3643

Выпарные аппараты и установки

Доклад

Производство и промышленные технологии

Выпарные аппараты и установки Выпаривание - процесс концентрирования жидких растворов различных веществ путем частичного удаления растворителя при кипении раствора. Осуществляется в выпарных аппаратах и установках, работающих, как правило, под вакуу...

Русский

2012-11-04

144.5 KB

47 чел.

Выпарные аппараты и установки

Выпаривание - процесс концентрирования жидких растворов различных веществ путем частичного удаления растворителя при кипении раствора. Осуществляется в выпарных аппаратах и установках, работающих, как правило, под вакуумом. Области применения:

 В фармацевтической и пищевой промышленности - для производства концентрированных жидких экстрактов растительного сырья и для регенерации экстрагента.

 В химической промышленности - для концентрирования растворов минеральных и других солей, а также щелочей. Мы разрабатываем и производим эффективное и высокотехнологичное оборудование для процессов выпаривания жидких растворов различных веществ индивидуально по требованиям заказчика. Выпарные аппараты и выпарные установки на их основе работают под вакуумом и изготавливаются из зеркальной нержавеющей стали. Выпарные установки изготавливаемые компанией "Артлайф Техно", эффективно используются при концентрировании экстрактов в компании "Артлайф". 

Вакуумные выпарные аппараты и установки Вакуумные выпарные аппараты предназначены для концентрирования водных и других растворов под вакуумом при кипении. При таком процессе растворитель переходит в пар, а растворенное вещество остается в растворе. Поэтому необходимым условием эффективности процесса концентрирования является практически нулевая летучесть настворенного вещества.

Вакуум! Использование вакуума позволяет проводить процесс выпаривания при пониженных температурах, что особенно важно для концентрирования растворов термолабильных веществ, т.е. веществ подвергающихся разрушению под действием температуры.

Естественная циркуляция! Процессы кипения и испарения происходят при непрерывной циркуляции растворов в аппарате. Использование естественной циркуляции (движение, обусловленное действием силы тяжести) позволяет проводить процессы выпаривания с минимальными затратами при одновременном упрощении конструкции аппаратов. При этом главным и определяющим фактором эффективности является скорость движения раствора в циркуляционном контуре. Разработанные конструкции аппаратов позволяют существенно увеличить скорость циркуляции растворов, а следовательно, и эффективность процессов выпаривания. Опыт использования разработанных конструкций свидетельствует о существенном повышении производительности аппаратов.

Однокорпусные выпарные установки Проведение процессов выпаривания в однокорпусных установках под вакуумом позволяют осуществлять процессы при более низких температурах. Однако для обеспечения более высокой производительности в этом случае требуется повышенное энергопотребление.

Многокорпусные выпарные установки С целью экономии энергозатрат (в виде расхода греющего или первичного пара) используются многокорпусные выпарные установки. В таких установках раствор и образующийся пар параллельно перемещаются из корпуса в корпус. При этом происходит непрерывное концентрирование раствора, а вторичный пар из предыдущего корпуса направляется в последующий в качестве греющего. За счет использования вторичного пара происходит экономия первичного. Так например использование двухкорпусной установки дает экономию пара в два раза, использование трехкорпусной - в три раза и т.д. Однако при этом процессы выпаривания в первых корпусах по ходу движения раствора осуществляются при более высоких температурах, чем в последующих.

Базовая комплектация

 Выпарной аппарат или аппараты, соединенные между собой в многокорпусную установку.

 Кожухотрубчатый конденсатор для конденсации вторичного пара.

 Система КИПиА для контроля и регулирования параметров.

 Система паро- и продуктопроводов. Дополнительная комплектация

 Парогенератор электродного типа.

 Конденсатоотводчик блочного типа оригинальной конструкции.

 Емкость для исходного раствора.

 Сборники для концентрированного раствора.

 Сборники для конденсата вторичных паров.

Основные характеристики базовых модификаций выпарных аппаратов

Производительность аппарата по вторичному пару, кг/ч 50 100 150 200 250 300

Температура греющего пара, t oC 100 100 100 100 100 100

Температура вторичного пара, t oC 45,4 45,4 45,4 45,4 45,4 45,4

Тепловая нагрузка, кВт 30 60 90 120 150 180

Поверхность теплопередачи, м кв. 0,88 1,80 2,64 3,60 4,44 5,40

Общая высота аппарата, м, не более 1,5 2,2 2,5 2,5 3,0 3,0

 Примечание: 

 массы аппаратов зависят от комплектации выпарной установки, определяемой требованиями заказчика.

 производительность аппарата указывается ориентировочно по водяному пару при давлении 0,01 МПа и давлению греющего пара 0,1 МПа (абс.)


 

А также другие работы, которые могут Вас заинтересовать

41936. Символьные действия математического анализа в MathCad 73.2 KB
  Цель работы: определение неопределенных и определенных интегралов и производных в программе MthCd с использованием символьных операций. Неопределенный интеграл: Определенный интеграл: Производная: Задание: Применяя последовательно к каждой функции команды меню Symbolic Simplify найти: Найти: Неопределенный интеграл. Определенный интеграл 3 Производную первого порядка. Решение: Выводы В ходе выполнения лабораторной работы с помощью Mthcd научились применяя команды меню Symbolic Simplify находить неопределенный интеграл...
41937. Вычисление производных в задачах геометрии и частных производных 47.73 KB
  Тема: вычисление производных в задачах геометрии и частных производных. Цель работы: вычисление производных в задачах геометрии и нахождение частных производных высоких порядков в программе MthCd . 2 Выполнить числовое и символьное вычисление частных производных высшего порядка от функции трех переменных: fx=zsinxyz2 в точке M111.
41938. Вычисление интегралов в задачах геометрии и механики 99.01 KB
  Тема: вычисление интегралов в задачах геометрии и механики. Цель работы: вычисление интегралов в задачах геометрии и механики в программе MthCd. Ход выполнения работы: Выводы В ходе выполнения лабораторной работы с помощью Mthcd научились вычислять интегралы в задачах геометрии и механики а именно: решать систему уравнений; находить площадь через двойной интеграл статические моменты координаты центра тяжести.
41939. Решение обычных дифференциальных уравнений в MathCad 87.45 KB
  Тема: решение обычных дифференциальных уравнений в MthCd. Цель работы: с использованием встроенных функций и блочной структуры найти решение обычных дифференциальных уравнений. Задание: 1 Найти решение обычного дифференциального уравнения y =fxy с использованием блока решений.
41940. Изучение внешнего и внутреннего законов фотоэффекта 83.44 KB
  Цель работы: Изучить законы фотоэффекта вычислить постоянную Планка вычислить работу выхода. Так как фотон движется со скоростью света то он обладает импульсом с абсолютной величиной p = mc = hv c Работа выхода. энергия ε которую нужно сообщить электрону для того чтобы он вырвался с максимальной скоростью Vm из пластины характеризуемой работой выхода А определяется соотношением: ε =1 2 mVm 2 А = eUeU0 где U0 =А e – потенциал...
41941. Изучение терморезистора. Определение константы 294.8 KB
  РТ21 Лабораторная работа № 9 Изучение терморезистора. Цель работы: Изучить терморезистор определить константу терморезистора В. Зависимость сопротивления терморезистора от температуры с достаточной точностью выражается формулой: 1 где А константа пропорциональная холодному сопротивлению терморезистора при 20 С В константа зависящая от физических свойств полупроводника терморезистора. Постоянная В является одной из важнейших характеристик терморезистора так как она определяет его температурный коэффициент...
41942. Исследование напряженного состояния тонкостенной цилиндрической оболочки 948.96 KB
  Внутренние силы и напряжения В соответствии с теорией расчета тонкостенные оболочки вращения находятся в плоском напряженном состоянии. В таких оболочках действуют кольцевые σк в первом главном сечении и меридиональные напряжения σм во втором главном сечении которые могут определяться через внутренние силы и моменты: где S меридиональная сила; Т кольцевая сила; М меридиональный момент; К кольцевой момент; δ толщина стенки; z координата точки в которой определяется напряжение; z изменяется в интервале от δ 2 до δ 2....
41943. Исследование колебаний вращающегося вала 214.31 KB
  Теоретический расчет частот собственных колебаний вала и деформаций возникающих при его вращении. Экспериментальное определение прогибов вращающегося вала в различных схемах нагружения. Изза неточности изготовления и сборки центры масс деталей как правило не находятся на оси вращения вала т.
41944. Определение напряжений в днищах, нагруженных внутреннем давлением 145.5 KB
  Теоретический расчет напряжений и деформаций в эллиптическом и плоском днищах, нагруженных внутренним давлением; Экспериментальное определение напряжений и деформаций в днищах, сравнение их с расчетными значениями; Сравнение днищ различной формы с точки зрения возникающих в них напряжений.