36878

Определение ёмкости конденсаторов измерительным мостиком Соти

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Тема: Определение ёмкости конденсаторов измерительным мостиком Соти. Цель работы: измерение теплоёмкостей двух конденсаторов проверка закона последовательного и параллельного соединения конденсаторов. Пусть Δφ1 Δφ2 мгновенные значения напряжений на обкладках конденсаторов а ΔφN ΔφNB мгновенные значения напряжений на сопротивлениях R1 R2.

Русский

2013-09-23

85 KB

30 чел.

Министерство образования Российской Федерации

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Наименование факультета - ЕНМФ

Наименование выпускающей кафедры – Общая физика

Наименование учебной дисциплины - Физика

Лабораторная работа № 2-02

Наименование работы –  “Определение ёмкости конденсаторов измерительным мостиком          Соти”

Исполнитель:

Студент, группы 13А61 Красковский К.А. (_______)______________(_______)

                                                                                                   Подпись                                                     дата

 

                                                                                                  подпись

(_______)

дата

Руководитель, профессор Крючков Ю.Ю. (_______)_____________(_______)

    Должность, ученая степень, звание                  подпись                                                      дата                                                                                                                                       

 

 

Томск –2007

Лабораторная работа 2-02.

Тема: Определение ёмкости конденсаторов измерительным мостиком Соти.

Цель работы: измерение теплоёмкостей двух конденсаторов, проверка закона последовательного и параллельного соединения конденсаторов.

Приборы и принадлежности: осциллограф, звуковой генератор как источник переменного напряжения, конденсатор с известной ёмкостью, два конденсатора с неизвестными ёмкостями, реохорд, соединительные провода.

Краткое теоретическое введение.

Для измерений теплоёмкостей используется классическая мостовая схема, называемая мостиком Соти. На рис.1 показана схема простейшего моста Соти.

Схема содержит конденсаторы С1, С2, омические сопротивления R1, R2, осциллограф и звуковой генератор ЗГ для питания схемы.

  Пусть Δφ1, Δφ2 – мгновенные значения напряжений на обкладках конденсаторов, а

ΔφAN,  ΔφNB – мгновенные значения напряжений на сопротивлениях R1, R2.

Δφ1=U1= φM- φA;

Δφ2=U2= φM- φB;

Обозначим φAB,φM,φN – мгновенные значения потенциалов в точках A, B, M, N, соответственно. Тогда

ΔφAN= φA- φN;

ΔφNB= φB- φN;

 Так как потенциалы в точках M и N различны, в ветвях MAN, MBN, ATB текут переменные токи. При любых произвольных R1 и R2 напряжения Δφ1, Δφ2, ΔφAN  и ΔφNB 

отличаются друг от друга, но сопротивления R1 и R2 можно подобрать так, что ток в диагонали моста ВТА станет равен нулю. Это имеет место когда потенциалы точек А и В

окажутся одинаковыми. Тогда

Δφ1= Δφ2 ;

ΔφAN= ΔφBN.

                                                                                                                                                                                            Если ток в диагонали ВТА равен нулю, то ток i1= ΔφAN/R1 заряжает конденсатор С1, а ток i1= ΔφNВ/R2 заряжает конденсатор С2.

На обкладках конденсаторов за время Δt накапливаются заряды Δq1 и Δq2.

Δq1= ΔφAN/R1 × Δt

Δq2= ΔφNВ/R2× Δt

Электроёмкость проводника  измеряется количеством электричества, которое необходимо сообщить проводнику, чтобы изменить его потенциал на единицу потенциала, следовательно,  С= Δq / Δφ и поэтому электроёмкости первого и второго конденсаторов определяются соотношениями:

С1= ΔφAN/R1 × Δt/ Δφ1

С2= ΔφNВ/R2× Δt/ Δφ2

Следовательно:

С12=R2/R1.

Сопротивления участков струны AN и NB соответственно равны R1=ρ*l1/s и

R1=ρ*l2/s,

где ρ-удельное сопротивление, s-сечение струны, l1 и  l2 – длины участков струны AN и BN. Подвижный участок N скользит по струне и изменяет отношение плеч. При произвольном положении контакта N в диагонали моста ATB течёт ток и в телефоне слышен звук. Когда контакт приближается к положению, при котором ток, идущий через телефон, становится исчезающе мал, звук замирает. Если звук в телефоне исчез, то сопротивления R1 и R2 оказались такими, что выполняется соотношение:

левое плечо:

      l

C

 l1

l’’ 1

l’ ‘’1

l 1ср

l 2

Величина ёмкости, мкФ

Cx1

66.5 

66.7

66.5

66.5

33.5

0,5

Cx2

46.8

47.1

46.9

46.5

53.5

0,8

Cx посл

74.0

74.5

76.6

73.4

26.6

0,4

Cx паралл

37.6

37.9

37.5

38.7

61.3

1,6

Правое плечо:

      l

C

 l1

l’’ 1

l’ ‘’1

l 1ср

l 2

Величина ёмкости, мкФ

Cx1

34.0

33.8

33.9

33,9

66.1

0,5

Cx2

53.7

54.0

53.7

53.8

46.2

1,2

Cx посл

26.5

26

26.2

26,2

73.8

0,35

Cx паралл

63.3

62.9

63.2

63,1

36.9

1,7

Cx1 ср

Cx2 ср

Cx посл ср

Cx паралл ср

0,5 мкФ

1 мкФ

0,375 мкФ

1,65 мкФ

СЭ=1*10-6мкФ

Подсчёт результатов:

Левое плечо:

Правое плечо:

Вывод:

С помощью мостовой схемы, называемой “мостиком Соти” мы измерили электроёмкости 2х конденсаторов, а также проверили законы последовательного и параллельного соединения конденсаторов. На основании данных таблиц нашли средние значения неизвестных ёмкостей Cx1 и Cx2 , а также ёмкости Cx паралл и Cx посл , которые образуются при последовательном и параллельном соединении конденсаторов.


зГ

Т

U

К

~

l1

l2

C1

C2

B

A

M

N

Рис.1


 

А также другие работы, которые могут Вас заинтересовать

20265. Просторові кореляційні функції та властивості кореляційних функцій 63 KB
  Тобто якщо для системи відома функція то ми знаємо яке розташування N частинок системи є найбільш ймовірним. Але через математичні складності обчислень потенціальної енергії взаємодії N частинок системи ця задача розвязана в дуже обмеженому числі випадків. Тому запропонували новий метод: замість функції розподілу густини ймовірностей певних статистичних станів системи Гіббса розглядається набір з N кореляційних функцій різного порядку: унарна кореляційна функція яка характеризує густину ймовірності що одна частинка системи...
20266. Молекулярна структура рідин. Два способи опису молекулярної структури 64 KB
  dV1 dV2 r EMBED Equation.3 EMBED Equation.3 Г Р КР EMBED Equation.3 EMBED Equation.
20267. Поглинання звуку у в’язкопружних середовищах 80 KB
  Реологічне рівняння це рівняння яке повязує тензор напруг з тензором деформацій і тензором швидкості деформацій. Для вязкопружнього середовища реологічне рівняння: тензор напруг; тензор деформації; тензор швидкості деформації. та тоді наше рівняння буде мати вигляд: Звукова хвиля це плоска хвиля. У вязкопружньому середовищі на відміну від пружнього Підставляючи наше реологічне рівняння в рівняння руху отримаємо хвильове рівняння для звукової хвилі : Розв´язуючи це рівняння за умови Отримуємо вирази для швидкості...
20268. Оборудование подсистемы базовой станции (BSS) 523.5 KB
  1: контроллера базовой станции BSC Base Station Controller; базовой станции BTS Base Transceiver Station. Контроллер базовой станции BSC Контроллер базовой станции BSC центральная часть подсистемы базовой станции BSS. Контроллер BSC фирмы Ericsson рис. Контроллер BSC может контролировать радиосеть и рационально выравнивать временные дисбалансы в нагрузке на сеть.
20269. Оборудование подсистемы базовой станции (BSS). Блок приемопередатчика (TRU) 631.5 KB
  Он взаимодействует с другими компонентами через локальную шину Local Bus шину CDU шину синхронизации Timing Bus и Хшину Xbus. Блок объединения и распределения CDU CDU является интерфейсом между блоками TRU и антенной системой. CDU объединяет сигналы от нескольких приемопередатчиков и распределяет принятые сигналы ко всем приемникам. В функции CDU входит: объединение передаваемых сигналов; предусиление и распределение принимаемых сигналов; поддержка контроля антенной системы; фильтрация на радиочастоте; электропитание и контроль...
20270. ПОДСИСТЕМЫ И КОНФИГУРАЦИИ АППАРАТНЫХ СРЕДСТВ АХЕ10 893.5 KB
  Состоит из аппаратных средств модули временных TSM и пространственных SPM коммутаторов и центрального и регионального программного обеспечения; импульсный тактовый генератор Clock Pulse Generating and Timing CLT. Функциональные блоки GSS CLM Clock Module модуль тактового генератора; CLT Clock Pulse Generating and Timing импульсный тактовый генератор; GS Group Switch коммутационное поле; GSM Group Switch Maintenance техническое обслуживание коммутационного поля; NS Network Synchronization сетевая синхронизация; NSC...
20271. ОБОРУДОВАНИЕ GPRS 1.98 MB
  Между тем существуют некоторые технические особенности реализации оборудования GPRS среди которых следует выделить способ интеграции контроллеров пакетов PCU в подсистему базовых станции BSS. В качестве примера первого варианта организации оборудования GPRS может быть рассмотрено оборудование Alcatel в качестве второго Ericsson. ОБОРУДОВАНИЕ GPRS ПРОИЗВОДСТВА ALCATEL На рис.
20272. ОБОРУДОВАНИЕ GPRS. Сервисный узел поддержки услуг GPRS (SGSN) 1.58 MB
  Структурная схема SGSN В структуру SGSN входят: UNIX серверы блок маршрутизации интерфейсные модули интерфейсов на базе ОКС № 7 Gr Gd Gf Gs модули Gb интерфейса. UNIX серверы выполняют основные функции SGSN такие как управление мобильностью управление сессиями тарификация функции протокола GTP и др.Основные функции SGSN разделяются на две плоскости рис.
20273. Высокое качество передачи речевой информации 133.5 KB
  К началу 1994 года сети основанные на рассматриваемом стандарте имели уже 1. Воистину GSM шагает по планете в настоящее время телефоны этого стандарта имеют около 200 миллионов человек а GSMсети можно найти по всему миру. ОСНОВНЫЕ ЧАСТИ СИСТЕМЫ GSM ИХ НАЗНАЧЕНИЕ И ВЗАИМОДЕЙСТВИЕ ДРУГ С ДРУГОМ Начнем с самого сложного и пожалуй скучного рассмотрения скелета или как принято говорить блоксхемы сети.