37325

Создать трехмерную модель сварного соединения и провести анализ ее напряженно-деформированного состояния под воздействием внешней статической нагрузки

Контрольная

Производство и промышленные технологии

Исходные данные Рисунок 1 – Изображение узла Сварное нахлесточное соединение. Рисунок 2 – Указание пути к файлу Рисунок 3 – Задание необходимых параметров вставки 3 Разбиение на конечные элементы Выберем пункт меню Mesh= Geometry= Solids Сетка= Геометрия= Тело. Рисунок 4 – Разбиение на конечные элементы На запрос о задании материала введем характеристики для Ст. Рисунок 5 – Задание характеристик для материала Далее появится панель utomesh Solids Авторазбиение твердых тел – рис.

Русский

2013-09-24

471.5 KB

8 чел.

1. Цель

Создать трехмерную модель сварного соединения и провести анализ ее напряженно-деформированного состояния под воздействием внешней статической нагрузки, оценить влияние формы сварного (паяного) соединения на распределение напряжений в нем.

2. Программа работы

1. Изучить основные понятия в области конечно-элементного анализа в MSC/NASTRAN, ознакомиться с его последовательностью, особенностями.

2. Ознакомиться на примере с основными принципами и особенностями конечно-элементного анализа импортированных трехмерных моделей сварных (паяных) соединений в MSC/NASTRAN.

3. Получить у преподавателя исходные данные для создания модели, варианты нагрузок, переписать их в отчет.

4.  Разработать последовательность создания заданной трехмерной модели сварного (паяного) соединения.

5. Запустить (при помощи преподавателя) программу AutoCAD (или КОМПАС), вспомнить ее интерфейс, основные приемы работы.

6. Создать в выбранной программе трехмерную модель заданного сварного (паяного) соединения. Экспортировать ее в формат ACIS.

7. Запустить (при помощи преподавателя) программу MSC/NASTRAN, изучить ее интерфейс, основные приемы работы.

8. Импортировать в среду MSC/NASTRAN созданную ранее трехмерную модель.

9. Указать материал, задать параметры конечно-элементной сетки, граничные условия и нагрузки, провести статический анализ модели.

10. Вывести полученные данные на экран компьютера, сделать распечатку.

11. Оформить отчет, продемонстрировать его преподавателю.

3. Исходные данные

Рисунок 1 – Изображение узла

Сварное нахлесточное соединение.

Модель соединения: лобовые сварные швы

Размер нижней пластины: 100´60´5 мм

Размер верхней пластины: 100´40´5 мм

Катет шва: 5 мм

Материал: Ст. 3

Величина нахлестки: 15 мм

Зазор между пластинами: 0,5 мм

4. Описание последовательности создания трехмерной модели

В программе «КОМПАС-3D» сначала рисуем нижнюю пластину. Выбираем систему координат, рисуем прямоугольник с размерами 100´60 мм. Далее с помощью инструмента «выдавливание» придаем пластине толщину 5 мм. Аналогично рисуем верхнюю пластину, которая накладывается на нижнюю с нахлесткой 15 мм, с учетом зазора 0,5 мм. Потом рисуются и выдавливаются катеты сварных швов (5 мм). Окончательная модель изображена на рис. 1.

5. Последовательность статического анализа модели, с указанием основных задаваемых параметров

1) Создаем трехмерную модель заданного узла, экспортируем полученную модель в формат ACIS (расширение *.sat).

2) Импорт трехмерной модели в Nastran.

Для этого, после запуска программы и создания в ней новой модели, необходимо выполнить команду File=>Import=>Geometry…(Файл=>Импортировать=>Геометрию…). В появившемся окне указать путь к требуемому файлу, выделить его мышью и нажать кнопку Оpen (рис. 2.). Затем, в появившемся окне указать необходимые параметры вставки (рис. 3., п. 3.3.1.). На появившийся вопрос ответить утвердительно – ОК.

Рисунок 2 – Указание пути к файлу

Рисунок 3 – Задание необходимых параметров вставки

3) Разбиение на конечные элементы

Выберем пункт меню Mesh=>Geometry=>Solids (Сетка=>Геометрия=>Тело). Вслед за тем появляется диалоговое окно с автоматически определенными размерами и параметрами сетки из тетраэдральных конечных элементов (Tet Meshing). Оставим указанные значения и нажмем ОК (рис. 4). При необходимости можно скорректировать предложенные значения (не рекомендуется).

Рисунок 4 – Разбиение на конечные элементы

На запрос о задании материала введем характеристики для Ст. 3 (рис. 5.) и сохраним их в библиотеке с помощью кнопки Save. Нажмем ОК.

Рисунок 5 – Задание характеристик для материала

Далее появится панель Automesh Solids (Авторазбиение твердых тел) – рис. 6.

Рисунок 6 – Авторазбиение твердых тел

Установим значение Property – Untitled, соответствующее автоматически созданному свойству пространственных конечных элементов типа Solid. Остальные параметры оставим по умолчанию. Нажмем ОК, после чего произойдет разбиение тела на конечные элементы.

4) Задание граничных условий

Примем в качестве граничного условия для данного узла жесткую заделку по одному из торцов (к противоположному торцу будет приложена нагрузка). В пункте Model=>Constraint=>Set присвоим данному варианту граничных условий название Заделка по торцу (рис. 7).

Рисунок 7 – Присвоение названия граничным условиям

Повернув модель, при помощи динамического вращения – кнопка , так, чтобы был виден требуемый торец узла (для окончания вращения нажать ENTER, или кнопку OK на панели Dynamic Display), выберем пункт меню Model=>Constraint =>On Surface (Модель=>Граничные условия=>На поверхности) и укажем мышью поверхность торца, и нажмем ОК (рис. 8.)

Рисунок 8 – Задание граничных условий, указанием требуемого торца

В появившемся далее окне установим опцию Fixed. Остальные параметры – как указано на рис. 9 (по умолчанию). Нажимаем ОК, далее отказываемся от предложения продолжить указание граничных условий (рис. 8), нажав Cancel.

Рисунок 9 – Задание параметров

5) Задание нагрузки

Определим название варианта нагрузок в пункте Model=>Load=>Set как 25 кН (рис. 10), нажмем ОК. Примем в данном расчете равномерное распределение нагрузок по поверхности, к которой она приложена.

Рисунок 10 – Задание названия нагрузки

Повернув модель, при помощи динамического вращения – кнопка , так, чтобы был виден противоположный заделке торец узла, выберем пункт меню Model=>Load=>On Surface (Модель=>Нагрузки=>На поверхности), укажем противоположный заделке торец изделия и нажмем ОК.

В появившемся диалоговом окне Create Loads On Surfaces (Создание нагрузок на поверхностях) выберем Force и зададим значение FX: 25000 (рис. 11), нажмем ОК, далее отказываемся от предложения продолжить задание нагрузок, нажав Cancel.

Рисунок 11 – Задание значения нагрузки

6. Расчет и отображение результатов:

- изображения напряженно-деформированного состояния сварного соединения

- численные значения рассчитанных напряжений и деформаций

Выберем команду меню File=>Analyze (Файл=>Анализ). В панели NASTRAN Analysis Control (рис. 12) оставим все опции установленными по умолчанию, нажмем ОК и сохраним модель при запросе об этом.

Рисунок 12 – Окно данных об анализе

По окончании расчета, что сопровождается звуковым сигналом, нажмем кнопку Continue.

Используя кнопки , затем  выведем окно выбора выходных данных Select Postprocessing Data. В разделе Output Set (рис. 13) представлен выполненный расчет – 1..MSC/NASTRAN Case 1. Выберем в разделе Output Vectors для Deformation – Total Translation (Суммарные деформации), а для Contour – Solid VonMises Stress (Максимальные эквивалентные напряжения). Нажмем ОК.

Рисунок 13 – Окно выбора выходных данных

Для представления контурных данных (распределение напряжений) нажмем кнопку Contour , в результате чего получим изображение распределения эквивалентных напряжений на поверхности конструкции (рис. 14).

Рисунок 14 – Распределение напряжений

Нажмем также кнопку  для одновременного представления деформированного состояния (рис. 15).

Рисунок 15 – Распределение напряжений в деформированном состоянии

Полученные результаты: максимальное напряжение в конструкции – 667 Па, суммарная деформация – 12,2·10-6 м.

7. Выводы


 

А также другие работы, которые могут Вас заинтересовать

37610. Изучение частотных характеристик мультивибратора Ройера в зависимости от величины нагрузки 310.5 KB
  Установив входное напряжение 30 В, путем изменения нагрузки, изменяем ток нагрузки до минимального возможного значения, фиксируя каждый раз значения токов Iвх , Iн, напряжения на нагрузке и частоты. Рассчитываем значения потребляемой мощности, выходной мощности и КПД
37611. Описание и моделирование регулярных (систолических) схем 289.5 KB
  Необходимо спроектировать VHDL-модель заданного устройства одним из указанных способов согласно требованиям, сформулированным к каждому варианту задания, разработать тестирующие воздействия и выполнить моделирование работы устройства.
37612. Проведение экспериментальных работ при исследовании переходных процессов в электрических цепях 115 KB
  На экране осциллографа получаем изображение зависимости напряжения и тока конденсатора от времени.Зарисовываем осциллограммы тока и напряжения на конденсаторе: Рассчитываем по осциллограмме постоянные времени разряда и заряда конденсатора по кривой uсt. На экране осциллографа получаем изображения зависимости тока и напряжения катушки от времени. Зарисовываем осциллограммы тока и напряжения катушки: Рассчитываем по осциллограмме постоянные времени при подключении и отключении катушки по кривой it.
37613. История государства и права зарубежных стран (ИГПЗС) 712 KB
  В силу конкретноисторического подхода к государственноправовым явлениям и процессам присущим тому или иному обществу на том или ином этапе его развития оперируя множеством фактов и событий политической жизни деятельности государств правительств классов и партий ИГПЗС ставит своей целью выявление исторических закономерностей развития государства и права. ИГПЗС тесно связана с другой юридической наукой и учебной дисциплиной – Теорией государства и права также изучающей закономерности развития государства и права. Теория...
37614. Основи теорії транспортних процесів і систем 4.22 MB
  У цьому розділі вивчаються питання стосовно експлуатаційних властивостей транспортних засобів що використовуються для організації процесу перевезення вантажів та пасажирів. В країнах Азії до цих пір переміщення вантажів та людей за допомогою коромисел є дуже розповсюдженим. В умовах первинно общинного ладу для транспортування людей та вантажів використовувались найпростіші засоби включаючи в'ючних тварин. На сьогодні транспорт це одна із найважливіших галузей матеріального виробництва що виконує перевезення людей та вантажів.
37615. Программирование на языке ассемблера для микропроцессоров фирмы Intel 411.5 KB
  Программист или любой другой пользователь может использовать любые высокоуровневые средства вплоть до программ построения виртуальных миров и возможно даже не подозревать что на самом деле компьютер выполняет не команды языка на котором написана его программа а их трансформированное представление в форме скучной и унылой последовательности команд совсем другого языка машинного. шесть регистров сегментов: cs ds ss es fs gs; регистры состояния и управления: регистр флагов eflags flags; регистр указателя команды eip ip. Его...
37616. Тезисы лекций по маркетингу 534.5 KB
  В этой ипостаси маркетинг существует несколько тысяч лет когда произошло отделение купца негоцианта от производителя товара – ремесленника. Производственная: Разработка ассортимента новых продуктов; Разработка требований к новым товарам Сбытовая: Выбор каналов сбыта. Сравнительный анализ сбытовой и современной концепций маркетинга Сбытовая Современный маркетинг Учет потребностей Предприятия Потребителей Производится то что Удается произвести Что будет куплено Ассортимент Узкий Широкий Горизонт планирования Краткосрочный Длительный...
37617. Бег с барьерами 15.99 KB
  Дисциплины: Зимний сезон : 50 метров 60 метров Летний сезон : 100 метров женщины 110 метров мужчины 400 метров История Первые упоминания об официальных стартах в барьерном беге относятся к соревнованиям в Англии в 1837 году в колледже Итон. Олимпийский дебют на дистанции 110 метров с барьерами состоялся в 1896 году.
37618. Горный бег 18.2 KB
  Классификация трасс по критерию набор высоты Категория А: набор высоты составляет как минимум 76 метров 250 футов на каждую милю 16 км дистанции; по шоссе проходит не более 20 от общей длины трассы; трасса должна быть длиной не менее одной мили 16 Категория В: набор высоты составляет как минимум 38 метров 125 футов на каждую милю 16 км дистанции; по шоссе проходит не более 30 от общей длины трассы; Категория С: набор высоты составляет как минимум 304 метра 100 футов на каждую милю 16 км дистанции; по шоссе проходит не...