36793

Определение горизонтальной составляющей напряженности магнитного поля Земли

Лабораторная работа

Физика

Государственное образовательное учреждение высшего профессионального образования “Томский политехнический университет†Факультет Естественных наук и математики Кафедра Общая физика Направление Физика Лабораторная работа № 216 Определение горизонтальной составляющей напряженности магнитного поля Земли. Лабораторная работа № 216 Определение горизонтальной составляющей напряженности магнитного поля...

Русский

2013-09-23

46.5 KB

57 чел.

Федеральное агентство по образованию.

Государственное образовательное учреждение

высшего профессионального образования

“Томский политехнический университет”

             Факультет               Естественных наук и математики   

 Кафедра                  Общая физика

               Направление           Физика

Лабораторная работа № 2-16

Определение горизонтальной составляющей напряженности магнитного поля Земли.

Исполнитель:

Студент, группы________(__________)_____________И.О.Фамилия

                                                   Подпись

                                            (__________)

                                                     Дата

Руководитель___________(__________)____________И.О.Фамилия

Должность, ученая степень, звание                         Подпись

                                             (__________)

                                                      Дата

«Томск 2007г.»

Лабораторная работа № 2-16

Определение горизонтальной составляющей напряженности магнитного поля Земли

Цель работы: Определение горизонтальной составляющей напряженности магнитного поля Земли при помощи тангенс – гальванометра.

Приборы и принадлежности: тангенс – гальванометр, переключатель, реостат, миллиамперметр.

Теоретическое введение

Горизонтальную составляющую магнитного поля Земли для данного географического пункта определяют с помощью тангенс – гальванометра.

Прибор состоит из одного или нескольких витков медной проволоки, расположенных вертикально. В центре витка на вертикальном острие помещена магнитная стрелка, положение которой определяется по лимбу.

Если виток тангенс – гальванометр установить в положении магнитного меридиана, то на стрелку действует горизонтальная составляющая магнитного поля Земли, и она устанавливается на нулевой отметке шкалы тангенс – гальванометра. Если пропустить ток через виток, то вокруг витка появится магнитное поле. Напряженность этого поля определяется по правилу правого винта, и направление вектора напряженности НТ  зависит от направления тока в витке I.

В этом случае на магнитную стрелку действуют два поля: магнитное поля Земли и магнитное поля витка с током. В результате магнитная стрелка отклоняется на угол φ, ориентируясь по результирующей НР полей, т.е.      НР= Н0 +  НТ.

Так как вектор напряженности горизонтальной составляющей магнитного поля Земли и вектор напряженности магнитного поля витка с током перпендикулярны, а

НР= Н0 +  НТ

то получим

tgφT0

откуда получаем

Н0=НТ/tgφ

Напряженность в центре витка определяется по закону Био – Савара – Лапласа:

                                        НТ=Jn/2r                                     (1)

где n – число витков, Jсила тока, r – радиус витка.

Окончательно напряженность горизонтальной составляющей магнитного поля Земли можно выразить следующим образом:

                                                                                         (2)

Экспериментальная часть

Установили виток тангенс – гальванометра по магнитному меридиану. Измерили показания тангенс – гальванометра по обоим концам стрелки для 5 различных значений силы тока. Провели предыдущие измерения, изменив направление тока через виток. Занесли данные всех измерений в таблицу №1. Рассчитали по формуле (1) величину горизонтальной составляющей магнитного поля Земли Н0.

I, A

При одном направлении тока, φ1

При другом направлении тока, φ2

φср

Н0 А/м

По северному концу

По южному концу

По северному концу

По южному концу

1

0,1

8,0

15,0

21,5

27,5

32,5

9,0

17,0

22,5

28,0

32,0

8,50

14,54

2

0,2

16,00

15,16

3

0,3

22,00

16,14

4

0,4

27,75

16,53

5

0,5

32,25

17,23

Н0ср=15,92 А/м

n=5

r=0,115 см

φср2=16,00

φср3=22,00

φср4=27,75

φср5=32,25

По формуле (2) определили Н0:

А теперь мы сможем найти Н0ср:

Н0ср=

Вывод: В ходе проделанной работы при помощи тангенс – гальванометра была определена горизонтальная составляющая магнитного поля Земли.  Направление вектора напряженности НТ  зависит от направления тока в витке I (вектор напряженности НТ прямо пропорционален силе тока и обратно пропорционален радиусу витка).


 

А также другие работы, которые могут Вас заинтересовать

41362. Изучение работы форвакуумного насоса 99.5 KB
  Цель работы: определить предельный вакуум и скорость откачки ротационного насоса. Форвакуумная установка: где Б1 – баллон; Б2 – калибровочный баллон (Vк = 2,4 л.); К1 – К7 – краны; РМ – разница давлений (мм.масл.ст.). Для нахождения объема установки используем следующую формулу:
41363. Градуирование электроизмерительных приборов с помощью потенциометра собранного из двух магазинов сопроти 159 KB
  Градуирование электроизмерительных приборов с помощью потенциометра собранного из двух магазинов сопротивления Приборы приспособления: вольтметр магазины сопротивлений – нормальный элемент – реостаты ключи– гальванометр батарея вольтметр.
41364. Определение эдс в термопаре 200.5 KB
  Схема для измерения малых эдс: где g – гальванометр класс точности 05; АВ – реохорд rАВ = 12  01 Ом lАВ = 1 м.; 1 – источник тока для реохорда 15 В; Э – эталонная эдс элемент Вестона 101795 В; х – измеряемая эдс; r1 – реостат для регулировки цены деления реохорда; r2 – сопротивление; r3 – реостат; М1 – опорный спай термопары 00С; М2 – рабочий спай термопары.
41365. Определение коэффициента поверхностного натяжения жидкостей 224.5 KB
  Задание 1: метод компенсации разности давлений поверхностного слоя жидкости. d – плотность жидкости налитой в манометр в данном случае это вода и d = 10 г см. Задание 2: метод отрыва пузыря внутри жидкости. Установка: где Т – насос; Б – бутыль для создания давления; Н – разность высот жидкости в двух коленах манометра; D – глубина на которую опущен капилляр радиус которого равен 002 см.
41366. Определение удельной теплоёмкости жидкости методом лучеиспускания 68 KB
  Определение водяного эквивалента калориметра M0 – масса калориметра M1 масса калориметра с холодной водой MI=M1M0 – масса холодной воды TI – температура холодной воды M2 – масса калориметра с горячей и холодной водой T – температура смеси MII=M2M1 – масса горячей воды TII – температура горячей воды M0= 179 г M1= 297 г MI = 118 г TI = 23 C M2 = 332 г Т = 31 С MII = 35 г ТII = 61 С II Основные измерения...
41367. Градуирование электроизмерительных приборов с помощью потенциометра собранного из двух магазинов сопротивления 50.5 KB
  Цель работы: проградуировать вольтметр. Приборы и приспособления: вольтметр , магазины сопротивлений – 4, нормальный элемент – 1, реостаты – 4, ключи –3 , гальванометр – 1, батарея на 2.5-3 В, источник постоянного напряжения для питания градуируемого прибора.
41368. Основные измерения с электронным осциллографом 75.5 KB
  Задание 1: Проверка линейности усилителей осциллографа. U В Y см 6 035 7 05 8 06 10 08 12 085 14 095 18 12 22 15 Задание 2: Градуировка усилителей. U=18 В Задание 3: Проверка внутреннего калибратора напряжения. 17 11 01 18 115 011 20 12 012 21 125 013 23 135 016 Задание 4: Определение чувствительности трубки.
41369. Определение плотности тела правильной формы 70.62 KB
  Цель работы: ознакомление с простейшими измерительными инструментами (штангенциркулем, микрометром, техническими весами, аналитическими весами) и отработка техники вычисления погрешностей, ведения записей, составления отчета.
41370. Определение плотности твердого тела способом гидростатического взвешивания 35.5 KB
  Приборы и материалы: весы типа АДВ200; стакан для воды; подставка; стремя; проволока для подвешивания тела. m1 = 74798  00005 г – масса тела в воздухе m2 = 60017  00005 г – масса тела проволоки и стремени в воде m3 = 12479  00005 г – масса проволоки и стремени в воде m4 = m2 m3 = 47538  00005 г – масса тела в воде Формула плотности тела с поправкой на потерю веса в воздухе: где  плотность воздуха; плотность тела без поправки на потерю веса в воздухе.