36214

Понятие плана эксперимента. Оптимизационные свойства планов экспериментов. Полный факторный план и его свойства

Доклад

Математика и математический анализ

Оптимизационные свойства планов экспериментов. Полный факторный план и его свойства. Одной из главных задач планирования экспериментов является выбор множества экспериментальных точек в некотором смысле оптимальных.

Русский

2013-09-21

46 KB

31 чел.

12 Вопрос

Понятие плана эксперимента. Оптимизационные свойства планов экспериментов. Полный факторный план и его свойства.

Пример 5.3. Пусть объект имеет один входной параметр х. На рис. 5.1 цифрой 1 обозначена прямая, соответствующая истинной зависимости выхода от входа. Предположим, что в точках х1 и х2, расположенных вблизи средины области определения входного параметра, проведены эксперименты, но, вследствие ошибок, результаты, – точки у1 и у2, не лежат на линии 1. Построив по экспериментальным точкам уравнение эмпирической зависимости, получим прямую 2, которая, как видно на рисунке, значительно отличается от истинной зависимости.

Пусть теперь эксперименты проведены в точках х3 и х4, расположенных по краям области определения входного параметра, с такой же величиной ошибок. По полученным точкам у3 и у4 построена зависимость, соответствующая прямой 3, которая, как видно из рисунка, значительно ближе к истинной линии, чем прямая 2.

Вывод: за счет рационального выбора экспериментальных точек можно значительно повысить точность создаваемой модели.

Одной из главных задач планирования экспериментов является выбор множества экспериментальных точек, в некотором смысле оптимальных.

Def.  Пусть х – область возможных значений входных параметров объекта, которую назовем областью планирования. Планом эксперимента называется некоторое подмножество Р(х)  х точек, в которых проводятся эксперименты. Обычно план задается матрицей значений входных параметров в экспериментальных точках Х=[] – матрицей планирования, i =1,…N, j = 1,…, m.

Рассмотрим три оптимизационных свойства планов эксперимента – ортогональность, D- и G-оптимальность.

1. Ортогональные планы

Def. План называется ортогональным, если его точки расположены так на х, что столбцы матрицы Ф ортогональны.

Отметим основные свойства ортогональных планов.

1. Матрица (ФТФ) диагональна.

Из этого вытекает диагональность и матрицы (ФТФ) –1, а следовательно – независимость (некоррелированность) МНК-оценок. Это значит, например, что замена нулем любого коэффициента в уравнении модели не изменит значений оценок остальных коэффициентов. Такое свойство ортогональных планов оказывается очень полезным, когда точный вид модели неизвестен и исследователь использует экспериментальные данные для отбора переменных, существенно влияющих на выходную величину. Кроме того, диагональность матрицы (ФТФ) существенно упрощает расчетные формулы нахождения МНК-оценок.

2. Ортогональный план минимизирует дисперсию МНК-оценок при плохой спецификации модели.

2. D- и G-оптимальные планы

Def. План называется D-оптимальным, если его точки расположены так на х, что достигается max detТФ) (или, что то же самое, – min detТФ) –1).

Величина определителя матрицы С = 2ТФ)–1, согласно свойству 8 собственных значений матриц, характеризует “объем” доверительного эллипсоида МНК-оценок, а, следовательно, является обобщенной характеристикой дисперсий МНК-оценок. Поэтому свойство D-оптимальности плана экспериментов эквивалентно свойству устойчивости оценок коэффициентов модели (2.1), их близости к истинным значениям коэффициентов.

Def. План называется G-оптимальным, если его точки расположены так, что достигается минимум максимального по хх значения дисперсии прогноза D[(x)].

Для того, чтобы свойства D- и G-оптимальности зависели не от количества проведенных экспериментов, а только от выбранных точек, используется нормированная дисперсионная матрица МНК-оценок: NТФ) –1 и, соответственно, нормированная дисперсия прогноза:

d(x) = N f(x)ТТФ) –1 f(x).

Обозначим dmax = max{d(x) | x х} – максимальное значение нормированной дисперсии прогноза. Согласно определению, значение dmax должно быть минимальным, если план Р(х) является G-оптимальным. Имеют место следующие свойства.

Теорема 5.3 (об эквивалентности оптимальных планов). Для любого плана следующие утверждения эквивалентны.

1) План является D-оптимальным.

2) План является G-оптимальным.

3) dmax = k, где k – число коэффициентов модели (2.1).

Эквивалентность пунктов 1) и 2) означает, что любой D-оптимальный план экспериментов является одновременно и G-оптимальным и наоборот. Пункт 3) указывает простой способ проверки качества любого плана по величине = (dmaxk) / k. Для D- и G-оптимальных планов = 0, для прочих планов > 0.

Теорема 5.4 (об инвариантности D-оптимального плана). D-оптимальный план инвариантен относительно любого невырожденного линейного преобразования базисных функций fj(x).

7. D-оптимальные и близкие к ним планы на гиперкубе

Достижение возможно большей точности модели связано с оптимальным использованием области планирования х при проведении экспериментов. Поэтому при использовании критериев D- или G-оптимальности вид области планирования является очень важным условием задачи и произвольное изменение ее конфигурации приводит к существенному изменению оптимального плана.

Будем считать, что областью значений входных параметров объекта является гиперкуб: х = [ –1, +1] m, т.е. хj[ –1, +1], j = 1,…m. Для произвольного отрезка [] легко найти замену переменных, переводящую его в         [ –1, +1]:

.

Согласно теореме 5.4, после такой замены план останется D-оптимальным.

7.1. Полный факторный план (ПФП) – это план, в котором каждый входной параметр принимает два значения: +1 и –1 и при этом перебираются все возможные комбинации. Число строк в матрице Х равно N =2m. Рассмотрим основные свойства ПФП.

1. Столбцы матрицы Ф для линейной y = b0 + b1x1 +…+ bmxm и неполной квадратичной y = b0 + b1x1 +…+ bmxm + b12 x1 x2 + b13 x1 x3 + … + bm –1, m    xm –1 xm моделей в ПФП ортогональны, а, следовательно, матрица ФТФ диагональна и равна NIk.

Свойство легко проверяется.

2. Для линейной и неполной квадратичной моделей ПФП является D-оптимальным.


 

А также другие работы, которые могут Вас заинтересовать

210. Статистика численности и социальной структуры населения 337.5 KB
  Статистика доходов и потребления, уровня жизни населения. Относительные показатели, характеризующие уровень экономически активного населения. Статистика охраны здоровья и медицинского обслуживания. Таблицы дожития и средней ожидаемой продолжительности жизни.
211. Радиоприемные устройства 6.25 MB
  Расчет коэффициента шума и полосы пропускания. Расчет усилителя промежуточной частоты (УПЧ). Определение структуры радиотракта. Расчет структурной схемы и видеоусилителя приемника. Радиолокационная станция обнаружения и целеуказания
212. Морское судоходство Западной Африки. Морские пути и особенности плавания на отдельных участках бассейна 943.98 KB
  Роль Атлантического океана в морских перевозках. Порты и гавани стран Западной Африки. Пути нейтрализации пиратской деятельности на море. Политическая ситуация - один из аспектов морского судоходства. Торговый флот стран Западной Африки.
213. Коммуникационные технологии 538.5 KB
  Обмен информацией производится по каналам передачи информации. Каналы передачи информации могут использовать различные физические принципы. Сетевое программное обеспечение (ПО) и сетевой протокол. Глобальные компьютерные сети. История развития сети интернет.
214. Проектирование комбикормового цеха 740.12 KB
  Характеристики применяемых материалов и изделий, фундаменты и фундаментные балки. Сведения о наружной и внутренней отделке. Организация и технология производства работ. Выбор грузозахватных приспособлений. Определение численного и квалификационного состава бригады для производства каменных работ.
215. Методы замера твердости металлов и их структурный анализ 538.5 KB
  Назначение легирующих элементов и их влияние на свойства стали. Краткие сведения о закалке и отпуске углеродистых сталей. Изучение упрочнения деталей из углеродистых сталей закалкой и последующим отпуском.
216. Исследование и расчет долбежного станка 315 KB
  Понижение класса кинематических пар звеньев. Построение планов скоростей для 12 положений механизма. Приведение масс звеньев механизма и построение графика приведенного момента инерции. Силовой расчет рычажного механизма.
217. Экологическое право. История формирования экологического права России 256.02 KB
  История формирования экологического права России. Право природопользования. Виды прав на природные объекты и ресурсы. Охрана окружающей среды при осуществлении хозяйственной и иной деятельности. Международно-правовой механизм охраны окружающей среды.
218. Образовательный процесс на примере темы искусство Древней Месопотамии 607 KB
  Структурно-методический анализ учебного материала. Анализ учебно-программной документации. Определение обучающих, воспитывающих, развивающих и когнитивных целей. Методы конструирования на основе методического анализа учебного материала.