36852

Численные методы решения задач линейной алгебры

Лабораторная работа

Математика и математический анализ

Численные методы решения задач линейной алгебры specM вычисляет собственные значения и собственные векторы квадратной матрицы M. specM Собственные числа матрицы ns = 1. Х собственные векторы соответствующие собственным значениям из матрицы Y. Использование функции inv Пример вычисления обратной матрицы.

Русский

2013-09-23

44.5 KB

6 чел.

Лабораторная работа 4а.

Численные методы решения задач линейной алгебры

spec(M) - вычисляет собственные значения и собственные векторы  квадратной матрицы M.

Листинг 3.34. Использование функции spec

-->M=[3 -2;-4 1]

M =

3. - 2.

- 4. 1.

-->spec(M) //Собственные числа матрицы

ans =

- 1.

5.

//Х - собственные векторы,

-->соответствующие собственным значениям из матрицы Y.

-->[X,Y]=spec(M)

Y =

! - 1. 0 !

! 0 5. !

X =

! 0.4472136 - 0.7071068 !

! 0.8944272 0.7071068 !

inv(A) - вычисляет матрицу, обратную к A;

Листинг 3.35. Использование функции inv

-->//Пример вычисления обратной матрицы.

-->A=[1 2 3 5;0 1 3 2;4 2 1 1;2 3 0 1];

-->inv(A)

ans =

! 0.0285714 - 0.1428571 0.3428571 - 0.2 !

! - 0.1428571 0.2142857 - 0.2142857 0.5 !

! - 0.2 0.5 0.1 - 0.1 !

! 0.3714286 - 0.3571429 - 0.0428571 - 0.1 !

-->//При умножении обратной матрицы на исходную,

-->//получилась матрица, близкая к единичной.

-->inv(A)*A

ans =

1. - 1.110D-16 0. 0.

0. 1. - 5.551D-17 5.551D-17

0. 0. 1. 1.388D-17

0. 0. 6.939D-17 1.

-->//При попытке обратить вырожденную матрицу

-->//(определитель равен или близок к нулю)

-->//пользователь получит сообщение об ошибке.

-->B=[1 2 3;1 4 5;1 6 7];

-->inv(B)

!--error 19

Problem is singular

pinv(A[,tol]) - вычисляет псевдообратную матрицу для матрицы A с точностью tol (необязательный параметр);

Листинг 3.36. Использование функции pinv

-->pinv(A)

ans =

0.0285714 - 0.1428571 0.3428571 - 0.2

- 0.1428571 0.2142857 - 0.2142857 0.5

- 0.2 0.5 0.1 - 0.1

0.3714286 - 0.3571429 - 0.0428571 - 0.1

linsolve(A,b) - решает систему линейных алгебраических уравнений вида

.

Листинг 3.37. Пример использования функции linsolve

-->//Решение системы линейных уравнений

-->//{x1+2x2-7=0; x1+x2-6=0}.

-->//Свободные коэффициенты вводятся как вектор-столбец

-->//и с учетом знаков.

-->A=[1 2;1 1];b=[-7;-6];

-->x=linsolve(A,b)

x =

5.

1.

-->//Результатом операции A*x+b является вектор, достаточно

-->//близкий к нулю, это значит, что система решена верно.

-->A*x+b

ans =

1.0D-14 *

- 0.6217249

0.0888178

-->//Решение системы {x1+x2-1=0; x1+x2-3=0}

-->A=[1 1;1 1]; b=[-1;-3];

-->//Система не имеет решений:

-->linsolve(A,b)

WARNING:Conflicting linear constraints!

ans =

[]

-->//Решение системы {3x1-x2-1=0; 6x1-2x2-2=0}.

-->//В случае, когда система имеет бесконечное

-->//множество решений, SCILAB выдаст одно из них.

-->A=[3 -1;6 -2];

-->b=[-1;-2];

-->x=linsolve(A,b)

x =

0.3

- 0.1

-->//Проверка неверна

-->A*x+b

ans =

1.0D-15 *

- 0.1110223

- 0.2220446

rref(A) - осуществляет приведение матрицы A к треугольной форме, используя метод исключения Гаусса;

Листинг 3.38. Пример использования функции rref

--> A=[3 -2 1 5;6 -4 2 7;9 -6 3 12]

A =

3 -2 1 5

6 -4 2 7

9 -6 3 12

--> rref(A)

ans =

1.0000 -0.6667 0.3333 0

0 0 0 1.0000

0 0 0 0

lu(М) - выполняет треугольное разложение матрицы M;

M = C · L · U, где L и U - соответственно нижняя и верхняя треугольные матрицы, все четыре матрицы квадратные и одного порядка. Такие вычисления называют LU-разложением.

Листинг 3.39. Использование функции lu

-->A=[2 -1 5;3 2 -5;1 1 -2]

A =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

-->[L,U]=lu(A)

U =

3. 2. - 5.

0. - 2.3333333 8.3333333 !

0. 0. 0.8571429 !

L =

0.6666667 1. 0.

1. 0. 0.

0.3333333 - 0.1428571 1.

-->LU=L*U

LU =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

qr(М) - выполняет разложение матрицы М на ортогональную и верхнюю треугольную матрицы;

M = Q · R, где Q - ортогональная матрица, а R - верхняя треугольная матрица. Этот

процесс называют QR-разложением.

Листинг 3.40. Использование функции qr

-->[Q,R]=qr(A)

R =

- 3.7416574 - 1.3363062 1.8708287

0. - 2.0528726 7.0632734

0. 0. 0.7811335

Q =

- 0.5345225 0.8350668 0.1301889

- 0.8017837 - 0.4523279 - 0.3905667

0.2672612 - 0.3131501 0.9113224

-->Q*R

ans =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

svd(М) - выполняет сингулярное разложение размером n×m; результатом работы функции может быть либо сингулярное разложение, либо вектор, содержащий сингулярные значения матрицы.

M = U · S · VT, где U и V-ортогональные матрицы размером m × m и n × n соответственно, а S-диагональная матрица, на диагонали которой расположены сингулярные числа матрицы M

Листинг 3.41. Использование функции svd

-->[U,S,V]=svd(A)

V =

- 0.1725618 0.9641403 - 0.2016333

- 0.3059444 0.1421160 0.9413825

0.9362801 0.2241352 0.2704496

S =

7.8003308 0. 0.

0. 3.6207331 0.

0. 0. 0.2124427

U =

0.5951314 0.8028320 0.0357682

- 0.7449652 0.5678344 - 0.3501300

- 0.3014060 0.1817273 0.9360180

-->U*S*V’

ans =

2. - 1. 5.

3. 2. - 5.

1. 1. - 2.

-->s=svd(A)

s =

7.8003308

3.6207331

0.2124427

kernel(М[,tol[,fl]]) - определение ядра матрицы М, параметры tol и fl являются необязательными. Первый задает точность вычислений, второйиспользуемый при вычислении алгоритм и принимает значения ’qr’ или ’svd’.

Ядро матрицы - это множество векторов X. Поиск ядра матрицы сводится к решению однородной системы линейных уравнений AX = 0. Если при вызове функции X=kernel(A) матрица X окажется непустой, то действительно AX = 0.

Листинг 3.42. Использование функции kernel

-->A=[4 1 -3 -1;2 3 1 -5;1 -2 -2 3]

A =

4. 1. - 3. - 1.

2. 3. 1. - 5.

1. - 2. - 2. 3.

-->X=kernel(A)

X =

0.3464102

0.5773503

0.4618802

0.5773503


 

А также другие работы, которые могут Вас заинтересовать

71321. БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ (КОНСПЕКТ ЛЕКЦІЙ) 843.89 KB
  Статистика свідчить про те, що рівень смертності, травматизму, аварій і катастроф в Україні набагато перевищує аналогічні показники розвинутих країн. За темпами вимирання людей Україна входить в першу десятку країн світу, а дитяча смертність в ній найвища в Європі.
71322. Мировой рынок ERP-систем. Лидеры мирового рынка ERP-систем 148.87 KB
  SAP рассчитывает превратить свою технологическую платформу NetWeaver в платформу для автоматизации бизнес-процессов, которую пользователи могут адаптировать под свои потребности. Это также должно облегчить интеграцию продуктов от независимых разработчиков с продуктами SAP.
71323. ERP-системы управления ресурсами предприятия. Особенности выбора ERP-систем 38.5 KB
  В основе ERP систем лежит принцип создания единого хранилища данных, содержащего всю корпоративную бизнес-информацию и обеспечивающего одновременный доступ к ней любого необходимого числа сотрудников предприятия, наделенных соответствующими полномочиями.
71324. Системы автоматизированного управления предприятиями. Развитие концепций. Концепции управления 190.19 KB
  В зависимости от специфики бизнеса любой из трех перечисленных аспектов может иметь доминирующее значение. Например, банк или финансовая инвестиционную компания рассматривают свой бизнес, прежде всего с точки зрения финансов, торговая компания – с позиции товарных потоков...
71325. Спутники для загрузки многоцелевых станков с ЧПУ 1.98 MB
  Еще одной разновидностью являются палеты для накопления деталей типа тел вращения предназначенные для обеспечения работы токарных многоцелевых станков. В конструкции палет должна быть предусмотрена выгрузка деталей роботом непосредственно из палет для установки на станок...
71326. Устройства для отвода стружки 2.3 MB
  Наибольшее распространение получил способ отвода стружки конвейерами пластинчатыми магнитными скребковыми и т. При использовании устройств для отвода стружки от станка: предотвращается концентрация теплоты в местах контакта стружки с узлами станка и снижаются деформации...
71327. АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 88 KB
  В начале нашей эры Герон Александрийский в работах «Пневматика» и «Механика» привел описание автоматов, которые он создал: пневматический автомат для открывания дверей храма и зажигания жертвенного огня; водяной орган; прибор для автоматического измерения длины дороги, напоминающий таксометр...
71328. Комплексная автоматизация технологических процессов 68.5 KB
  Оценивая занятость части или всех компонентов в реализации какого-либо явления например автоматизации всем объектом участком цехом. всеми компонентами какого-либо явления например автоматизации. Это означает что в реализации рассматриваемого явления например...
71329. ОСНОВЫ АВТОМАТИКИ. СИСТЕМЫ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ. ОСНОВНЫЕ ПОНЯТИЯ 294.5 KB
  Автоматические системы применяемые при автоматизации производственных процессов в зависимости от характера и объема операций выполняемых ими можно разделить на системы автоматического контроля автоматического регулирования автоматического управления следящие...