36837

ИЗМЕРЕНИЕ ОБЪЁМА И ПЛОТНОСТИ ТВЁРДЫХ ТЕЛ

Лабораторная работа

Физика

Определение линейных размеров объёмов и плотностей твёрдых тел. Действительно все великие открытия в физике были выполнены с помощью измерений. Однако измерения необходимы не только в научноисследовательской работе.

Русский

2013-09-23

257.5 KB

16 чел.

PAGE  4

ФГОУ ВПО «КАЛИНИНГРАДСКИЙ  ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ  УНИВЕРСИТЕТ»

КАФЕДРА ФИЗИКИ

ЛАБОРАТОРНАЯ РАБОТА № 101

ИЗМЕРЕНИЕ ОБЪЁМА И ПЛОТНОСТИ ТВЁРДЫХ ТЕЛ

Методическое указание к выполнению лабораторной работы по курсу общей физики для студентов инженерно-технических специальностей

Калининград

2006

Цель работы:

1. Изучение правил прямых и косвенных измерений.

2. Определение линейных размеров, объёмов и плотностей твёрдых тел.

Используемые инструменты и реквизит:

1. Штангенциркуль с точностью измерения 0,1 мм.

2. Детали из различных материалов.

3. Таблица масс деталей.

  1.  ВВЕДЕНИЕ

Один из наиболее знаменитых ученых ХХ века А.Пуанкаре сказал: «В физике существует только то, что можно измерить». Действительно, все великие открытия в физике были выполнены с помощью измерений.

Однако, измерения необходимы не только в научно-исследовательской работе. Измерения  выполняют в производственной сфере, в процессе изготовления  любой  продукции. Например, токарь при обработке деталей на станке проверяет размеры с помощью микрометра или штангенциркуля. Сталевары измеряют температуру расплавленного в домнах металла с помощью пирометров.

При изготовлении фото-, электро-, радиоаппаратуры все параметры измеряют специальными оптическими и электрическими приборами.

Государственные организации по контролю качества питьевой воды, загрязнений воздуха в больших городах также ведут постоянные замеры состава химических элементов с помощью различных приборов.

С помощью оптических телескопов и радаров измеряют координаты и контролируют траектории полета космических аппаратов.

Можно привести еще много примеров, показывающих, насколько широко используются измерения в современной эпохе.

В учебной лаборатории по физике студенты должны ознакомиться с понятием физической величины, правилами и способами измерений различными приборами, а также с правилами обработки и представления результатов измерений. Для расчётов необходимо не только умение выполнять без ошибок простые арифметические вычисления, потребуются также знания из раздела высшей математики, а именно, умение вычислять производные и полные дифференциалы различных функций.

В методическом пособии для студентов «Введение в физику: основы физических измерений» даны определения основных понятий теории измерений, правила измерений, правила обработки и представления результатов измерений. Необходимо знать все основные определения и правила, а также  научиться вычислять доверительные интервалы методом дифференцирования функций, примеры которых  даны в методическом пособии.

В настоящей лабораторной работе потребуется выполнить наиболее простые и, вместе с тем, широко распространённые измерения: найти линейные размеры, объёмы и плотности твёрдых тел разной формы, изготовленных из различных материалов. Массы тел известны и приведены в таблице, где указаны номера тел, размеры, объёмы и плотности которых требуется определить.

              

               2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

                 1.1. Экспериментальная часть.

В этой части работы требуется выполнить линейные измерения величин, необходимых для определения объёма двух тел: прямоугольного параллелепипеда и круглого тела типа  шайбы или трубки. Тела изготовлены из разных материалов, массы тел даны в отдельной таблице.

На рис.1 приведены эскизы тел с обозначениями величин, которые надо найти методом прямых измерений с помощью штангенциркуля. Описание штангенциркуля дано в Приложении 1.

Рис 1.

Измерение каждой величины требуется выполнить n=10 раз, перемещая ножки штангенциркуля вдоль поверхности тела. Значения измеренных величин занести в таблицы 1 и 2. Указать массы тел и материал, из которого они изготовлены: металл, дерево, пластмасса.

   m =___________                            материал -  _____________ 

                                                                                                                                                Таблица 1

a, мм

b, мм

c, мм

    m =___________                         материал - _______________

                                                                      Таблица 2

h, мм

D,мм

d,мм

Указание 1. Таблицы 1 и 2 должны быть приведены в протоколе измерений, который подписывает преподаватель. В протоколе требуется также привести эскизы тел, их номера и массу, сведения о цене деления, систематической ошибке пр и ошибке округления шкалы  штангенциркуля.

Указание 2. Следующие разделы с обработкой результатов прямых и косвенных измерений и расчётами объёма и плотностей тел должны быть приведены в отдельном отчёте с названием выполненной лабораторной работы и с описанием экспериментальной части.

       2.2. Обработка результатов прямых измерений

Используя данные таблиц 1 и 2, вычислить средние значения всех величин, случайные отклонения от среднего, квадраты отклонений и суммы случайных отклонений и квадратов этих отклонений. Результаты этих расчётов занести в таблицы 3 и 4 .

                                                                                        Таблица 3

ai

ai

ai2

bi

bi

bi2

ci

ci

ci2

a1

a1

a12

b1

b1

b12

c1

c1

c12

…..

…..

…..

…..

…..

…..

…..

…..

…..

a10

a10

a102

b10

b10

b102

c10

c10

c102

<ai>

Σai

Σai2

<bi>

Σbi

Σbi2

<ci>

Σci

Σci2

                                                                                             Таблица 4

hi

hi

hi2

Di

Di

Di2

di

di

di2

h1

h1

h12

D1

D1

D12

d1

d1

d12

…..

…..

…..

…..

…..

…..

…..

…..

…..

h10

h10

h102

D10

D10

D102

d10

d10

d102

<hi>

Σhi

Σhi2

<Di>

ΣDi

ΣDi2

<di>

Σdi

Σdi2

Примечание: В таблицах 3 и 4 в верхней строке поместить обозначения измеряемых величин; в следующих строках  - численные значения.

Вычислить случайную статистическую погрешность xсл , величину отклонения x и точность определения среднего значения для  всех измеряемых величин по формулам:

       ,

где:  х – поочерёдно обозначает измеряемую величину;

        - коэффициент Стьюдента при  p = 0,95; n =10;

        -  среднеквадратичное отклонение.

При расчёте погрешностей руководствоваться методическими указаниями №100.

Учесть, что xпр   равно цене деления нониуса штангенциркуля. Величиной  можно пренебречь, если  .

Записать результаты прямых измерений c указанием численных значений:

 м;

 м;

 м;

   м;

 м;

  м;   

              3. КОСВЕННОЕ ИЗМЕРЕНИЕ ОБЪЁМА

Требуется найти объёмы двух тел, заполненные веществом. Обозначим объёмы V1 и V2 .

Для параллелепипеда среднее значение объёма:

                                     

Для шайбы (или отрезка трубки) формула для объёма получается методом вычитания из внешнего объёма  внутреннего объёма    .

Для среднего значения объёма V2 , занятого веществом, получим:

                      .

Вычислить среднюю величину измеренных объёмов (в м3) для двух твёрдых тел с указанием их формы.

Вычислить значения интервалов V для двух тел. Для этого требуется найти полные дифференциалы соответствующих функций и записать формулы для расчёта интервалов:

Выполнить расчёты V1 и V2 .

Результаты измерений объёмов представить с указанием численных значений:

                              м3;  

м3;  

4. КОСВЕННОЕ ИЗМЕРЕНИЕ ПЛОТНОСТИ ОДНОРОДНОГО  ТВЁРДОГО ТЕЛА

Понятие плотности широко используется в физических и химических исследованиях, а также  в технических приложениях.

Вообще,   надо различать два вида плотностей: плотность количества вещества (числовую плотность) и плотность массы вещества, которую обычно называют сокращённо: плотность газа, жидкости или твёрдого тела.

Плотность количества вещества называется концентрацией и обозначается буквами: N или n, её размерность: м-3. Эта физическая величина характеризует свойства структурных элементов вещества: атомов, молекул и комплексов молекул (кластеров), а также  их число в единице объёма.

Плотность массы характеризует инертные свойства вещества, т.е. имеет большое значение при исследовании динамики движения газов, жидкостей и твёрдых тел. Плотность массы обозначают буквами: ρ или , её размерность: кг/м3.

В общем случае неоднородных сред плотность массы ρ измеряется в разных точках объёма  V и для её расчёта применяется формула: , т.е. плотность вычисляется как производная массы по объёму. Такая формула позволяет вычислить массу тела методом интегрирования.

Если тело однородное, т.е. его плотность сохраняется в разных точках объёма тела, то для её расчёта применяется формула: ρ=m/V, т.е. плотность оказывается функцией только массы и объёма тела: . В настоящей лабораторной работе измерение плотности выполняется для однородных твёрдых тел и её значение равно:

Требуется найти плотности <ρ1> и  <ρ2>  двух тел с известными массами, для которых выполнены измерения объёмов: V1 и V2 . Формула для расчёта интервалов ρ1  и ρ2  получается методом дифференцирования функции :

Результаты определения плотности двух тел представить с указанием численных значений:

 ;     

;     

5. ВОПРОСЫ ДЛЯ ПРОВЕРКИ (ПРИМЕРНЫЕ):

     5.1. Объяснить цель работы, методику выполнения работы, какие измерения были прямыми и какие - косвенными.

     5.2. Ответить на вопросы по теории физических измерений.

     5.3. Решить дополнительную задачу с вычислением доверительного интервала (погрешности).

6. ЛИТЕРАТУРА

6.1. Методическое пособие для студентов №100 «Введение в физику: основы физических измерений» - г. Калининград, кафедра физики КГТУ, 2006г.


 

А также другие работы, которые могут Вас заинтересовать

26883. Седалищный нерв 5.99 KB
  Седалищный нерв Седалищный нерв п. Он и ннервирует всю конечность за исключением некоторых ягодичных мышц сгибателей тазобедренного сустава и разгибателей коленного сустава. Проходит позади тазобедренного сустава и делится на большеберцовый и малоберцовый нервы идущие в области бедра вместе по медиальной поверхности двуглавой мышцы бедра почти до коленного сустава. Малоберцовый нерв п.
26884. Морфофункциональная характеристика черепно-мозговых нервов 4.77 KB
  морфофункциональная характеристика черепномозговых нервов Каждый отдел головного мозга человека исторически связан с конкретными дистантными анализаторами хеморецепторами фоторецепторами тактильными или слуховыми системами анализа внешней и внутренней среды организма. Как правило рецепторы расположены на некотором расстоянии от мозга и соединены с ним посредством нервов. Черепные нервы устаревшее название черепномозговые нервы двенадцать пар нервов выходящих из мозгового вещества в основании мозга и иннервирующих структуры...
26885. V-я и VI 1-я пары черепно-мозговых нервов. Общая характеристика, ветвление 2.98 KB
  Двенадцать пар черепномозговых нервов принято делить на 3 чувствительных I пара обонятельный U пара зрительный и VIII пара преддверноулитковый 5 двигательных III пара глазодвигательный IV пара блоковый VI пара отводящий XI пара добавочный и XII пара подъязычный и 4 смешанных V пара тройничный VII пара лицевой IX пара языкоглоточный и X пара блуждающий; в состав последних входят чувствительные двигательные и вегетативные волокна. 5 пара тройничный нервn.
26886. Общие закономерности строения вегетативной нервной системы 2.13 KB
  В симпатической нервной системе преганглионарные нейроны находятся в промежуточном боковом роге спинного мозга от верхнегрудного до среднепоясничного отдела Т1ТЗ. Преганглионарные парасимпатические нейроны залегают в стволе мозга и крестцовом отделе спинного мозга. Постганглионарные нейроны находятся в вертебральных и превертебральных ганглиях в симпатической системе а в парасимпатической они расположены в непосредственной близости от стенки органа который они иннервируют.
26887. Симпатическая часть вегетативной нервной системы. Солнечное сплетение 4.18 KB
  Симпатическая нервная система делится на центральную расположенную в спинном мозге и периферическую включающую многочисленные соединённые друг с другом нервные ветви и узлы. По своему ходу симпатические волокна отделяются от двигательных соматических и далее в виде белых соединительных ветвей вступают в узлы пограничного симпатического ствола. В состав солнечного сплетения входят правый и левый чревные узлы непарный верхний брыжеечный узел большой и малый внутренностные нервы и многие другие которые отходят от узлов в разные стороны...
26888. Парасимпатическая часть вегетативной нервной системы 4.21 KB
  Преганглионарные волокна отходят от центров в составе черепномозговых или спинномозговых нервов. От центров расположенных в среднем мозге преганглионарные волокна доходят до ресничного узла а от него идут постганглионарные волокна к глазу где разветвляются в сфинкторе зрачка и ресничной мышце.Слезоотделительныйпреганглиолярные волокна доходят до клинонёбного ганглия постганглиолярные волокна достигают слёзных желёз желёз неба и носовой полости; 2.Краниальныйоральный слюноотделительный преганглиолярные волокна доходят до...
26889. Блуждающий нерв 4.81 KB
  Направляясь латерально и вниз он покидает череп через переднюю часть яремного отверстия вместе с языкоглоточным и добавочным нервами располагаясь между ними. В области яремного отверстия блуждающий нерв утолщается за счёт верхнего узла лат. ganglion superius а немного ниже через 1015 см имеется ещё один узел несколько больших размеров лат. Спускаясь ниже блуждающий нерв в области шеи ложится на переднюю заднюю поверхность внутренней яремной вены лат.
26891. Защитные и вспомогательные образования глаза 1.53 KB
  Защитные и вспомогательные образования глаза К защитным и вспомогательным приспособлениям глаза относятся орбита глазной жир мышцы глаза веки ресницы конъюнктива слезный аппарат. Орбита является костным остовом глаза и защищает глазное яблоко от механических воздействий. Из коньюнктивального мешка слеза оттекает по носослезному каналу который начинается от слезного мешка во внутреннем углу глаза а заканчивается отверстием на слизистой оболочке носовой полости у входа.