36335

Методы измерения температуры, бесконтактный метод

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

О температуре нагретого тела можно судить на основании измерения параметров его теплового излучения представляющего собой электромагнитные волны различной длины. Термометры действие которых основано на измерении теплового излучения называются пирометрами. Физические тела характеризуются либо непрерывным спектром излучения твердые и жидкие вещества либо избирательным газы. Эта связь описывается законом Планка: где М0λТ плотность мощности излучения испускаемого телом находящимся при температуре Т на длине волны λ Т ...

Русский

2013-09-21

56.5 KB

183 чел.

1. Методы измерения температуры, бесконтактный метод

Одним из основных параметров, определяющих ход технологических процессов, является температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Она определяется кинетической энергией атомов и молекул тела. Под температурной шкалой понимается непрерывная совокупность чисел, линейно связанных с числовыми значениями температуры. Существуют шкалы Кельвина, Цельсия и Фаренгейта. Большая часть измерений, проводящихся в промышленности, и особенно это касается металлургии, это измерение температуры.  Бесконтактное измерение высоких температур необходимо в тех случаях, когда измерение температуры контактным способом сильно затруднено или невозможно, например, измерение температуры движущейся полосы металла в горячем прокате.

О температуре нагретого тела можно судить на основании измерения параметров его теплового излучения, представляющего собой электромагнитные волны различной длины. Термометры, действие которых основано на измерении теплового излучения, называются пирометрами. Они позволяют измерять температуру в диапазоне от 100 до 6000С и выше.

Физические тела характеризуются либо непрерывным спектром излучения (твердые и жидкие вещества), либо избирательным (газы). Участок спектра в интервале длин волн 0,02…0,4 мкм соответствует ультрафиолетовому излучению, участок 0,4…0,76 мкм – видимому излучению, участок 0,76…400 мкм – инфракрасному излучению. Интегральное излучение – это суммарное излучение, испускаемое телом во всем спектре длин волн. Монохроматическим называют излучение, испускаемое при определенной длине волны.

Бесконтактные методы измерения температуры основаны на связи, существующей между температурой тела и количеством излучаемой им энергии. Эта связь описывается законом Планка:

, где

М0(λ,Т) – плотность мощности излучения испускаемого телом, находящимся при температуре Т, на длине волны λ,

Т – температура абсолютно черного тела,

, где с0 – скорость света, h – постоянная Планка.

, где k – постоянная Больцмана.

В случае, если λТ<3000 мкм·град, можно воспользоваться приближением Вина:

Основным уравнением пирометрии суммарного, полного излучения является закон Стефана-Больцмана для полной энергетической светимости:

,

где Е0 – суммарная энергия черного тела, Т – температура черного тела,

- коэффициент лучеиспускания абсолютно черного тела, постоянная, равная 5,6696·10-8 Вт/(м2·К4).

Законы теплового излучения – уравнения Планка, Вина и Стефана-Больцмана, показывают, что из измерений спектрального распределения плотности теплового излучения и интегральной плотности мощности можно определить температуру нагретых тел. В классических методах оптической пирометрии температуру поверхности объекта определяется по следующим характеристикам теплового излучения:

  1.  интегральному потоку всем диапазоне длин волн (пирометр полного излучения)
  2.  интенсивности в некотором ограниченном диапазоне длин волн (пирометр частичного излучения)
  3.  интенсивности или яркости на определенной длине волны  (квазимонохроматический или яркостный пирометр),
  4.  отношению интенсивностей в двух или более спектральных  интервалах (пирометр спектрального отношения или цветовой пирометр).

В соответствии с этой классификацией определяют и различные условные температуры.

Из-за отличия излучательной способности  реальных тел от излучательной способности абсолютно черного тела, значения температуры, определенные по их тепловому излучению должны отличаться от истинного значения температуры. Поэтому говорят об «условных» или «пирометрических» температурах. В современных оптических пирометрах вклад инструментальной погрешности в общую погрешность измерения температуры, как правило,  исключительно мал. Поэтому основной задачей оптической пирометрии является разработка методов введения поправок, устраняющих, или по меньшей мере уменьшающих, разность между истинной и условными температурами.

Ведение понятия условных температур связано прежде всего с тем, что единственным способом калибровки оптических пирометров является их градуировка по излучению абсолютно черному тела.

Также пирометры классифицируют по температурному диапазону:

– Низкотемпературные (инфракрасные радиометры). Обладают способностью показываться температуры объектов, обладающих даже отрицательными значениями этого параметра.

 Высокотемпературные. Оценивают лишь температуру сильно-нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют сильное смещение в пользу «верхнего» предела измерения.

Рассмотрим несколько примеров.

Пирометры полного излучения (радиационные)

 В пирометрах этого вида полное излучение тела, температура которого подлежит измерению, направляется с помощью оптической системы (линза 1 и диафрагма 2) на рабочий конец приемника излучения 3 и нагревает его. В качестве приемника излучения в металлургии обычно используется термобатарея, представляющая собой несколько соединенных вместе термопар. В качестве приемника излучения применяются также болометры, тепловые быстродействующие индикаторы, пироэлектрические приемники. Термо-э.д.с. приемника излучения, устанавливающаяся в результате воздействия на нее потока лучистой энергии и теплообмена с окружающими деталями, измеряется прибором ИП. Через окуляр 5 с фильтром 4 производится наведение пирометра на объект измерения.

Количество тепла, получаемого рабочим концом термопары то нагретого тела, в соответствии с законом Стефана-Больцмана пропорционально четвертой степени температуры тела и для реальных тел равно: ,

где ε(Т) - коэффициент теплового излучения тела;

Радиационная температура при этом равна:

При  известном суммарном коэффициенте черноты тела возможен пересчет с радиационной температуры тела на его действительную (истинную) температуру:

Радиационные пирометры (РАПИР) выпускают в различных

модификациях для измерения температур по полному тепловому излучению в

диапазоне температур 400 - 2500°С.

Тепловая инерция пирометров полного излучения определяется в основном инерцией приемника излучения, к примеру для термобатарей это время около 2с.


 

А также другие работы, которые могут Вас заинтересовать

7533. Производственные фонды предприятия. Лизинг. Система взаимоотношений между участниками лизинга 36.5 KB
  Тема: Производственные фонды предприятия. Лизинг. Система взаимоотношений между участниками лизинга. Понятие лизинга. Объекты и субъекты лизинговых отношений. Функции лизинга. Лизинговый договор. Особенности развития лизингов...
7534. Производственные средства предприятия 125 KB
  Производственные средства предприятия. Экономическая сущность производственных средств. В процессе производства продукции и оказания услуг используются следующие виды экономических ресурсов: естественные (земля, недра, водные, лесные), трудовые (люд...
7535. Затраты на производство и реализацию продукции, услуг 76.5 KB
  Затраты на производство и реализацию продукции, услуг. Издержки производства, содержание, сущность. Себестоимость услуг, продукции. Классификация затрат на производство и реализацию продукции. Смета затрат на производство. Ка...
7536. Источники и факторы снижения себестоимости 39 KB
  Источники и факторы снижения себестоимости Возможности снижения себестоимости анализируются по двум направлениям: по источникам и по факторам. Источники - это затраты, за счет экономии которых может быть снижена себестоимость. Основными источни...
7537. Организация труда. Техническое нормирование труда 56 KB
  Тема: Организация труда. Техническое нормирование труда Организация труда. Сущность. Метод труда. Сущность и организация технического нормирования труда. Его значение и задачи. Характеристика и расчет технической нормы времени, норм выработ...
7538. Оплата труда руководителей, специалистов, других служащих. Контрактная форма организации труда 24 KB
  Оплата труда руководителей, специалистов, других служащих. Контрактная форма организации труда. Сложность в организации оплаты труда руководителей, специалистов и других служащих состоит в том, что их труд количественно измерить в большинстве случае...
7539. Трудовые доходы работников предприятия 68.5 KB
  Трудовые доходы работников предприятия. Состав трудовых доходов. Сущность и принципы организации оплаты труда. Тарифная система и ее элементы. Формы и системы оплаты труда. Оплата труда руководителей и специалистов. Осн...
7540. Трудовые ресурсы и производительность труда 66 KB
  Трудовые ресурсы и производительность труда. Трудовые ресурсы предприятия, их состав и структура. Определение потребности в трудовых ресурсах. Баланс рабочего времени. Понятие и показатели производительности труда. Факторы и ...
7541. Формы общественной организации производства 31.5 KB
  Тема: Формы общественной организации производства. Понятие о концентрации, её преимущества и недостатки. Специализация производства. Кооперирование. Комбинирование. Формами организации производства являются: концентрация, спе...