36869

Решение нелинейных уравнений и систем

Лабораторная работа

Математика и математический анализ

Всякое алгебраическое уравнение относительно x можно записать в виде 0xn1xn−1 n−1xn = 0 где 0 0 n 1 и i коэффициенты алгебраического уравнения n–й степени. Решение алгебраического уравнения в Scilb состоит из двух этапов. Примеры символьных операций с полиномами p1=poly[1 2]’x’’c’ p1 = 1 2x p2=poly[3 7 2]’x’’c’ p2 = 2 3 7x 2x p1p2 Сложение ns = 2 2 5x 2x p1p2 Вычитание ns = 2 4 9x 2x p1p2 Умножение ns = 2 3 3 13x 16x 4x p1 p2 Деление ns = 1 3 x p1^2 Возведение в...

Русский

2013-09-23

120.5 KB

9 чел.

Лабораторная работа № 7

Решение нелинейных уравнений и систем

Любое уравнение P(x) = 0, где P(x) - это многочлен, отличный от нулевого, называется алгебраическим уравнением или полиномом.

Всякое алгебраическое уравнение относительно x можно записать в виде a0xn+a1xn−1+· · ·+an−1x+an = 0,

где a0 <> 0, n > 1 и ai - коэффициенты алгебраического уравнения n–й степени.

Решение алгебраического уравнения в Scilab состоит из двух этапов.

1. Необходимо задать полином P(x) с помощью функции poly.

2. Найти его корни, применив функцию roots.

Определение полиномов в Scilab осуществляет функция poly(a, "x ["fl"]), где a - это число или матрица чисел, x - символьная переменная, fl - необязательная символьная переменная, определяющая способ задания полинома. Символьная переменная fl может принимать только два значения – «roots» или «coeff» (соответственно «r» или «c»).

Если fl=c, то будет сформирован полином с коэффициентами, хранящимися в параметре a.

Если же fl=r, то значения параметра a воспринимаются функцией как корни, для которых необходимо рассчитать коэффициенты соответствующего полинома.

По умолчанию fl=r.

Следующий пример отражает создание полинома p, имеющего в качестве корня тройку, и полинома f с коэффициентом 3.

Листинг 7.1. Полиномы первой степени

-->p=poly(3,’x’,’r’);

-->f=poly(3,’x’,’c’);

-->p

p =

- 3 + x

-->f

f =

3

Далее приведены примеры создания более сложных полиномов.

Листинг 7.2. Использование функции poly

-->//Полином с корнями 1, 0 и 2

-->poly([1 0 2],’x’)

ans =

2 3

2x - 3x + x

-->//Полином с коэффициентами 1, 0 и 2

-->poly([1 0 2],’x’,’c’)

ans =

2

1 + 2x

Рассмотрим примеры символьных операций с полиномами:

Листинг 7.3. Примеры символьных операций с полиномами

-->p1=poly([-1 2],’x’,’c’)

p1 =

- 1 + 2x

-->p2=poly([3 -7 2],’x’,’c’)

p2 =

2

3 - 7x + 2x

-->p1+p2 //Сложение

ans =

2

2 - 5x + 2x

-->p1-p2 //Вычитание

ans =

2

4 + 9x - 2x

-->p1*p2 //Умножение

ans =

2 3

- 3 + 13x - 16x + 4x

-->p1/p2 //Деление

ans =

1

-----

- 3 + x

-->p1^2 //Возведение в степень

ans =

2

1 - 4x + 4x

-->p2^(-1) //Возведение в отрицательную степень

ans =

1

-----------

2

3 - 7x + 2x

Функция roots(p) предназначена для решения алгебраического уравнения.

Здесь p - это полином, созданный функцией poly и представляющий собой левую часть уравнения P(x) = 0.

Решим несколько алгебраических уравнений.

Задача 7.1. Найти корни полинома 2x4 − 8x3 + 8x2 − 1 = 0.

Для решения этой задачи необходимо задать полином p. Сделаем это при помощи функции poly, предварительно определив вектор коэффициентов V . В уравнении отсутствует переменная x в первой степени, это означает, что соответствующий коэффициент равен нулю:

Листинг 7.4. Формирование полинома

-->V=[-1 0 8 -8 2];

-->p=poly(V,’x’,’c’)

p =

1 + 8x2 - 8x 3+ 2x4

Теперь найдем корни полинома:

Листинг 7.5. Использование функции roots

-->X=roots(p)

X =

! 0.4588039 !

! - 0.3065630 !

! 1.5411961 !

! 2.306563 !

Графическое решение задачи позволяет убедиться, что корни найдены верно.

Пересечение графиков функций F(x)= 1 + 8x2 - 8x 3+ 2x4 и g(x)=0

Задача 7.2. Найти корни полинома x3 + 0.4x2 + 0.6x − 1 = 0.

Листинг 7.6. Решение задачи 7.2

-->roots(poly([-1 0.6 0.4 1],’x’,’c’))

ans =

! 0.7153636 !

! - 0.5576818 + 1.0425361i !

! - 0.5576818 - 1.0425361i !

Нетрудно заметить, что полином имеет один действительный и два комплексных корня.

Задача 7.3. Найти решение уравнения y(x) = 0, если y(x) = x4 − 18x2 + 6.

Листинг 7.7. Решение задачи 7.3

-->x=poly(0,’x’);

-->y=x^4-18*x^2+.6;

-->roots(y)

ans =

! 0.1827438 !

! - 0.1827438 !

! - 4.2387032 !

! 4.2387032 !

Приведите графическое решение данного уравнения.

Трансцендентные уравнения

Уравнение f(x) = 0, в котором неизвестное входит в аргумент трансцендентных функций, называется трансцендентным уравнением.

К трансцендентным уравнениям принадлежат показательные, логарифмические и тригонометрические.

В общем случае аналитическое решение уравнения f(x) = 0 можно найти только для узкого класса функций. Чаще всего приходится решать это уравнение численными методами.

Численное решение нелинейного уравнения проводят в два этапа.

  1.  В начале отделяют корни уравнения, т.е. находят достаточно тесные промежутки, в которых содержится только один корень. Эти промежутки называют интервалами изоляции корня, определить их можно, изобразив график функции f(x) или любым другим методом.
  2.  На втором этапе проводят уточнение отделенных корней, или, иначе говоря, находят корни с заданной точностью.

Для решения трансцендентных уравнений в Scilab применяют функцию

fsolve(x0,f)

где x0 - начальное приближение, f - функция, описывающая левую часть уравнения y(x) = 0.

Рассмотрим применение этой функции на примерах.

Задача 7.4. Найти решение уравнения

Определим интервал изоляции корня заданного уравнения. Воспользуемся графическим методом отделения корней. Если выражение, стоящее в правой части уравнения, представить в виде разности двух функций f(x) − g(x) = 0, то абсцисса точки пересечения линий f(x) и g(x) - корень данного уравнения. В нашем случае .

Корень данного уравнения лежит в интервале [0; 1].

Выберем ноль в качестве начального приближения, зададим функцию, описывающую уравнение и решим его:

Листинг 7.8. Решение задачи 7.4

-->deff(’[y]=f1(x)’,’y1=((x-1)^2)^(1/3),y2=(x^2)^(1/3),y=y1-y2’)

-->fsolve(0,f1)

ans = 0.5

Задача 7.5. Найти корни уравнения f(x) = ex/5 − 2(x − 1)2.

На рисунке видно, что график функции f(x) трижды пересекает ось абсцисс, т.е. уравнение имеет три корня.

Последовательно вызывая функцию fsolve с различными начальными приближениями, получим все решения заданного уравнения:

Листинг 7.9. Решение задачи 7.5

-->deff(’[y]=f(x)’,’y=exp(x)/5-2*(x-1)^2’)

-->x(1)=fsolve(0,f);x(2)=fsolve(2,f);x(3)=fsolve(5,f);

-->x

x = ! 0.5778406 !

! 1.7638701 !

! 5.1476865 !

Кроме того, начальные приближения можно задать в виде вектора, и тогда функцию можно вызвать один раз:

Листинг 7.10. Решение задачи 7.5 (альтернативный способ)

-->fsolve([0;2;5],f)

ans = ! 0.5778406 !

! 1.7638701 !

! 5.1476865 !

Задача 7.6. Вычислить корни уравнения sin(x) − 0.4x = 0 в диапазоне [−5π; 5π].

Решение задачи представлено в листинге 7.11.

Листинг 7.11. Решение задачи 7.6

-->deff(’[y]=fff(x)’,’y=-0.4+sin(x)’)

-->V=[-5*%pi:%pi:5*%pi]; X=fsolve(V,fff);

-->X //Множество решений

X = !-16.11948 -12.154854 -9.8362948 -5.8716685 -3.5531095

0.4115168 2.7300758 6.6947022 9.0132611 12.977887 15.296446!

Задача 7.7. Найти решение уравнения y(x) = 0, если y(x) = x5 − x3 + 1.

Решить самостоятельно.


 

А также другие работы, которые могут Вас заинтересовать

45130. About Myself 14.65 KB
  When I ws pupil my fvorite subjects ws History nd Society becuse I hd wnted to become lwyer. My fvorite supervisors re Jmes Cmeron Gy Richy Peter Jckson nd Leonid Gidi. My fvorite footbll tems re Mnchester United nd CSK. I like reding; my fvorite writers re Jorge Orwell for his “1984†Ioghn Wolfgng Gete for “Fust†nd Plto for “Stteâ€.
45131. Barristers and Solicitors 18.78 KB
  The solicitor deals with 1)petty crimes, some 2)matrimonial matters in magistrate courts. He 3)prepares the case and the evidence, may 4)represent his client in the lower courts. He has limited rights of audience. There in civil action solicitor can speak in the county court, when the case is about divorce or recovering some depts. 5)They act as an intermediary between their clients and barristers
45132. Barristers 13.19 KB
  Baristers ct s sole trders with unlimited libility. Some brristers re employed prctice nd represent their employer for exmple inhouse lwyer or lwyer in government bodies. Mny of the brristers work in selfemployed prctice t the chmbers or t the Br. The Inns re noncdemic societies which provide collegite nd eductionl resources for brristers nd trinees.
45133. British Political System 16.82 KB
  Queen Elizbeth II is the fourth sovereign of the House of Windsor. It consists of two chmbers known s the House of Commons nd House of Lords nd the Queen s its hed but only House of Commons hve rel power. The House of Commons consist of 650 elected members nd it’s persisted over by the Speker. Only four members House of Commons hve reserved sets: Speker Prime Minister leder of the prty tht hs mjority in the House of Commons nd Leder of the Opposition nd member who hs st in the House of Commons for the longest unbroken period who clled...
45134. British Parliament 13.87 KB
  It consists of two chmbers known s the House of Commons nd House of Lords nd the Queen s its hed but only House of Commons hve rel power. The House of Commons consist of 650 elected members nd it’s persisted over by the Speker. Only four members House of Commons hve reserved sets: Speker Prime Minister leder of the prty tht hs mjority in the House of Commons nd Leder of the Opposition nd member who hs st in the House of Commons for the longest unbroken period who clled Fther of the House of Commons. The House of Lords consist of 750...
45135. Geography and Economy of Great Britain 16.75 KB
  They lie to the west of the continent of Europe. The lrger of the two big islnds is known s Gret Britin. The smller Islnd is Irelnd with Northern Irelnd nd Irish Republic.
45136. Просвещенный абсолютизм Екатерины II 20.12 KB
  Время царствования Екатерины II называют эпохой просвещенного абсолютизма. Основы просвещённого абсолютизма: человек есть самое ценное на земле и его свобода важнее интересов государства; все люди равны в своих человеческих правах невзирая на сословные различия; общество нуждается в совершенствовании и важнейшую роль должны сыграть в этом наука просвещение законотворчество. Время царствования Екатерины II называют эпохой просвещенного абсолютизма . Смысл просвещенного абсолютизма состоит в политике следования идеям Просвещения...
45137. Государственное правление при Павле I 37 KB
  Екатерина придя к власти не приблизила Павла к себе поскольку не испытывала к сыну особой любви и видела в нем претендента на власть. Недоброжелательное отношение со стороны матери и ее приближенных повлияло на характер Павла. Вспыльчивость часто приводили Павла к непредсказуемым поступкам жестокость и деспотизм сочетались в нем с обостренным чувством справедливости. Очень важным для него было понятие чести в духе средневекового рыцарства во многом именно с этим в годы правления Павла были связаны курьезные указы касающиеся этикета.
45138. Александр I 116.5 KB
  В целом деятельность Комитета разделялась на три направления: важные межведомственные вопросы государственного управления; одиозные вопросы которые формально находились в пределах ведения одного министерства но за которых министры не хотели брать на себя персональную ответственность и стремились переложить её на коллегию; мелочные вопросы список которых сформировался достаточно случайным образом прежде всего в результате уклонения отдельных министерств от принятия на себя решения данных задач; данная группа вопросов всегда была...