы, которые могут Вас заинтересовать

31407. Дослiдження сiнхронного двигуна змiнного струму 84.5 KB
  Дослiдити вплив зсуву фаз додоткової обмотки збудження статора на напрямок обертання ротора двигуна. Обладнання: Стенд з сiнхронного двигуна змiнного струму з постійним магнiтом в якостi ротора обладнаний понижуючим фрікціонним редуктором обертiв та регулятором напруги. Використана у стенді модель двигуна має дві незалежні обмотки статорів.
31408. Дослiдження послiдовного та паралельного з’єднання опорiв 48.5 KB
  Обчислення опору кола за вiдомими опорами складових. Занотувати значення опорiв R1 R2 R3 R4 R5 Перемички X0X5 дозволяють тимчасово розiрвати дiлянку кола для пiдєднання амперметру до мiсця розриву. Тимчасово розiрвiть дiлянку кола витягнувши одну з перемичок X0X5 i пiдєднавши замiсть перемички амперметр попередньо перемкнути мультиметр на вимiр струму.
31409. Дослiдження фазообертача на обертовому трансформаторі 90.5 KB
  Дослiдити зміни фази напруги на роторі обертового трансформатора в залежності від кута ротора. А з ротора знімається напруга U3. Якщо вісь обмотки ротора співпадає з вісю обмотки на яку подано напругу U1 то фаза напруги ротора U3 співпадає з фазою U1. Відповідно коли вісь обмотки ротора співпадає з вісю обмотки з напругою U2 фаза U3 співпадає з фазою U2.
31410. Дослiдження потенцiалу i напруженностi поля у електричнiй ваннi 149.5 KB
  Мета: Вимiр потенцiалiв i напруженностi поля для заданної конфiгурацiї електродiв. План роботи Зiбрати макет з заданою конфiгурацiє електродiв згiдно малюнка варiанту завдання. Намалювати свою конфiгурацiю електродiв на графiку. Вставити виводи електродiв моделi у кришку згiдно малюнку завдання так щоб електроди опинились у вiдповiдних отворах кришки.
31412. Дослiдження потужностi у системi джерело-навантаження 112 KB
  Джерело живлення та лiнiя постачання моделюются ЕРС та опором RS що вiдповiдає спiльному опору джерела та лiнiї. Занотувати значення опору RS. Вимiряти ЕРС джерела живлення E падiння напруги на опорi джерела US напругу на навантаженнi споживача UL струм кола I для рiзних значень опору RL. Для кращого вiдтворення результатiв вимiрiв доцiльно провести вимiри для усього диапазону змiн опору навантаження вiд мiнiмального до максимального його значення з приблизно рiвномiрним шагом по опору приблизно 10 максимального значення опора RL.
31413. Дослiдження лічильника електроенергії 69 KB
  Визначити залежність швидкості обертання диска лічильника від потужності активного навантаження. Зичайний асінхронний двигун переважно працює в області малих значень коефіциента ковзання тобто в умовах коли швидкість обертання ротора близка до швидкості обертання магнітного поля. Для двополюсного двигуна масимальна швидкість обертання становить 3000 обертів на минуту для частоти мережі 50 Hz 5060=3000. На відміну від звичайного двигуна ротор лічильника працює в області великих значень ковзання тобто швидкість обертання ротора...
31414. Дослiдження схеми напiвпровiдникового випрямляча 83.5 KB
  Серед них найпоширiнiшi схеми: однонапiвпериодного випрямляча; мостового випрямляча; випрямляча з подвоєнням напруги. Пiд час вимiру опора слiд вибрати полярнiсть мультиметру таким чином щоб дiоди випрямляча не шунтировали опiр RL. Якщо вимiри виконуються за допомогою осцилографа замалювати епюри напруги на виходi випрямляча для максимального i середнього значення опорiв навантаження.
31415. Дослiдження елементiв кола змiнного струму – R, L, C за умов 125.5 KB
  Дослiдження RC ланки Зiбрати стенд для одного з варiантiв ємностi C згiдно завдання C=C1 C=C2 C=C1C2 Електрична схема Перемичкою X3 закорочено iндуктивнiсть L точки 23. Вимiряти напругу джерела живлення E точки 111 напругу на опорi UR точки 12 наругу на конденсаторi UC точки 511. Вимiряти напругу джерела живлення E точки 111 напругу на опорi UR точки 12 напругу на iндуктивностi UL точки 24. Вимiряти напругу джерела живлення E точки 111 напругу на опорi UR точки 12 напругу на iндуктивностi UL точки...