36852

Численные методы решения задач линейной алгебры

Лабораторная работа

Математика и математический анализ

Численные методы решения задач линейной алгебры specM вычисляет собственные значения и собственные векторы квадратной матрицы M. specM Собственные числа матрицы ns = 1. Х собственные векторы соответствующие собственным значениям из матрицы Y. Использование функции inv Пример вычисления обратной матрицы.

Русский

2013-09-23

44.5 KB

6 чел.

Лабораторная работа 4а.

Численные методы решения задач линейной алгебры

spec(M) - вычисляет собственные значения и собственные векторы  квадратной матрицы M.

Листинг 3.34. Использование функции spec

-->M=[3 -2;-4 1]

M =

3. - 2.

- 4. 1.

-->spec(M) //Собственные числа матрицы

ans =

- 1.

5.

//Х - собственные векторы,

-->соответствующие собственным значениям из матрицы Y.

-->[X,Y]=spec(M)

Y =

! - 1. 0 !

! 0 5. !

X =

! 0.4472136 - 0.7071068 !

! 0.8944272 0.7071068 !

inv(A) - вычисляет матрицу, обратную к A;

Листинг 3.35. Использование функции inv

-->//Пример вычисления обратной матрицы.

-->A=[1 2 3 5;0 1 3 2;4 2 1 1;2 3 0 1];

-->inv(A)

ans =

! 0.0285714 - 0.1428571 0.3428571 - 0.2 !

! - 0.1428571 0.2142857 - 0.2142857 0.5 !

! - 0.2 0.5 0.1 - 0.1 !

! 0.3714286 - 0.3571429 - 0.0428571 - 0.1 !

-->//При умножении обратной матрицы на исходную,

-->//получилась матрица, близкая к единичной.

-->inv(A)*A

ans =

1. - 1.110D-16 0. 0.

0. 1. - 5.551D-17 5.551D-17

0. 0. 1. 1.388D-17

0. 0. 6.939D-17 1.

-->//При попытке обратить вырожденную матрицу

-->//(определитель равен или близок к нулю)

-->//пользователь получит сообщение об ошибке.

-->B=[1 2 3;1 4 5;1 6 7];

-->inv(B)

!--error 19

Problem is singular

pinv(A[,tol]) - вычисляет псевдообратную матрицу для матрицы A с точностью tol (необязательный параметр);

Листинг 3.36. Использование функции pinv

-->pinv(A)

ans =

0.0285714 - 0.1428571 0.3428571 - 0.2

- 0.1428571 0.2142857 - 0.2142857 0.5

- 0.2 0.5 0.1 - 0.1

0.3714286 - 0.3571429 - 0.0428571 - 0.1

linsolve(A,b) - решает систему линейных алгебраических уравнений вида

.

Листинг 3.37. Пример использования функции linsolve

-->//Решение системы линейных уравнений

-->//{x1+2x2-7=0; x1+x2-6=0}.

-->//Свободные коэффициенты вводятся как вектор-столбец

-->//и с учетом знаков.

-->A=[1 2;1 1];b=[-7;-6];

-->x=linsolve(A,b)

x =

5.

1.

-->//Результатом операции A*x+b является вектор, достаточно

-->//близкий к нулю, это значит, что система решена верно.

-->A*x+b

ans =

1.0D-14 *

- 0.6217249

0.0888178

-->//Решение системы {x1+x2-1=0; x1+x2-3=0}

-->A=[1 1;1 1]; b=[-1;-3];

-->//Система не имеет решений:

-->linsolve(A,b)

WARNING:Conflicting linear constraints!

ans =

[]

-->//Решение системы {3x1-x2-1=0; 6x1-2x2-2=0}.

-->//В случае, когда система имеет бесконечное

-->//множество решений, SCILAB выдаст одно из них.

-->A=[3 -1;6 -2];

-->b=[-1;-2];

-->x=linsolve(A,b)

x =

0.3

- 0.1

-->//Проверка неверна

-->A*x+b

ans =

1.0D-15 *

- 0.1110223

- 0.2220446

rref(A) - осуществляет приведение матрицы A к треугольной форме, используя метод исключения Гаусса;

Листинг 3.38. Пример использования функции rref

--> A=[3 -2 1 5;6 -4 2 7;9 -6 3 12]

A =

3 -2 1 5

6 -4 2 7

9 -6 3 12

--> rref(A)

ans =

1.0000 -0.6667 0.3333 0

0 0 0 1.0000

0 0 0 0

lu(М) - выполняет треугольное разложение матрицы M;

M = C · L · U, где L и U - соответственно нижняя и верхняя треугольные матрицы, все четыре матрицы квадратные и одного порядка. Такие вычисления называют LU-разложением.

Листинг 3.39. Использование функции lu

-->A=[2 -1 5;3 2 -5;1 1 -2]

A =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

-->[L,U]=lu(A)

U =

3. 2. - 5.

0. - 2.3333333 8.3333333 !

0. 0. 0.8571429 !

L =

0.6666667 1. 0.

1. 0. 0.

0.3333333 - 0.1428571 1.

-->LU=L*U

LU =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

qr(М) - выполняет разложение матрицы М на ортогональную и верхнюю треугольную матрицы;

M = Q · R, где Q - ортогональная матрица, а R - верхняя треугольная матрица. Этот

процесс называют QR-разложением.

Листинг 3.40. Использование функции qr

-->[Q,R]=qr(A)

R =

- 3.7416574 - 1.3363062 1.8708287

0. - 2.0528726 7.0632734

0. 0. 0.7811335

Q =

- 0.5345225 0.8350668 0.1301889

- 0.8017837 - 0.4523279 - 0.3905667

0.2672612 - 0.3131501 0.9113224

-->Q*R

ans =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

svd(М) - выполняет сингулярное разложение размером n×m; результатом работы функции может быть либо сингулярное разложение, либо вектор, содержащий сингулярные значения матрицы.

M = U · S · VT, где U и V-ортогональные матрицы размером m × m и n × n соответственно, а S-диагональная матрица, на диагонали которой расположены сингулярные числа матрицы M

Листинг 3.41. Использование функции svd

-->[U,S,V]=svd(A)

V =

- 0.1725618 0.9641403 - 0.2016333

- 0.3059444 0.1421160 0.9413825

0.9362801 0.2241352 0.2704496

S =

7.8003308 0. 0.

0. 3.6207331 0.

0. 0. 0.2124427

U =

0.5951314 0.8028320 0.0357682

- 0.7449652 0.5678344 - 0.3501300

- 0.3014060 0.1817273 0.9360180

-->U*S*V’

ans =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

-->s=svd(A)

s =

7.8003308

3.6207331

0.2124427

kernel(М[,tol[,fl]]) - определение ядра матрицы М, параметры tol и fl являются необязательными. Первый задает точность вычислений, второйиспользуемый при вычислении алгоритм и принимает значения ’qr’ или ’svd’.

Ядро матрицы - это множество векторов X. Поиск ядра матрицы сводится к решению однородной системы линейных уравнений AX = 0. Если при вызове функции X=kernel(A) матрица X окажется непустой, то действительно AX = 0.

Листинг 3.42. Использование функции kernel

-->A=[4 1 -3 -1;2 3 1 -5;1 -2 -2 3]

A =

4. 1. - 3. - 1.

2. 3. 1. - 5.

1. - 2. - 2. 3.

-->X=kernel(A)

X =

0.3464102

0.5773503

0.4618802

0.5773503


 

А также другие работы, которые могут Вас заинтересовать

22608. Накриття множин залежності 65.5 KB
  Х0 = Х Х1 = Х0 {атрибути які можуть бути отримані з Х0 за один крок} . Хi1 = Хi  { атрибути які можуть бути отримані з Х0 за і кроків} Якщо Хк = Хк1 = Х то процес обривається достроково якщо на деякому кроці Хк зрівнюється з усією множиною атрибутів. Приклад: ABC CA BCD ACDB DEG BEC CGBD CEAG Побудуємо замикання 2х атрибутів: BD BD = {B D E G} = X1 X2 = {B D E G C} X3 = {B D E G C A} всі атрибути побудовані В = {B}  B не може бути квазіключем D = {DEG} Мінімізуємо дану структуру: Перевірка кожної...
22609. Логічне проектування баз даних 77 KB
  A6 Атрибути А1 і А3 не входять у структуру функціональної залежності. Визначення функціональної повної залежності: М2 функціонально повно залежить від М1 якщо R.M1 Зобразимо це графічно: Реляція знаходиться в 3 НФП якщо вона в 2 НФП і не має транзитивної залежності атрибутів відносно кожного квазіключа. Реляція в 3 НФП якщо вона не має має транзитивної залежності атрибутів відносно кожного квазіключа.
22610. Вимірювання електрорушійної сили ( ЕРС ) та напруг компенсаційним методом 54 KB
  Ознайомитись з компенсаційним методом вимірювання ЕРС та напруг. Компенсаційний метод вимірювання. Цей недолік усувається якщо вимірювання здійснювати методом порівняння з мірою коли невідома величина порівнюється з мірою а на шкалі відтворюються лише відносні значення.
22611. ВИЗНАЧЕННЯ ПИТОМОГО ОПОРУ ПРОВІДНИКА 37.5 KB
  Змінюючи струм від мінімального до максимального значень зніміть вольтамперну характеристику опору провідника. Визначте абсолютну похибку  будьякого окремо взятого вимірювання за формулою середнього квадратичного відхилення питомого опору S та порівняйте її з похибкою визначеною за методом НК. Дайте відповідь на запитання: Чи підвищується точність визначення питомого опору при багаторазових вимірюваннях 6.
22612. ОСЦИЛОГРАФ. Включення осцилографа 41.5 KB
  Включення осцилографа. Дочекайтесь появлення на екрані осцилографа лінії розгортки або електронної плямияка створюється електронним променем. Якщо на екрані осцилографа нема нічого установіть тумблер РАЗВЕР. Калібровка осцилографа.
22613. Вивчення коливань фізичного маятника 210.5 KB
  Вивчення коливань фізичного маятника. Експериментальне вивчення коливального руху маятникастержня у гравітаційному полі Землі. Маятникстержень макетна установка для здійснення коливального руху маятника та вимірювання періоду його коливань. У випадку фізичного маятника мал.
22614. Визначення густини твердого тіла. Особливі методи зважування 93.5 KB
  Конструкція аналітичних терезів. Коромисло головний елемент терезів це рівноплечий важіль з опорною призмою посередині та шальками терезів 2 на кінцях. Точність терезів у значній мірі залежить від якості опор коромисла тому що тертя між призмою та опорною площиною впливає на результати вимірювань. З метою зменшення тертя шальки терезів на кінцях коромисла навішують через системи вантажепід\'ємних призм та подушок.
22615. Методичні вказівки до роботи з комп'ютерними програмами обрахунку даних лабораторних робіт з механіки та вимірювального циклу 414.5 KB
  Значна кількість студентів має ускладнення з застосуванням методу найменших квадратів частинного диференціювання при обробці непрямих вимірюваньз вибором та застосуванням відповідної методики визначення похибок вимірювання. У роботі треба зробити прямі ввимірювання маси та лінійних розмірів тіл правильної геометричної форми і обрахувати густину речовиниз якої зроблене тіло. Вона зкомпонована з програми безпосередніх обчислень та програми Обробка прямих вимірювань яка використовується для обробки результатів спостереженьпов'язаних з...
22616. ВИВЧЕННЯ ПРУЖНОГО УДАРУ ДВОХ КУЛЬ 23.5 KB
  Користуючись методом найменших квадратів МНК визначити модуль пружності сталі E модуль Юнга. Дати оцінку похибки визначення модуля Юнга E за методом НК. Дати оцінку E для одного окремо взятого вимірювання вивести формулу середнього квадратичного відхилення модуля Юнга SЕ . Модуль Юнга сталі E = 20  1010 Н м2 .