36242

Формальная система в представлении знаний

Доклад

Информатика, кибернетика и программирование

Из множества формул выделяют подмножеств правильно построенных формул ППФ. определяется эффективная процедура позволяющая по данному выражению выяснять является ли оно ППФ в данной ФС. Выделено некоторое множество ППФ называемых аксиомами ФС. При этом должна иметься эффективная процедура позволяющая для произвольной ППФ решить является ли она аксиомой.

Русский

2013-09-21

36 KB

3 чел.

28. Формальная система в представлении знаний.

Появление формальных систем было обусловлено осознанием того факта, что совершенно различные системы, будь то юридические, социальные, экономические или биологические, обладаю глубоким сходством.

В формальной системе (ФС), оперирующей теми или иными символами, эти символы воспринимаются просто как элементы, с которыми обращаются согласно определенным правилам, зависящим только от формы выражений, образованных из символов.

Формальные системы - это аксиоматические системы, т.е. системы с наличием определенного числа исходных заранее выбранных и фиксированных высказываний, называемых аксиомами.

Формальная система считается заданной, если выполнены следующие условия.

1.    Задано   некоторое   множество,   состоящее   из   конечного   или бесконечного числа элементов, которые носят название термов. Имеется другое конечное множество, элементы которого есть связки или операции.

2. Любую линейную упорядоченную совокупность термов и операций называют   формулой.    Из   множества   формул   выделяют   подмножеств правильно   построенных  формул  (ППФ).   Для  НПФ  задают  правила  их конструирования, т.е. определяется эффективная процедура, позволяющая по данному выражению выяснять, является ли оно ППФ в данной ФС.

3.  Выделено некоторое множество ППФ, называемых аксиомами ФС. При   этом   должна   иметься   эффективная   процедура,   позволяющая  для произвольной ППФ, решить, является ли она аксиомой.

4. Имеется конечное множество R1 , R2, ..., Rk отношений между ППФ называемых  правилами  вывода.  Понятие  "вывода"  также  должно  быть эффективным,     т.е.     должна    существовать    эффективная    процедура, позволяющая для произвольной конечной последовательности ППФ решать, можно ли каждый член этой последовательности вывести из одной или нескольких предшествующих ППФ посредством некоторых фиксированных правил вывода. Выводом ФС называется любая последовательность ППФ А1, А2, ..., Аn такая, что для любого i (i = 1,n) ППФ Аi- есть либо аксиома ФС, либо непосредственное следствие каких-либо предыдущих ППФ по одному из правил вывода.                                             *

Любая ФС задается четверкой <Т, Н, А, R> где Т - множество термов и операций; Н - множество правил конструирования ППФ; А - система аксиом; R - множество правил вывода. Сама формальная система не является ни языком, ни системой знания, она не содержит никаких утверждений об объектах, а является просто исчислением - некоторого рода действиями по определенным правилам над последовательностями термов.

Два класса формальных систем являются математической базой для построения систем ИИ: исчисление высказываний и исчисление предикатов первого порядка.

Исчисление высказываний как формальная система.

Сложное высказывание имеет истинностное значение, которое однозначно определяется истинностными значениями простых высказываний, из которых оно составлено.

Например: "Если студент ложится поздно спать и пьет кофе, то утром он встанет в плохом настроении или с головной болью". Это сложное высказывание состоит из следующих простых высказываний:

"Студент ложиться поздно спать"

"Студент пьет на ночь кофе"

"Утром студент встанет в плохом настроении"

" Утром студент встанет с головной болью"

Обозначив сложное высказывание через X, а простые соответственно через У, Z, U, V, можно записать

X = если У и Z, то U или V

Или X = (У^Z) → (UvV)

Каждую логическую связку можно рассматривать как операцию, которая образует новое высказывание - сложное из более простых.

Таким образом, всякое сложное высказывание можно записать в виде некоторой формулы, содержащей логические связки и символы, которые обозначают простые высказывания, называемые атомами. Чтобы узнать, истинно или ложно сложное высказывание, достаточно узнать истинные значение всех атомов, из которых оно составлено.

Формула исчисления высказываний, которая истинна во всех интерпретациях, называется тавтологией или общезначимой формулой.

Формула исчисления высказываний называется противоречием, если она ложна во всех интерпретациях.


 

А также другие работы, которые могут Вас заинтересовать

56375. Є. Гуцало «Перебите крило» 64 KB
  Однією із головних задач сучасної школи є виховання відповідальної особистості, яка здатна до самоосвіти й саморозвитку, вміє творчо застосовувати набуті знання
56376. Чи може бути свобода основою моральності? 66.5 KB
  Мета. Навчити учнів обґрунтовувати поняття свободи як основи моральності висловлювати своє розуміння свободи пояснювати що означає свобода вибору дії волі; формувати вміння наводити приклади узгодження власних інтересів із суспільними...
56378. Теоретические основы трудового воспитания дошкольников 62 KB
  Отличие труда взрослых и детей. Виды труда дошкольников. Формы организации труда. Понимая огромную роль труда в воспитании подрастающего поколения в своих работах часто затрагивали эту тему.
56379. Виды труда дошкольников 175 KB
  Труд детей в детском саду многообразен. Труд в природе предусматривает участие детей в уходе за растениями и животными выращивание растений в уголке природы на огороде в цветнике.
56380. Литературный процесс в США на рубеже 19-20 вв. 15.99 KB
  Развитие литературы США в последней трети XIX века и в первые десятилетия XX века характеризуется ускоренными темпами и быстрой сменой литературных направлений и тенденций.
56382. Отрезок. Длина отрезка. Треугольник 58.5 KB
  Цели урока: образовательные: обеспечить обобщение и систематизацию понятий отрезок, концы отрезка, равные отрезки, длина отрезка, треугольник, стороны треугольника, вершины треугольника, многоугольник.
56383. Системы счисления 1.5 MB
  Задачи урока: образовательные: актуализация знаний по теме Системы счисления; дифференциация материала изученного по теме Системы счисления; стимулирование интереса к изучаемой теме...