3679

Методы расчета сложных электрических цепей

Лабораторная работа

Энергетика

Методы расчета сложных электрических цепей Расчетное задание Для заданной электрической цепи, в которой, а остальные параметры указаны в таблице, требуется рассчитать: все токи и напряжения методом контурных токов все токи и напряжен...

Русский

2012-11-05

209 KB

24 чел.

Методы расчета сложных электрических цепей

Расчетное задание

Для заданной электрической цепи, в которой , , а остальные параметры указаны в таблице, требуется рассчитать:

  •  все токи и напряжения методом контурных токов;
  •  все токи и напряжения методом узловых напряжений;
  •  ток через сопротивление R6 методом эквивалентного генератора.

Номер схемы

, В

, В

, В

, Ом

, Ом

, Ом

, Ом

2

8

16

5

91

180

100

120


Метод контурных токов

Составим систему для метода контурных токов:

(1)

Найдем собственные и взаимные сопротивления контуров:

,

,

.

,

,

.

Подставим найденные значения  и данные значения  в систему (1):

Решая систему, находим:

, , .

Из схемы видно, что:

, ,.

Соответственно, значения напряжений (рассчитываем по закону Ома: ):

, , ,

, ,.

Метод узловых напряжений

Прежде, чем применять метод узловых напряжений, преобразуем все источники напряжения в эквивалентные источники тока:

, , ,

, , .

Рассчитаем собственную и взаимную проводимости:

,

,

.

,

,

.

Найдем токи в источниках по формуле :

, , .

Запишем узловые токи:

, , .

Составим систему для метода узловых напряжений:

(2)

Подставим найденные значения  и  в систему (2):

Решая систему, находим:

, , .

Из схемы видно, что:

,

,

,

,

,

.

Соответственно, значения сил токов (рассчитываем по закону Ома: ):

, , ,

, , .

Метод эквивалентных источников

С помощью эквивалентных преобразований, заменим исходную схему на следующую:

Для этого, рассчитаем напряжение между точкам А и Б методом контурных токов:

Контурные уравнения:

Тогда, эти уравнения и имеют матричный вид:

Подставим конкретные значения:

Из решения этой системы, имеем:

.

Выразим токи в ветвях через контурные токи:

Подставим конкретные значения:

Найдем напряжение на отрезке АБ:

Замкнем все источники напряжения и найдем входное сопротивление внешней цепи:

Рассчитаем сопротивление полученной цепи. Для этого преобразуем ее следующим образом:

Рассчитаем сопротивления R13, R14, R34:

Найдем общее сопротивление цепи:

Заменим внешнюю, по отношению к ветви, цепь, содержащую сопротивление R6, эквивалентным источником напряжения:

Тогда:

Результаты расчётов токов и напряжений в методе контурных токов практически совпали с результатами метода узловых напряжений, небольшие отклонения связаны с округлениями при вычислениях. Значение тока I6, найденное методом эквивалентного генератора, совпало со значениями, полученными в методах контурных токов. Это говорит о правильности расчётов.

  1.  Проектирование фильтра Баттерворта верхних частот:

Wp=2*pi*8e3 рад/с – частота, ограничивающая область подавления;

Ws=2*pi*1e4 рад/с – гарантированная частота области пропускания;

Rp=3 дБ – уровень полосы подавления;

Rs=30дБ – уровень полосы пропускания;

Построение АЧХ фильтра:

[n, Wc]=buttord (Wp, Ws, Rp, Rs, 's') – определение порядка фильтра и частоты на уровне 3 дБ;

[z, p, k]=buttap(n) – способ аппроксимации фильтра;

[b, a]=zp2tf (z, p, k) – низкочастотный прототип фильтра;

[bt, at]=lp2hp (b, a, Wc) – переход к высоким частотам;

f=linspace (0,2e4,100) – определение полосы частот;

k=freqs (bt, at, 2*pi*f) – модуль АЧХ;

plot (f, abs(k)) – построение АЧХ:

  1.  Построение фильтра, тип которого не известен:

m=[zeros (1,11), ones (1,5), linspace (0. 9,0,10)];

f=[0:25]*100;

plot (f, m):

fn=[fn 1] – добавляем количество нормированных частот до 1;

m=[m 0] – количество амплитуд должно равняться количеству частот;

b=fir2 (100, fn, m);

k=freqz (b, 1, fn);

plot (fn, abs(k))

freqz (b, 1)

Вывод: В ходе лабораторной работы с помощью прикладного пакета MATLAB были спроектированы аналоговый фильтр Баттерворта верхних частот и произвольный фильтр. Графики, полученные в ходе проектирования прилагаются в отчете.


R4

2

R5

R6

R3

R1

E1

E2

E3


 

А также другие работы, которые могут Вас заинтересовать

13278. Исследование двигателя постоянного тока последовательного возбуждения 416 KB
  Лабораторная работа П4. Исследование двигателя постоянного тока последовательного возбуждения. Цель работы: ознакомление с методами пуска и регулирования частоты вращения двигателя последовательного возбуждения изучение его рабочих характеристик. Параметры дви
13280. Исследование трехфазного двухобмоточного трансформатора 625.5 KB
  Лабораторная работа Т1. Исследование трехфазного двухобмоточного трансформатора. Цель работы: ознакомление с конструкцией и принципом работы трехфазного двухобмоточного трансформатора а также определение параметров его схемы замещения в симметричных режимах при
13281. Побудова комбінаційних схем та побудова часових діаграм 3.84 MB
  У даній курсовій роботі буде даний один із логічних виразів, який буде розв’язуватися, як і в ручну так і за допомогою пакетів прикладних програм (ППП). А саме ППП Proteus та ППП ORCAD...
13282. Теорії міжнародної торгівлі 37.71 KB
  Оскільки, історично міжнародна торгівля передувала іншим формами міжнародних економічних відносин, першими зявилися теоретичні розробки (концепції), що стосувалися саме проблем міжнародної торгівлі і намагалися відповісти на практичні запитання
13283. ДЕФОРМАЦИИ РАСТЯЖЕНИЯ И ИЗГИБА 717 KB
  ДЕФОРМАЦИИ РАСТЯЖЕНИЯ И ИЗГИБА Задание. Определить модуль Юнга стальной проволоки с предельной относительной погрешностью не превышающей. Задание. Определить модуль Юнга дерева с предельной относительной погрешностью не превышающей...
13284. Классификация затрат на производство и реализацию продукции 67.5 KB
  Деление затрат по функциям деятельности позволяет в планировании и учете определять величину затрат в разрезе подразделений каждой сферы, что является одним из важных условий организации внутрихозяйственного расчета.
13285. Навыки работы с программным пакетом Electronics Workbench (EWB) для виртуального моделирования физических измерительных процессов 89.5 KB
  Лабораторная работа №1 Навыки работы с программным пакетом Electronics Workbench EWB для виртуального моделирования физических измерительных процессов. Цель исследования: Получить начальное представление о базовых возможностях программного пакета EWB необходимых для мод...
13286. Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench 380.5 KB
  Лабораторная работа №2 Изучение вольтамперных характеристик биполярного транзистора в среде Electronics Workbench Цель исследования: Моделирование работы биполярного транзистора в среде Electronics Workbench и виртуальные измерения его входной и выходной вольтамперных характер