36976

Призначення та основні технічні характеристики гірокомпаса Круїз

Лабораторная работа

Производство и промышленные технологии

Прилад ЦП01 є центральним приладом ГК Круїз і складається з гіростабілізованої платформи з ДНГ і акселерометром у кардановому підвісі елементів слідкуючої системи і системи керування ДНГ. Основним ЧЕ розглянутого ГК є динамічно настроюваний гіроскоп ДНГ.1 подана спрощена схема ДНГ.за допомогою внутрішнього карданового підвісу з валом 2 привідного електродвигуна 3 статор якого закріплений у корпусі ДНГ показаному на рисунку пунктирною лінією.

Украинкский

2013-09-23

78.24 KB

2 чел.

Міністерство освіти та науки України

Національний технічний інститут України

«Київський Політехнічний Інститут»

Факультет Авіаційних та Космічних Систем

Кафедра Приладів та Систем Керування Літальними Апаратами

Протокол лабораторної роботи №3

Призначення та основні технічні характеристики гірокомпаса "Круїз"

Виконав

Студент IV курсу

Групи ВЛ-62 ФАКС

Білич Іван Олександрович

Перевірила

Бондаренко Н.

м. Київ 2009 р. 

Лабораторна робота№3

Мета лабораторної роботи - ознайомити студентів з принципом дії, обладнанням і основними правилами експлуатації сучасного морського гірокомпаса "Круїз", який серійно випускається на Київському Державному заводі автоматики ім. Г.І.Петровського. Пояснюється принцип дії гірокомпаса (ГК) та його чутливих елементів.

1. Призначення та основні технічні характеристики гірокомпаса "Круїз"

ГК "Круїз" призначений для визначення кута курсу на суднах морського і річкового флоту, а також крейсерських яхтах під час плавання в широтах до 75° при швидкості до 60 вузлів в умовах:

• підвищеної температури навколишнього середовища до +50°С;

• зниженої температури навколишнього середовища до -10°С;

• синусоїдальної вібрації в діапазоні частот 5-80 Гц з амплітудою прискорення до 10 м/с2;

• механічного удару з піковим прискоренням до 100 м/с2 і тривалістю імпульсу

10 - 15 мс.

За умовами експлуатації і точності курсопоказання ГК "Круїз" відповідає Правилам Регістра видання 1990 р„ резолюції Міжнародної морської організації і міжнародного стандарту ІСО 8728-87 (Е). ГК "Круїз" забезпечує:

• визначення курсу відносно географічного меридіана в режимі гірокомпаса;

• дистанційну передачу курсової інформації аналоговим і цифровим приймачам, у тому числі в міжнародному стандарті КМЕА 0183;

• автоматичний прийом сигналу швидкості від лага;

• можливість ручного ведення швидкості;

• ручне введення широти з пульта керування приладу;

• автоматичний запуск;

• дистанційне керування і контроль із пульта керування приладу, сигналізацію про режим роботи і несправності.

У табл. 1.1 наведені загальні характеристики ГК "Круїз", φ - широта місця судна.

Таблиця 1.1

Похибки

φ≤60°

60°<φ≤75°

Стала похибка

0,5°sесφ

1,5°

Похибка, викликана швидкою зміною швидкості на 20 вузлів

1,5°

2,0°

Похибка при будь-якому режимі руху судна при швидкості до 60 вузлів

2,3°

2,7°

Похибка, що викликана хитавицею з горизонтальним прискоренням до 1 м/с2

0,6°sесφ

2,0°

Похибка, що викликана швидкою зміною курсу на 180° при швидкості до 20 вузлів

2,0°

2,5°

Похибка компенсації швидкісної девіації на прямому курсі при постійній швидкості до 20 вузлів

0,2°sесφ

0,6°

Основні характеристики

Час готовності

менше 1 години

Термін служби

не менше 12 років

Розміри центрального приладу (LxWхН), мм

200x200x245

Розміри пульта керування (LxWxН), мм

255x65x245

Маса центрального приладу, кг

11

Маса пульта керування, кг

12,5

2. Склад ГК "Круїз"

ГК "Круїз" виготовляють у різних конструктивних виконаннях.

1. Базова комплектація - використовується самостійно для судів, що не вимагають дистанційної передачі курсу.

2. Розширена комплектація, що забезпечує передачу курсової інформації на два аналогових і один цифровий репітери.

До складу типового комплекту ГК "Круїз" входять:

1. Центральний прилад ЦП01, що містить гіроблок із зовнішнім кардановим підвісом і елементами слідкуючої системи.

2. Пульт керування ПУ01, що містить пристрої, призначені для узгодження складових частин ГК і керування всією системою в цілому.

3. Транслятор курсу ТК01, що містить механізми і схему трансляції курсу.

4. Комплект приладів курсопоказання, у який входять коробки розгалуження, курсограф, інформаційні і пеленгаторні репітери, пілоруси. оптичні пеленгатори.

Прилад ЦП01 є центральним приладом ГК "Круїз" і складається з гіростабілізованої платформи з ДНГ і акселерометром у кардановому підвісі, елементів слідкуючої системи і системи керування ДНГ. Більш докладний опис і принцип дії наведеш нижче.

3. Принцип дії ГК "Круїз"

ГК "Круїз" являє собою малогабаритний однороторний коректований гірокомпас, центральний прилад якого побудовано на базі тривісної платформи з комбінованою системою стабілізації, двокільцевого динамічно настроюваного гіроскопа й акселерометра.

Спочатку стисло пояснимо принцип дії чутливих елементів (ЧЕ), що використовуються у ГК "Круїз".

Основним ЧЕ розглянутого ГК є динамічно настроюваний гіроскоп

(ДНГ).

На рис.3.1 подана спрощена схема ДНГ. Ротор 1 зв'язаний .за допомогою внутрішнього карданового підвісу з валом 2 привідного електродвигуна 3, статор якого закріплений у корпусі ДНГ (показаному на рисунку пунктирною лінією). Ротор приводиться електродвигуном до обертання з великою постійною кутовою швидкістю Ω=1508 рад/c=240 об/с. Карданів підвіс являє собою два кільця 4, 5, з'єднаних за допомогою пружних підвісів (торсіонів) 6, 7, 8, 9 із ротором і валом.

Рис. 3.1. Схема ДНГ.

Такий підвіс дозволяє ротору практично вільно обертатися навколо осей підвісу відносно вала електродвигуна. Тобто під час обертання площина ротора може займати будь-яке положення, не обов'язково перпендикулярне осі обертання вала. Швидкість власного обертання ротора спрямована перпендикулярно площини ротора, а вісь власного обертання ротора називається головною віссю гіроскопа. У разі точного динамічного настроювання гіроскопа ротор буде зберігати положення свосї головної осі незмінним у інерціальному просторі, незалежно від положення корпуса. Більш докладний опис принципу дії ДНГ і аналіз причин його можливих похибок надані, наприклад, у роботі [1].

Індукційні датчики кута 10, 11, що кріпляться усередині корпуса ДНГ, слугують для виміру кутів відхилення площини ротора відносно корпуса ДНГ -відповідно навколо вимірювальних осей Охr і Оу . Датчики моменту 12, 13, які також розташовані усередині корпуса ДНГ, використовуються для керування гіроскопом: вони прикладають до ротора ДНГ моменти навколо тих самих вимірювальних осей Oxr і Ozr . Відповідно до відомого правила прецесії [1], якщо до ротора гіроскопа прикладається момент навколо однієї з осей, наприклад, Oxr , то ротор починає повільно повертатися (прецесіювати) навколо перпендикулярної до неї осі (Ozr), точніше, кутова швидкість прецесії спрямована так, що вектор кутової швидкості власного обертання ротора прагне по найкоротшому шляху сполучитися ч вектором прикладеного моменту. Таким чином, за необхідності, керують гіроскопом.

Другим чутливим елементом будь-якого коректованого гірокомпаса є індикатор горизонту, призначений для виміру кута відхилення платформи ГК від горизонтального положення. Як індикатор горизонту в ГК „Круїз” використовується акселерометр. Акселерометр містить маятник у вигляді інерційної маси 1, підвішеної на торсіоні 2 усередині корпуса 3 (див. рис.3.2). Кут відхилення маятника відносно нормальної осі Oz корпуса вимірюється за допомогою ємкісного датчика кута, електроди 4 якого нанесені на інерційну масу і корпус.

Спрощено принцип роботи акселерометра, як індикатора горизонту, можна пояснити таким чином. При відхиленні корпуса акселерометра разом із платформою від вертикального положення інерційна маса зберігає своє вертикальне положення, а вимірюваний кут відхилення маятника відносно корпуса і є кутом відхилення платформи від вертикалі, або, що те ж саме, від горизонтального положення. Слід зазначити, що в дійсності при нахилі корпуса маятник займе не вертикальне, а деяке проміжне положення коли маятниковий момент зрівноважиться моментом пружної деформації торсіона 2, що працює на згин. При такій схемі вимірюваний кут відхилення маятника відносно корпуса, як і раніше, пропорційний куту відхилення корпуса від вертикального положення, але підвищується діапазон вимірів акселерометра.

На рис. 3.3 подана кінематична схема гірокомпаса, який містить ДНГ 1 із датчиками моменту 2, 3 і датчиками кута 4, 5, що вимірюють відхилення ротора гіроскопа відносно його корпуса. Гіроскоп разом з акселерометром 6 розташований на платформі 7 із тривісним кардановим підвісом, що складається з горизонтальної 8 і азимутальної 9 рам стеження.

Стабілізація платформи по осях підвісу Ох, Оz здійснюється двигунами стабілізації 10, 11 (безредукторні моментні двигуни), керованими через підсилювально-перетворюючі пристрої (регулятори) 12, 13 за сигналами відповідних датчиків кута ДНГ. По осі Оу платформа стабілізована горизонтальною рамою 8 із вантажами 14. Гасіння коливань платформи по осі Оу здійснюється демпфером 15, розташованим у цапфах підвісу горизонтальної рами. Таким чином, гірокомпас являє собою двовісну індикаторну гіростабілізовану платформу з маятниковою стабілізацією відносно третьої осі - осі обертання ротора гіроскопа.

Рис. 3.3. Кінематична схема ГК «Круїз».

Для надання приладу властивостей гірокомпаса на датчики моменту ДНГ 2, 3 подаються керуючі сигнали, пропорційні показанням акселерометра 6, що є вимірником кута відхилення платформи відносно вертикального положення. Зазначені сигнали формуються блоком керування 17.

Для виміру кута курсу використовується датчик кута курсу 16 типу обертального трансформатора. Його ротор закріплений на осі обертання азимутальної рами, що є покажчиком північного напрямку (напрямку меридіана), а статор розташований у корпусі приладу, який жорстко закріплений на судні. Тому сигнал із цього датчика пропорційний куту курсу К судна.

Для усунення швидкісної і широтної похибок гірокомпаса в схему керування датчиками моменту ДНГ надходять сигнали коректування, що виробляються в блоці керування за наявною інформацією про швидкість V судна, його широту φ і поточний курс К.

Пояснимо більш докладно принцип дії ГК "Круїз".

Гірокомпас мас у своєму складі індикаторну гіростабілізовану платформу. Завдяки системі стабілізації платформа 7 гірокомпаса (див. рис. 3.3) постійно утримується у положенні, паралельному площини ротора ДНГ 1, або, що те ж саме, перпендикулярно осі обертання ротора (головної осі гіроскопа). Якщо під дією якогось збурення платформа відхилиться від положення, погодженого з ротором ДНГ, наприклад, навколо осі Ох, то на відповідному датчику кута 4 гіроскопа з'явиться напруга, пропорційна куту відхилення ротора ДНГ відносно його корпуса, жорстко закріпленого на платформі. За допомогою регулятора 13 ця напруга підсилюється і перетвориться в струм керування двигуном стабілізації 11. Цей двигун буде повертати платформу навколо осі Ох у напрямку усунення кута неузгодженості доти, поки напруга на датчику кута 4 не буде дорівнювати нулю, тобто поки платформа знову не займе положення, паралельного ротору ДНГ. Аналогічно працює і канал стабілізації платформи навколо вертикальної осі (датчик кута 5, регулятор 12, двигун стабілізації 10).

Описана робота індикаторного гіростабілізатора дозволяє стабілізувати кутове положення платформи навколо двох осей (Ох , Оz). Для зменшення похибок гірокомпаса необхідно забезпечити повну просторову стабілізацію платформи, для чого необхідно стабілізувати її і навколо третьої осі Оу, паралельної головній осі ДНГ. Так як один ДНГ може вимірювати відхилення платформи тільки навколо двох взаємно перпендикулярних осей, то для стабілізації платформи навколо третьої осі (головної осі ДНГ) застосовується звичайна маятникова стабілізація. Як показано на рис. 3.2, центр мас горизонтальної рами 8 завдяки наявності вантажів 14 зміщений вниз відносно осі підвісу рами, що V разі відсутності прискорень і хитавиці судна забезпечує горизонтальне положення платформи навколо головної осі ДНГ Отже, як указувалося вище, гірокомпас являє собою двовісну індикаторну гіростабілізовану платформу з маятниковою стабілізацією відносно третьої осі - осі обертання ротора гіроскопа.


 

А также другие работы, которые могут Вас заинтересовать

45341. Проблема распознавания образов 67.5 KB
  В своей повседневной жизни человек настолько легко справляется с задачами распознавания что это считается само собой разумеющимся. В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. За обучением следует процесс распознавания новых объектов который характеризует действия уже обученной системы.
45342. Проблемы и перспективы нейронных сетей 48 KB
  Проблемы интерпретируемости приводят к снижению ценности полученных результатов работы сети а проблема размерности к очень жестким ограничениям на количество выходных нейронов в сети на количество рецепторов и на сложность структуры взаимосвязей нейронов с сети. уже сегодня искусственные нейронные сети используются во многих областях но прежде чем их можно будет применять там где на карту поставлены человеческие жизни или значительные материальные ресурсы должны быть решены важные вопросы касающиеся надежности их работы. Некоторые...
45343. Процедурные модели предоставления знаний 74.5 KB
  Здесь имя или порядковый номер продукции во множестве продукций хранящихся в памяти системы. Q сфера применения продукции описывающая предметную область или ситуацию. Это позволяет систематизировать продукции что облегчает работу с системой продукций. Р условие применимости ядра продукции.
45344. Технология разработки экспертных систем 36 KB
  К разработке экспертных систем привлекаются специалисты из разных предметных областей а именно: эксперты той проблемной области к которой относятся задачи решаемые системой; инженеры по знаниям являющиеся специалистами по разработке систем искусственного интеллекта; программисты осуществляющие реализацию экспертной системы. Инженеры по знаниям помогают экспертам выявить и структурировать знания необходимые для работы экспертной системы выполняют работу по представлению знаний выбирают методы обработки знаний проводят выбор...
45345. Архитектура системы работы со знаниями 48 KB
  Различие между уровнями заключается в языке применяемом для представления знаний. Для работы со знаниями на любом из этих уровней используются следующие базовые компоненты: база знаний; редактор базы знаний; база данных со своей СУБД; решатель; подсистема настройки и управления; подсистема объяснения; диалоговая подсистема. В некоторых источниках совокупность средств обеспечивающих работу со знаниями называют системой управления базой знаний СУБЗ по аналогии с СУБД.
45346. Персептрон Розенблатта 53 KB
  В первоначальных вариантах исполнения персептрона соединения идущие от сузлов формировались случайным образом еще в процессе конструирования системы поэтому они определяли некоторые случайные свойства изображения. Как и в пандемониуме при обучении персептрона вычислялись данные о ценности каждого аузла. Как аузлы так и рузлы персептрона представляли собой математические нейроны которые были рассмотрены ранее. Веса синапсов идущих к рузлам изменялись в процессе обучения персептрона.
45347. КОМПЬЮТЕРНОЕ ТВОРЧЕСТВО 32 KB
  Например каждое слово поэмы состоит из букв которые могут быть закодированы 33 цифрами. При таком соответствии одна длинная строка цифр может рассматриваться как кодированная запись поэмы. Полотно картины можно расчертить на мельчайшие клетки и цвет каждой клетки закодировать цифрами.
45348. Моделирование в музыке 40.5 KB
  В памяти композитора существует множество различных мелодий накопленных им в течение жизни. И естественно полагать что фрагменты этих мелодий отдельные музыкальные фразы музыкальные инварианты осознанно или неосознанно используются композитором в его творческом процессе. Далее следует прочитать следующую за найденной фразой ноту приписать ее к текущей музыкальной фразе а первую ноту из этой фразы выдать в файл формируемых мелодий и вычеркнуть из текущей фразы так чтобы в ней попрежнему оставалось четыре ноты. В результате в файле...
45349. Модели представления знаний 64 KB
  Декларативная модель представления знаний основывается на предположении что проблема предоставления некоторой предметной области решается независимо от того как эти знания потом будут использоваться. Такую модель можно разделить на две части: статически описательные модели знаний и механизм вывода оперирующий этими структурами и практически независимый от их содержательного наполнения. Декларативные модели представления знаний Семантические сети Семантические сети были предложены американским психологом Куиллианом.