37251

Материнская плата

Контрольная

Информатика, кибернетика и программирование

На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные о яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора. С переходом от чернобелых мониторов к цветным и с увеличением разрешения экрана количества точек по вертикали и горизонтали области видеопамяти...

Русский

2013-09-23

224 KB

16 чел.

Вопрос 7

Материнская плата

Материнская плата — основная плата персонального компьютера. На ней размещаются:

процессор — основная микросхема, выполняющая большинство математических и логических операций;

микропроцессорный комплект (чипсет) — набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы;

шины — наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

оперативная память (оперативное запоминающее устройство, ОЗУ) — набор микросхем, предназначенных для временного хранения данных, когда компьютер включен;

ПЗУ (постоянное запоминающее устройство) — микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен;

• разъемы для подключения дополнительных устройств (слоты).

Вопрос 12

Жесткий диск

Жесткий диск — основное устройство для долговременного хранения больших объемов данных и программ. На самом деле это не один диск, а группа дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью. Таким образом, этот «диск» имеет не две поверхности, как должно быть у обычного плоского диска, а 2п поверхностей, где п — число отдельных дисков группе.

Над каждой поверхностью располагается головка, предназначенная для чтения-записи данных. При высоких скоростях вращения дисков (90-250 об/с) в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте, составляющей несколько тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности динамического магнитного поля в зазоре, что вызывает изменения в стационарном магнитном поле ферромагнитных частиц, образующих покрытие диска. Так осуществляется запись данных на магнитный диск.

Операция считывания происходит в обратном порядке. Намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, наводят в ней ЭДС самоиндукции. Электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.

Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство — контроллер жесткого диска. В прошлом оно представляло собой отдельную дочернюю плату, которую подключали к одному из свободных слотов материнской платы. В настоящее время функции контроллеров дисков частично интегрированы в сам жесткий диск, а частично выполняются микросхемами, входящими в микропроцессорный комплект (чипсет), хотя некоторые виды высокопроизводительных контроллеров жестких дисков по-прежнему могут поставляться на отдельной плате.

К основным параметрам жестких дисков относятся емкость и производительность.

Емкость дисков зависит от технологии их изготовления. В настоящее время большинство производителей жестких дисков используют изобретенную компанией IBM технологию с использованием гигантского магниторезистивного эффекта  (GMR Giant Magnetic Resistance). В настоящее время на пластину может приходиться 40 и более Гбайт, но развитие продолжается.

С другой стороны, производительность жестких дисков меньше зависит от технологии их изготовления. Сегодня все жесткие диски имеют очень высокий показатель скорости внутренней передачи данных (до 30-60 Мбайт/с), и потому их производительность в первую очередь зависит от характеристик интерфейса, с помощью которого они связаны с материнской платой. В зависимости от типа интерфейса разброс значений может быть очень большим: от нескольких Мбайт/с до 13-16 Мбайт/с для интерфейсов типа EIDE; до 80 Мбайт/с для интерфейсов типа SCSI и от 50 Мбайт/с и более для наиболее современных интерфейсов типа и Serial АТА.

Кроме скорости передачи данных с производительностью диска напрямую связан параметр среднего времени доступа. Он определяет интервал времени, необходимый для поиска нужных данных, и зависит от скорости вращения диска. Для дисков, вращающихся с частотой 5400 об/мин, среднее время доступа составляет 9-10 мкс, для дисков с частотой 7200 об/мин — 7-8 мкс. Изделия более высокого уровня обеспечивают среднее время доступа к данным 4-6 мкс.

Вопрос 13

Видеокарта (видеоадаптер)

Совместно с монитором видеокарта образует видеоподсистему персонального компьютера.

Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные о яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора.

С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой.

Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти.

За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: MDA (монохромный); CGA (4 цвета); EGA (16 цветов); VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640x480, 800x600,1024x768,1152x864; 1280x1024 точек и далее).

Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, соответственно, тем меньше видимый размер элементов изображения. Использование завышенного разрешения на мониторе малого размера приводит к тому, что элементы изображения становятся неразборчивыми и работа с документами и программами вызывает утомление органов зрения.

Использование заниженного разрешения приводит к тому, что элементы изображения становятся крупными, но на экране их располагается очень мало. Если программа имеет сложную систему управления и большое число экранных элементов, они не полностью помещаются на экране. Это приводит к снижению производительности труда и неэффективной работе.

Таким образом, для каждого размера монитора существует свое оптимальное разрешение экрана, которое должен обеспечивать видеоадаптер (табл. 3.1). При качественном мониторе, хорошем зрении и ограниченном времени работы за компьютером разрешение можно увеличить на одну ступень.

Большинство современных прикладных и развлекательных программ рассчитано на работу с разрешением экрана 800x600 и более. Именно поэтому сегодня минимально приемлемый размер монитора составляет 15 дюймов. Для работы с документами, подготовленными для печати на стандартных листах бумаги формата А4, необходимо экранное разрешение не менее 1024x768 и, соответственно, размер монитора в 17 дюймов.

Для работы в Интернете параметр разрешения зависит от способа оформления . Современные Web-страницы рассчитаны на работу с разрешением экрана 1024x768, хотя многие приемлемо выглядят и при разрешении 800x600.

Для большинства прикладных программ оптимальным также является разрешение 1024x768 и более, хотя в случае необходимости программы, как правило, допускают настройку своих панелей управления, делающую возможной работу в разрешении 800x600. Надо понимать, что при этом снижается производительность труда.

Таким образом, в настоящее время для работы с документами и службами Интернета наиболее приемлем размер ЭЛТ-монитора в 17 дюймов. Почти такое же изображение обеспечивает ЖК-монитор размером в 15 дюймов. Размеры экранов более 17 дюймов и разрешения выше, чем 1024x768, применяют при работе с компьютерной графикой, системами автоматизированного проектирования и системами компьютерной верстки изданий.

Цветовое разрешение (глубина цвета) определяет количество различных оттенков, которые может принимать отдельная точка экрана. Максимально возможное цветовое разрешение зависит от свойств видеоадаптера и, в первую очередь, от количества установленной на нем видеопамяти. Кроме того, оно зависит и от установленного разрешения экрана. При высоком разрешении экрана на каждую точку изображения приходится отводить меньше места в видеопамяти, так что информация о цветах вынужденно оказывается более ограниченной.

В зависимости от заданного экранного разрешения и глубины цвета размер буфера кадра видеопамяти можно определить по следующей формуле:

Минимальное требование по глубине цвета на сегодняшний день — 256 цветов, хотя большинство программ требуют не менее 65 тыс. цветов (режим High Color). Наиболее комфортная работа достигается при глубине цвета 16,7 млн. цветов (режим True Color). Работа в полноцветном режиме True Color с высоким экранным разрешением требует значительных размеров видеопамяти. Современные видеоадаптеры способны также выполнять функции обработки изображения, снижая нагрузку на центральный процессор ценой дополнительных затрат видеопамяти. Объем видеопамяти, установленной на видеоадаптер, сегодня определяется не размером буфера кадра, а необходимостью выполнения подобных дополнительных операций, и обычно составляет 32-128 Мбайт.

Видеоускорение — одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнения математических вычислений в основном процессоре компьютера, а чисто аппаратным путем — преобразованием данных в микросхемах видеоускорителя. Видеоускорители обычно входят в состав видеоадаптера (в таких случаях говорят о том, что видеокарта обладает функциями аппаратного ускорения). Несколько лет назад существовали и видеоускорители, которые поставлялись в виде отдельной платы, устанавливаемой на материнской плате и подключаемой к видеоадаптеру.

Различают два типа видеоускорителей — ускорители плоской (2D) и трехмерной (3D) графики. Первые наиболее эффективны для работы с прикладными программами, использующими стандартный интерфейс (обычно офисного применения), и оптимизированы для операционной системы Windows, а вторые ориентированы на работу мультимедийных развлекательных программ, в первую очередь компьютерных игр, и профессиональных программ обработки трехмерной графики. Обычно в этих случаях используют разные математические принципы автоматизации графических операций. Все современные видеокарты обладают функциями и двумерного, и трехмерного ускорения.

Вопрос 8

Оперативная память

Оперативная память (RAM — Random Access Memory) — это массив кристаллических ячеек, способных хранить данные. Существует много различных типов оперативной памяти, но с точки зрения физического принципа действия различают динамическую память (DRAM) и статическую память (SRAM).

Ячейки динамической памяти (DRAM) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Это наиболее распространенный и экономически доступный тип памяти. Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно.

Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеиваться в пространстве, причем весьма быстро. Если оперативную память постоянно не «подзаряжать», утрата данных происходит через несколько сотых долей секунды.

Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение, подзарядка) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы.

Ячейки статической памяти (SRAM) можно представить как электронные микроэлементы — триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш-памяти), предназначенной для оптимизации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом. В большинстве современных процессоров предельный размер адреса обычно составляет 32 разряда, а это означает, что всего независимых адресов может быть 232. Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных.

Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 232 байт = 4 Гбайт. Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в компьютере. Предельный размер поля оперативной памяти, установленной в компьютере, определяется микропроцессорным комплектом (чипсетом) материнской платы и обычно не может превосходить нескольких Гбайт. Минимальный объем памяти определяется требованиями операционной системы и для современных компьютеров составляет 128 Мбайт.

Представление о том, сколько оперативной памяти должно быть в типовом компьютере, непрерывно меняется. В середине 80-х годов поле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня типичным считается размер оперативной памяти в 256 Мбайт, но тенденция к росту сохраняется.

Оперативная память в компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.

В современных компьютерах обычно применяют три типа модулей оперативной памяти. Модули памяти SDRAM (DIMM-модули) сегодня уже считаются устаревшими и используются в компьютерах прошлых поколений. Наиболее распространены модули типа DDR SDRAM (DDR DIMM), обеспечивающие более быстрый доступ к памяти. Модули типа RDRAM (RIMM-модули) применяются на некоторых компьютерах с процессором Pentium 4, но стоят заметно дороже и поэтому менее распространены.

Основными характеристиками модулей оперативной памяти являются объем памяти и скорость передачи данных. Сегодня наиболее распространены модули объемом 128-512 Мбайт. Скорость передачи данных определяет максимальную пропускную способность памяти (в Мбайт/с или Гбайт/с) в оптимальном режиме доступа.

При этом учитывается время доступа к памяти, ширина шины и дополнительные возможности, такие как передача нескольких сигналов за один такт работы. Одинаковые по объему модули могут иметь разные скоростные характеристики.

Иногда в качестве определяющей характеристики памяти используют время доступа. Оно измеряется в миллиардных долях секунды (наносекундах, нс). Для современных модулей памяти это значение может составлять 5 нс, а для особо быстрой памяти, используемой в основном в видеокартах, — снижаться до 2-3 нс.

Вопрос 6

Процессор

Процессор - это главная микросхема компьютера, его "мозг". Он разрешает выполнять программный код, находящийся в памяти и руководит работой всех устройств компьютера. Скорость его работы определяет быстродействие компьютера. Конструктивно, процессор - это кристалл кремния очень маленьких размеров. Процессор имеет специальные ячейки, которые называются регистрами. Именно в регистрах помещаются команды, которые выполняются процессором, а также данные, которыми оперируют команды. Работа процессора состоит в выборе из памяти в определенной последовательности команд и данных и их выполнении. На этом и базируется выполнение программ.

В ПК обязательно должен присутствовать центральный процессор (Central Rpocessing Unit - CPU), который выполняет все основные операции. Часто ПК оснащен дополнительными сопроцесорами, ориентированными на эффективное выполнение специфических функций, такие как, математический сопроцесор для обработки числовых данных в формате с плавающей точкой, графический сопроцесор для обработки графических изображений, сопроцесор ввода/вывода для выполнения операции взаимодействия с периферийными устройствами.

Основными параметрами процессоров являются:

  •  тактовая частота,
  •  разрядность,
  •  рабочее напряжение,
  •  коэффициент внутреннего умножения тактовой частоты,
  •  размер кеш памяти.

Тактовая частота определяет количество элементарных операций (тактов), выполняемые процессором за единицу времени. Тактовая частота современных процессоров измеряется в МГц (1 Гц соответствует выполнению одной операции за одну секунду, 1 МГц=106 Гц). Чем больше тактовая частота, тем больше команд может выполнить процессор, и тем больше его производительность. Первые процессоры, которые использовались в ПК работали на частоте 4,77 МГц, сегодня рабочие частоты современных процессоров достигают отметки в 2 ГГц (1 ГГц = 103 МГц).

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один такт. Разрядность процессора определяется разрядностью командной шины, то есть количеством проводников в шине, по которой передаются команды. Современные процессоры семейства Intel являются 32-разрядными.

Рабочее напряжение процессора обеспечивается материнской платой, поэтому разным маркам процессоров отвечают разные материнские платы. Рабочее напряжение процессоров не превышает 3 В. Снижение рабочего напряжения разрешает уменьшить размеры процессоров, а также уменьшить тепловыделение в процессоре, что разрешает увеличить его производительность без угрозы перегрева.

Коэффициент внутреннего умножения тактовой частоты - это коэффициент, на который следует умножить тактовую частоту материнской платы, для достижения частоты процессора. Тактовые сигналы процессор получает от материнской платы, которая из чисто физических причин не может работать на таких высоких частотах, как процессор. На сегодня тактовая частота материнских плат составляет 100-133 Мгц. Для получения более высоких частот в процессоре происходит внутреннее умножение на коэффициент 4, 4.5, 5 и больше.

Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.

Процессоры Intel, используемые в IBM-совместных ПК, насчитывают более тысячи команд и относятся к процессорам с расширенной системой команд - CISC-процессоров (CISC - Complex Instruction Set Computing). В противоположность CISC-процессорам разработаны процессоры архитектуры RISC с сокращенной системой команд (RISC - Reduced Instruction Set Computing). При такой архитектуре количество команд намного меньше, и каждая команда выполняется быстрее. Таким образом, программы, состоящие из простых команд выполняются намного быстрее на RISC-процессорах. Обратная сторона сокращенной системы команд состоит в том, что сложные операции приходится эмулировать далеко не всегда эффективной последовательностью более простых команд. Поэтому CISC-процессоры используются в универсальных компьютерных системах, а RISC-процессоры - в специализированных. Для ПК платформы IBM PC доминирующими являются CISC-процессоры фирмы Intel, хотя в последнее время компания AMD изготовляет процессоры семейства AMD-K6, которые имеют гибридную архитектуру (внутреннее ядро этих процессоров выполненное по RISC-архитектуре, а внешняя структура - по архитектуре CISC).

В компьютерах IBM PC используют процессоры, разработанные фирмой Intel, или совместимые с ними процессоры других фирм, относящиеся к семейству x86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086. В дальнейшем выпускались процессоры Intel 80286, Intel 80386, Intel 80486 с модификациями, разные модели Intel Pentium, Pentium MMX, Pentium Pro, Pentium II, Celeron, Pentium III. Новейшей моделью фирмы Intel является процессор Pentium IV. Среди других фирм-производителей процессоров следует отметить AMD с моделями AMD-K6, Athlon, Duron и Cyrix.

Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом и основано исполнение программ.

Рассмотрим принцип работы «классического» процессора. В основе архитектуры любого процессора лежит несколько конструктивных элементов: кэш команд и данных, предпроцессор (Front End) и постпроцессор, называемый также блоком исполнения команд (Execution Engine).

Процесс обработки данных состоит из нескольких характерных этапов. Прежде всего инструкции и данные забираются из кэша L1(который разделен на кэшинструкций и кэш данных). Это процедура называется выборкой. После этого выбранные из кэша инструкции декодируются в машинные команды. Данная процедура называется декодированием. Далее команды поступают на исполнительные блоки процессора, выполняются, а результат записывается в опреативную память.

Процессы выборки инструкций из кэша, их декодирование и продвижение к исполнительным блокам осуществляются в предпроцессоре, а процесс выполнения декодированных команд – в постпроцессоре. Таким образом, даже в самом простейшем случае команда проходит как минимум четыре стадии обработки:

  1.  Выборку из кэша;
  2.  Декодирование;
  3.  Выполнение;
  4.  Запись результатов.

Данные стадии принято называть конвейером обработки команд. В данном случае конвейер является четырех ступенчатым. Важно, что каждую из этих ступений команда должна проходить ровно за один такт. Соответственно для четырехступенчатого конвейера на выполнение одной команды отводится ровно четыре такта.

В реальных процессорах конвейер обработки команд может быть более сложным и включать большее количество ступеней. Причина увеличения длины конвейера заключается в том, что многие команды являются довольно сложными и  не могут быть выполнены за один такт процессора, особенно при высоких тактовых частотах. Поэтому каждая из четырех стадий обработки команд может состоять из нескольких ступеней конвейера.

 Вопрос 9

Шины. Основные характеристики шин.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина.

Адресная шина. У процессоров семейства Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных проводников. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль.

Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В современных персональных компьютерах шина данных, как правило, 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы.

Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более существуют 64-разрядные процессоры и даже 128-разрядные.

Шинные интерфейсы материнской платы

Связь между всеми собственными и подключаемыми устройствами материнской платы выполняют ее шины и логические устройства, размещенные в микросхемах микропроцессорного комплекта (чипсета). От архитектуры этих элементов во многом зависит производительность компьютера.

ISA. Историческим достижением компьютеров платформы ІВМ PC стало внедрение почти двадцать лет назад архитектуры, получившей статус промышленного стандарта ISA (Industry Standard Architecture). Она не только позволила связать все устройства системного блока между собой, но и обеспечила простое подключение новых устройств через стандартные разъемы (слоты). Пропускная способность шины, выполненной по такой архитектуре, составляет до 5,5 Мбайт/с, но, несмотря на низкую пропускную способность, эта шина еще может использоваться в некоторых компьютерах для подключения сравнительно «медленных» внешних устройств, например звуковых карт и модемов.

EISA. Расширением стандарта ISA стал стандарт EISA (Extended ISA), отличающийся увеличенным разъемом и увеличенной производительностью (до 32 Мбайт/с).

Как и ISA в настоящее время данный стандарт считается устаревшим. После 2000 года выпуск материнских плат с разъемами ISA/EISA и устройств, подключаемых к ним, практически прекращен.

VLB. Название интерфейса переводится как локальная шина стандарта VESA (VESA Local Bus). Понятие «локальной шины» впервые появилось в конце 80-х годов. Оно связано тем, что при внедрении процессоров третьего и четвертого поколений (Intel 80386 и Intel 80486) частоты основной шины (в качестве основной использовалась шина ISA/EISA) стало недостаточно для обмена между процессором и оперативной памятью. Локальная шина, имеющая повышенную частоту, связала между собой процессор и память в обход основной шины. Впоследствии в эту шину «врезали» интерфейс для подключения видеоадаптера, который тоже требует повышенной пропускной способности, — так появился стандарт VLB, который позволил поднять тактовую частоту локальной шины до 50 МГц и обеспечил пиковую пропускную способность до 130 Мбайт/с.

Основным недостатком интерфейса VLB стало то, что предельная частота локальной шины и, соответственно, ее пропускная способность зависят от числа устройств, подключенных к шине. Так, например, при частоте 50 МГц к шине может быть подключено только одно устройство (видеокарта). Для сравнения скажем, что при частоте 40 МГц возможно подключение двух, а при частоте 33 МГц — трех устройств.

Активное использование шины VLB продолжалось очень недолго, она была вскоре вытеснена шиной PCI.

PCI. Интерфейс PCI (Peripheral Component Interconnect стандарт подключения внешних компонентов) был введен в персональных компьютерах во времена процессора 80486 и первых версий Pentium. По своей сути это тоже интерфейс локальной шины, связывающей процессор с оперативной памятью, в которую врезаны разъемы для подключения внешних устройств. Для связи с основной шиной компьютера (ISA/EISA) используются специальные интерфейсные преобразователи — мосты PCI (PCI Bridge). В современных компьютерах функции моста PC/выполняют микросхемы микропроцессорного комплекта (чипсета).

Данный интерфейс поддерживает частоту шины 33 МГц и обеспечивает пропускную способность 132 Мбайт/с. Последние версии интерфейса поддерживают частоту до 66 МГц и обеспечивают производительность 264 Мбайт/с для 32-разрядных данных и 528 Мбайт/с для 64-разрядных данных.

Важным нововведением, реализованным этим стандартом, стала поддержка так называемого режима plug-and-play, впоследствии оформившегося в промышленный стандарт на самоустанавливающиеся устройства. Его суть состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит обмен данными между устройством и материнской платой, в результате которого устройство автоматически получает номер используемого прерывания, адрес порта подключения и номер канала прямого доступа к памяти.

Конфликты между устройствами за обладание одними и теми же ресурсами (номерами прерываний, адресами портов и каналами прямого доступа к памяти) вызывают массу проблем у пользователей при установке устройств, подключаемых к шине ISA, С появлением интерфейса PCI и с оформлением стандарта plug-and-play появилась возможность выполнять установку новых устройств с помощью автоматических программных средств — эти функции во многом были возложены на операционную систему.

FSB. Шина PCI, появившаяся в компьютерах на базе процессоров Intel Pentium как локальная шина, предназначенная для связи процессора с оперативной памятью, недолго оставалась в этом качестве. Сегодня она используется только как шина для подключения внешних устройств, а для связи процессора и памяти, начиная с процессора Intel Pentium Pro, используется специальная шина, получившая название Front Side Bus (FSB). Эта шина работает на частоте 100-200 МГц. Частота шины FSB является одним из основных потребительских параметров — именно он и указывается в спецификации материнской платы. Современные типы памяти (DDR SDRAM, RDRAM) способны передавать несколько сигналов за один такт шины FSB, что повышает скорость обмена данными с оперативной памятью.

AGP. Видеоадаптер — устройство, требующее особенно высокой скорости передачи данных. Как при внедрении локальной шины VLB, так и при внедрении локальной шины PCI видеоадаптер всегда был первым устройством, «врезаемым» в новую шину. Когда параметры шины PC/перестали соответствовать требованиям видеоадаптеров, для них была разработана отдельная шина, получившая название АGP (Advanced Graphic Port — усовершенствованный графический порт). Частота этой шины соответствует частоте шины PCІ(33 МГц или 66 МГц), но она имеет много более высокую пропускную способность за счет передачи нескольких сигналов за один такт. Число сигналов, передаваемых за один такт, указывается в виде множителя, например АGP4х (в этом режиме скорость передачи достигает 1066 Мбайт/с).

Последняя версия шины АGP имеет кратность 8х.

PCMCIA (Personal Computer Memory Card International Associationстандарт международной ассоциации производителей плат памяти для персональных компьютеров).

Этот стандарт определяет интерфейс подключения плоских карт памяти небольших размеров и используется в портативных персональных компьютерах.

USB (Universal Serial Bus — универсальная последовательная магистраль). Это одно из последних нововведений в архитектурах материнских плат. Этот стандарт определяет способ взаимодействия компьютера с периферийным оборудованием. Он позволяет подключать до 256 различных устройств, имеющих последовательный интерфейс. Устройства могут включаться цепочками (каждое следующее устройство подключается к предыдущему). Производительность шины USB относительно невелика, но вполне достаточна для таких устройств, как клавиатура, мышь, модем, джойстик, принтер и т. п. Удобство шины состоит в том, что она практически исключает конфликты между различным оборудованием, позволяет подключать и отключать устройства в «горячем режиме» (не выключая компьютер) и позволяет объединять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения.

Функции микропроцессорного комплекта (чипсета)

Чипсет – это одна или чаще две микросхемы (чипы), предназначенные для организации взаимодействия между процессором, памятью, портами ввода-вывода и остальными компонентами компьютера.

С появлением шины PCI отдельные микросхемы чипсета стали называть мостами. Так появились термины северный мост (North Bridge) и южный мост (South Bridge) чипсета. Северный мост соединяется непосредственно с процессором, а южный мост – с северным.

Параметры микропроцессорного комплекта (чипсета) в наибольшей степени определяют свойства и функции материнской платы. В настоящее время большинство чипсетов материнских плат выпускаются на базе двух микросхем, исторически получивших название «северный мост» и «южный мост».

«Северный мост» обычно управляет взаимосвязью процессора, оперативной памяти и порта АGP.

«Южный мост» называют также функциональным контроллером. Он выполняет функции контроллера жестких и гибких дисков, функции контроллера шины PCI, моста ISA — PCI, контроллера клавиатуры, мыши, шины USB и т. п.

У предыдущих поколений материнских плат связь между северным и южным мостом обеспечивала шина PCI, контроллер которой располагался в северном мосте.

У современных материнских плат мосты соединены новой шиной повышенной производительности, а контроллер шины PCI находится в южном мосте вместе с контроллерами всех прочих устройств.

В некоторых случаях производители объединяют северный и южный мосты в одну микросхему. Если чипсет – это всего одна микросхема, то такое решение называют одночиповым, а если две – двухмостовой схемой.

Северный мост чипсета традиционно содержит контроллер памяти, контроллер графической шины, интерфейс взаимодействия с южным мостом и интерфейс взаимодействия с процессором.

На южный мост чипсета возлагается функция организации взаимодействия с утройствами ввода-вывода. Южный мост содержит контроллеры жестких дисков, USB-контроллер, сетевой контроллер, контроллер шин, контроллер прерывания и др. Также Южный мост соединяется с двумя важными микросхемами на материнской плате: микросхемой ROM – памяти BIOS, и микросхемой отвечающей за последовательные и параллельные порты и дисковод.

Чипсет является основой любой материнской платы. Фактически функциональность материнской платы и ее производительность на 90% определяется именно чипсетом. От него зависят поддерживаемый тип процессора, тип памяти, а также функциональные возможности по подключению переферийных устройств.


 

А также другие работы, которые могут Вас заинтересовать

39747. Особенности психологии как науки 93 KB
  Психология – наука в которой сливаются объект и предмет познания слияние предмета и объекта психологии объясняется тем что человек с помощью психики познает окружающий мир а потом на основе этого и свою собственную психику влияние мира на нее 3. Особенность психологии заключается в ее уникальных практических следствиях уникальные практические следствия психологии состоят в том что результаты исследования этой науки достаточно значимы для людей и объективно и субъективно поскольку объясняют причины всех действий поступков и поведения...
39748. Развитие мышления в онтогенезе 64.5 KB
  Пиаже отмечал что: 1 изменения внутри каждой стадии обычно количественны и линейны изменения между стадиями носят качественный характер; 2 последовательность прохождения этих четырех стадий обязательно и чтобы достичь очередной стадии ребенок должен пройти через все предыдущие. В последующем ребенок может осуществлять поведение с иной целью чем собственно поведение. Координирование таких средств и целей происходит на следующем этапе третичные схемы когда ребенок может проделывать с объектом несколько различных вещей взять его...
39749. Речь и мышление 338.98 KB
  Общая характеристика речи. Значение речи в жизни человека Определение речи Речь и язык. Понятие языка Понятие речи Отличие языка от речи Теории речи. Рефлекторный характер речевой деятельности Динамическая локализация речи Соотношение центра с периферией Восприятие и понимание речи Функции речи.
39750. Самооценка и уровень притязаний в современной психологии 88 KB
  Она тесно связана с уровнем притязаний человека – степенью трудности целей которые он ставит перед собой. Самооценка тесно связана с уровнем притязаний личности т. Люди с реалистичным уровнем притязаний отличаются уверенностью в своих силах настойчивостью в достижении цели большей продуктивностью критичностью в оценке достигнутого.
39751. Способности 109.5 KB
  Классификация способностей Специфически человеческие способности принято разделять на общие и специальные высшие интеллектуальные способности. Следует отметить что наличие у человека общих способностей не исключает развития специальных способностей и наоборот. Большинство исследователей проблемы способностей сходятся на том что общие и специальные способности не конфликтуют а сосуществуют взаимно дополняя и обогащая друг друга. Более того в отдельных случаях высокий уровень развития общих способностей может выступать в качестве...
39752. Темперамент 131 KB
  Общая характеристика темперамента Каждый человек уникален и неповторим. Свойства темперамента – это и есть такие индивидуальные свойства которые определяют течение т. Однако динамика психической деятельности зависит не только от темперамента. Например любой человек не зависимо от его темперамента при наличии интереса работает энергичнее быстрее а при отсутствии – медленнее и вяло.
39753. Теории мышления в психологии 67 KB
  Активные психологические исследования мышления ведутся начиная с 17го века однако психология мышления специально стала разрабатываться лишь в 20ом веке. не видели необходимости в социальном исследовании мышления. Считалось что мышление образно процесс мышления – непроизвольная смена образов развитие мышления процесс накопления ассоциаций.
39755. ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ МЫШЛЕНИЯ 34 KB
  Итак мы переходим к следующему вопросу – Физиологические основы мышления. Центральным в человеческой теории мышления является взгляд на роль слова в рефлекторном процессе. Слово является средством умственного общения и условием развития мышления.