36344

Как определяется шаг интегрирования по времени при моделировании САУ с помощью ПК

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Как определяется шаг интегрирования по времени при моделировании САУ с помощью ПК. Применительно к простому интегратору он может быть представлен таким образом: В конечных приращениях то же самое можно записать в виде: где T постоянная интегрирования звена; Xn Yn соответственно вход и выход звена на nм шаге расчета; t величина интервала времени в течение которого входное воздействие считается постоянным. Суммирование интегрирование выходного параметра производится через интервалы времени t=S в связи с чем этот интервал получил...

Русский

2013-09-21

22.59 KB

5 чел.

Вопрос 5. Как определяется шаг интегрирования по времени при моделировании САУ с помощью ПК.

В основу процедуры моделирования многих типовых звеньев положен метод Рунге-Кутта. Применительно к простому интегратору он может быть представлен таким образом:

,

В конечных приращениях то же самое можно записать в виде:

где T – постоянная интегрирования звена; Xn, Yn – соответственно вход и выход звена на n-м шаге расчета; t – величина интервала времени, в течение которого входное воздействие считается постоянным.

Суммирование (интегрирование) выходного параметра производится через интервалы времени t=S, в связи с чем этот интервал получил название шаг интегрирования S (в дальнейшем использовано обозначение S).

При моделировании отдельных звеньев САУ, а также систем, скомпонованных из них, очень важно правильно определить и задать программе шаг моделирования по времени. Для краткости было введено название: шаг интегрирования или просто шаг.

Предположим, требуется исследовать поведение звена или системы в течение одной секунды. При шаге 0.01 с. потребуется 100 циклов расчета по одной и той же процедуре. Если будет принят шаг 0.001 с., то потребуется 1000 таких же циклов.

Чем меньше шаг, тем точнее цифровая модель системы соответствует своему аналоговому прототипу и тем больше ценность и достоверность полученных результатов. Однако, уменьшение шага приводит к увеличению числа операций, которые должна произвести ЭВМ, и к практически пропорциональному росту времени расчета. При этом для расчета переходного процесса, который в реальном объекте длится 1 – 2 секунды, может потребоваться от нескольких секунд до нескольких минут работы программы (время зависит от типа ЭВМ и сложности программы).

Необходим разумный компромисс при выборе шага интегрирования. Анализ показывает, что при моделировании интеграторов, ПИ-звеньев, шаг решающего значения не имеет. Величина шага важна для апериодических звеньев первого и второго порядка, колебательных, дифференцирующих и ПД-звеньев.

Достаточно большой опыт в эксплуатации программ моделирования позволяет сделать следующие выводы и рекомендации:

1.Из всех типов звеньев, для которых принципиально важна величина шага, чаще всего в системах встречаются апериодические звенья первого порядка с передаточной функцией

2. Апериодические звенья достаточно точно моделируются при шаге интегрирования примерно равном постоянной времени звена.

3. В том случае, если в системе имеется несколько апериодических звеньев с различными постоянными, то целесообразно назначить шаг, примерно равный минимальной постоянной времени (базовой постоянной).

4. При наличии в системе звеньев другого типа с передаточными функциями, содержащими в знаменателе постоянные времени, например интеграторы или пропорционально-интегральные звенья, значение базовой постоянной уточняется. Если минимальная из указанных выше постоянных меньше базовой, то базовой присваивается значение этой постоянной.

5. Для удобства вывода результатов на дисплей или принтер и упрощения дальнейшего анализа, предпочтительно величину шага принять из чисел следующего ряда: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 и т.д. При этом выбранное для шага значение должно быть ближайшим меньшим к базовой постоянной.


 

А также другие работы, которые могут Вас заинтересовать

21540. КЛИНИКА, ДИАГНОСТИКА И ТЕРАПИЯ ПОРАЖЕНИЙ ОТРАВЛЯЮЩИМИ ВЕЩЕСТВАМИ УДУШАЮЩЕГО ДЕЙСТВИЯ 197 KB
  Классификация отравляющих веществ удушающего действия В настоящее время существует несколько подходов к классифицированию и рассмотрению механизмов токсического действия веществ способных при остром отравлении нарушать основную функцию легких газообмен. Помимо названных существует большое количество химических соединений как природного происхождения так и синтетических которые нарушают функцию легких при энтеральном и парэнтеральном путях поступления. Объединяющим свойством пульмонотоксикантов вне зависимости от пути проникновения в...
21541. КЛИНИКА, ДИАГНОСТИКА И ТЕРАПИЯ ПОРАЖЕНИЙ ОТРАВЛЯЮЩИМИ ВЕЩЕСТВАМИ НЕРВНО-ПАРАЛИТИЧЕСКОГО ДЕЙСТВИЯ 53 KB
  Обстоятельства при которых появились первые жалобы; динамику и последовательность развития признаков поражения: находился ли в зараженной атмосфере и сколько времени; принял внутрь какоето вещество и в какой дозе; сколько времени прошло с момента отравления до оказания помощи и в каком объеме она была оказана; каково было состояние на догоспитальном этапе была ли потеря сознания нарушения дыхания и сердечной деятельности мышечная слабость миофибрилляция судороги; 2. Состояние накануне заболевания возраст наличие болезней...
21542. КЛИНИКА, ДИАГНОСТИКА И ТЕРАПИЯ ПОРАЖЕНИЙ ОТРАВЛЯЮЩИМИ ВЕЩЕСТВАМИ УДУШАЮЩЕГО ДЕЙСТВИЯ И АГРЕССИВНЫМИ ЖИДКОСТЯМИ 99.5 KB
  В результате развития патологического процесса в легких нарушается оксигенация крови наступает гипоксия. Распространенность и степень выраженности патологического процесса в дыхательных путях и легких определяется характером яда его концентрацией и временем действия состоянием организма и его реакцией на воздействие яда. Поражениям ОВ удушающего действия средней и тяжелой степени как правило сопутствует острая эмфизема легких которая еще в большей степени усугубляет дыхательную недостаточность и создает дополнительную нагрузку на...
21543. ОСТРЫЕ ОТРАВЛЕНИЯ ХЛОРОМ, АММИАКОМ, ГИПОКСИЧЕСКИМИ ГАЗАМИ 82.5 KB
  ОТРАВЛЕНИЯ ГИПОКСИЧЕСКИМИ ГАЗАМИ ОСТРЫЕ ОТРАВЛЕНИЯ ОКИСЬЮ УГЛЕРОДА Окись углерода встречается везде где существуют условия для неполного сгорания веществ содержащих углерод. Она входит в состав многих промышленных газов доменный генераторный коксовый; содержание окиси углерода в выхлопных газах двигателей внутреннего сгорания колеблется от 1 до 13. Окись углерода широко применяется как одно из исходных соединений в современной промышленности органического синтеза. Окись углерода СО это бесцветный газ без запаха и вкуса.
21544. ОТРАВЛЕНИЯ СПИРТАМИ (клиника, диагностика, лечение) 82 KB
  Отравления могут носить профессиональный характер и возникать вследствие нарушений правил техники безопасности приема спиртсодержащей жидкости внутрь по ошибке или преднамеренно с целью опьянения. Наиболее часто встречаются и тяжело протекают острые отравления такими веществами как этиленгликоль и его производные метиловый спирт этиловый спирт амиловый бутиловый тетрагидрофурфуриловый спирт. Острые отравления спиртсодержащими жидкостями это трудный для диагностики и сложный для лечения раздел клинической токсикологии имеющий большую...
21545. ОТРАВЛЕНИЯ ТЕХНИЧЕСКИМИ ЖИДКОСТЯМИ 211 KB
  Острые ингаляционные отравления четыреххлористым углеродом 20 мин. Острые пероральные отравления дихлорэтаном 10 мин. Острые отравления метиловым спиртом 25 мин.
21546. Электропривод для швейных машин 3.38 MB
  На швейных машинах привод работает в необычно тяжёлых условиях когда в течение часа производится до 1000 пусков машины. Найдётся ли иная технологическая машина с подобным режимом работы А скорость главного вала до 9000 мин 1 Многие передачи не выдерживают таких скоростей Отсюда и специальные требования к электроприводу: Быстроходность способность обеспечить на главном валу машины 5 6 103 мин 1. Плавный пуск плавная регулировка скорости машины. В автоматизируемых электроприводах имеется свыше 30 микросхем а его стоимость...
21547. Способы получения кроя 8.63 MB
  Механический способ получения кроя характеризуется разделением материала путём сдвига слоёв волокон частиц материала. Термический способ представляет разделение материала путём подвода тепла вызывающее размягчение или его сгорание. после размягчения ослабления материала его разделение довершается механическим сдвигом. В зависимости от вида инструмента различают три способа механического разделения текстильного материала: 1.
21548. Схема механизмов швейного предприятия 12.55 MB
  Машины машиныавтоматы и автоматические линии легкой промышленности М. Швейные машины: Иллюстрированное пособие. Швейные машины М. Швейные машины: Иллюстрированное пособие.