36747

Дискретизация непрерывных сигналов

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для этого из бесконечного множества значений этой функции параметра сигнала выбирается их определенное число которое приближенно может характеризовать остальные значения. Область определения функции разбивается точками x1 x2 xn на отрезки равной длины и на каждом из этих отрезков значение функции принимается постоянным и равным например среднему значению на этом отрезке; полученная на этом этапе функция называется в математике ступенчатой. Следующий шаг проецирование значений “ступенек†на ось значений функции ось ординат....

Русский

2013-09-23

164.5 KB

6 чел.

Лабораторная работа №3

Дискретизация непрерывных сигналов.

Непрерывное сообщение может быть представлено непрерывной функцией, заданной на некотором отрезке [a, b] (рис. 1). Непрерывное сообщение можно преобразовать в дискретное (такая процедура называется дискретизацией). Для этого из бесконечного множества значений этой функции (параметра сигнала) выбирается их определенное число, которое приближенно может характеризовать остальные значения. Один из способов такого выбора состоит в следующем. Область определения функции разбивается точками x1, x2, … xn на отрезки равной длины и на каждом из этих отрезков значение функции принимается постоянным и равным, например, среднему значению на этом отрезке; полученная на этом этапе функция называется в математике ступенчатой. Следующий шаг - проецирование значений “ступенек” на ось значений функции (ось ординат). Полученная таким образом последовательность значений функции у1, у2, ... уп является дискретным представлением непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента.

Рис. 1

Задание: Вычислите значение функции y(x) на отрезке [a, b], с шагом изменения x =  xtxt -1 = h. Постройте график функции y(x) (MS Excel и MathLab).

Варианты (1 - 15):

  1.  
  2.  
  3.  
  4.  
  5.  
  6.  
  7.  
  8.  
  9.  
  10.  
  11.  
  12.  
  13.  
  14.  
  15.  

Пример:

Листинг программы:

#include <iostream.h>

#include <conio.h>

#include <math.h>

#pragma argsused

int main(int argc, char* argv[])

{

double x=-1.000;

double y[13];

cout<<"x:   ";

for (int i=0; i<13; i++)

{

y[i]=(pow(x+1, 2.000)+1)/(pow(2+x, 2.000)+2);

cout<<x<<"   ";

x=x+1.000;   }

cout<<"\n\n"<<"y:   ";

for (int i=0; i<13; i++)

{

cout<<y[i]<<"   ";

}

getch();

       return 0;    }

Результат выполнения программы:

График функции:

 


 

А также другие работы, которые могут Вас заинтересовать

20706. Гамування з зворотнім зв’язком 111.8 KB
  1КІ08 Морозов Артем Вінниця 2012 Вхідні дані My Name is Artem Ключ ч7є'V B1{XKСтЌu–Э0UБlЋоJј Шифрування простою заміною Гамування Зашифроване повідомлення г ЎвжЃЫjґЎqkіп'gИ Гамування з зворотнім зв’язком зворотний зв'язок не залежить від відкритого і зашифрованого тексту. Вона в цьому випадку відбувається за гамою з виходу алгоритму блочного шифрування У цьому режимі алгоритм блочного шифрування використовується для організації процесу поточного зашифрування так само як і у вищеперелічених режимах гамування.
20708. Экстремумы и точки перегиба 99 KB
  Определение: Если то называется точкой строгого локального минимума. Определение: Если то называется точкой локального максимума. Определение: Если то называется точкой строгого локального максимума.
20709. Первообразная функция и неопределенный интеграл 82 KB
  Опр: Функция называется первообразной для функции на промежутке если . Если первообразная для функции на и с произвольная постоянная то функция также является первообразной для . Если первообразная для функции на и первообразная для функции на то найдется с: . Вывод: Таким образом множество всех первообразных для на представимо в виде Опр: Множество всех первообразных функции на наз.
20710. Определенный интеграл и его свойства 157 KB
  Если постоянна на то она интегрируема и .Если и интегрируемы на то также интегрируема на и . Если интегрируема на и то также интегрируема на и . Если и совпадают на всюду за исключением может быть конечного числа точек и интегрируема на то также интегрируема на 5.
20711. Матанализ. Основные классы интегрируемых функций 90 KB
  Теорема Интегрирование монотонной функции Всякая функция fx монотонная на [ab] интегрируема на этом отрезке Доказательство: для возрастающей функции Пусть fx возрастает на [ab] может быть разрывная. Докажем это: Возьмем тогда с учетом 1 получим: тем самым доказано @ 1 Теорема Интегрируемость непрерывной функции Всякая функция fx непрерывная на [ab] интегрируема на этом отрезке. критерий интегрируемости надо доказать что @Возьмем и пользуясь равномерной непрерывностью fx на [ab] найдем выполняетсяУтверждается...
20712. Определенный интеграл. Формула Ньютона-Лейбница 138.5 KB
  Пусть функция определена на отрезке . Если существует конечный предел при то функция называется интегрируемой на отрезке а указанный предел называется определенным интегралом от функции на отрезке и обозначается a и b –нижний и верхний пределы интегрирования подынтегральная функция подынтегральное выражение. Пусть функция определена на конечном или бесконечном промежутке . это функция определена на интервале и называется определенным интегралом с переменным верхним пределом интегрирования.
20713. Числовые ряды. Признаки сходимости 58 KB
  12 Числовые ряды.–некоторые действительные числа называется числовым рядом. называются членами ряда. аn – nый общий член ряда.
20714. Абсолютно и условно сходящиеся ряды 81.5 KB
  Абсолютно и условно сходящиеся ряды. Рассмотрим ряд где a1a2an – произвольные числа. Составим ряд 2. Опр: Ряд 1 наз.