37325

Создать трехмерную модель сварного соединения и провести анализ ее напряженно-деформированного состояния под воздействием внешней статической нагрузки

Контрольная

Производство и промышленные технологии

Исходные данные Рисунок 1 Изображение узла Сварное нахлесточное соединение. Рисунок 2 Указание пути к файлу Рисунок 3 Задание необходимых параметров вставки 3 Разбиение на конечные элементы Выберем пункт меню Mesh= Geometry= Solids Сетка= Геометрия= Тело. Рисунок 4 Разбиение на конечные элементы На запрос о задании материала введем характеристики для Ст. Рисунок 5 Задание характеристик для материала Далее появится панель utomesh Solids Авторазбиение твердых тел рис.

Русский

2013-09-24

471.5 KB

8 чел.

1. Цель

Создать трехмерную модель сварного соединения и провести анализ ее напряженно-деформированного состояния под воздействием внешней статической нагрузки, оценить влияние формы сварного (паяного) соединения на распределение напряжений в нем.

2. Программа работы

1. Изучить основные понятия в области конечно-элементного анализа в MSC/NASTRAN, ознакомиться с его последовательностью, особенностями.

2. Ознакомиться на примере с основными принципами и особенностями конечно-элементного анализа импортированных трехмерных моделей сварных (паяных) соединений в MSC/NASTRAN.

3. Получить у преподавателя исходные данные для создания модели, варианты нагрузок, переписать их в отчет.

4.  Разработать последовательность создания заданной трехмерной модели сварного (паяного) соединения.

5. Запустить (при помощи преподавателя) программу AutoCAD (или КОМПАС), вспомнить ее интерфейс, основные приемы работы.

6. Создать в выбранной программе трехмерную модель заданного сварного (паяного) соединения. Экспортировать ее в формат ACIS.

7. Запустить (при помощи преподавателя) программу MSC/NASTRAN, изучить ее интерфейс, основные приемы работы.

8. Импортировать в среду MSC/NASTRAN созданную ранее трехмерную модель.

9. Указать материал, задать параметры конечно-элементной сетки, граничные условия и нагрузки, провести статический анализ модели.

10. Вывести полученные данные на экран компьютера, сделать распечатку.

11. Оформить отчет, продемонстрировать его преподавателю.

3. Исходные данные

Рисунок 1 – Изображение узла

Сварное нахлесточное соединение.

Модель соединения: лобовые сварные швы

Размер нижней пластины: 100´60´5 мм

Размер верхней пластины: 100´40´5 мм

Катет шва: 5 мм

Материал: Ст. 3

Величина нахлестки: 15 мм

Зазор между пластинами: 0,5 мм

4. Описание последовательности создания трехмерной модели

В программе «КОМПАС-3D» сначала рисуем нижнюю пластину. Выбираем систему координат, рисуем прямоугольник с размерами 100´60 мм. Далее с помощью инструмента «выдавливание» придаем пластине толщину 5 мм. Аналогично рисуем верхнюю пластину, которая накладывается на нижнюю с нахлесткой 15 мм, с учетом зазора 0,5 мм. Потом рисуются и выдавливаются катеты сварных швов (5 мм). Окончательная модель изображена на рис. 1.

5. Последовательность статического анализа модели, с указанием основных задаваемых параметров

1) Создаем трехмерную модель заданного узла, экспортируем полученную модель в формат ACIS (расширение *.sat).

2) Импорт трехмерной модели в Nastran.

Для этого, после запуска программы и создания в ней новой модели, необходимо выполнить команду File=>Import=>Geometry…(Файл=>Импортировать=>Геометрию…). В появившемся окне указать путь к требуемому файлу, выделить его мышью и нажать кнопку Оpen (рис. 2.). Затем, в появившемся окне указать необходимые параметры вставки (рис. 3., п. 3.3.1.). На появившийся вопрос ответить утвердительно – ОК.

Рисунок 2 – Указание пути к файлу

Рисунок 3 – Задание необходимых параметров вставки

3) Разбиение на конечные элементы

Выберем пункт меню Mesh=>Geometry=>Solids (Сетка=>Геометрия=>Тело). Вслед за тем появляется диалоговое окно с автоматически определенными размерами и параметрами сетки из тетраэдральных конечных элементов (Tet Meshing). Оставим указанные значения и нажмем ОК (рис. 4). При необходимости можно скорректировать предложенные значения (не рекомендуется).

Рисунок 4 – Разбиение на конечные элементы

На запрос о задании материала введем характеристики для Ст. 3 (рис. 5.) и сохраним их в библиотеке с помощью кнопки Save. Нажмем ОК.

Рисунок 5 – Задание характеристик для материала

Далее появится панель Automesh Solids (Авторазбиение твердых тел) – рис. 6.

Рисунок 6 – Авторазбиение твердых тел

Установим значение Property – Untitled, соответствующее автоматически созданному свойству пространственных конечных элементов типа Solid. Остальные параметры оставим по умолчанию. Нажмем ОК, после чего произойдет разбиение тела на конечные элементы.

4) Задание граничных условий

Примем в качестве граничного условия для данного узла жесткую заделку по одному из торцов (к противоположному торцу будет приложена нагрузка). В пункте Model=>Constraint=>Set присвоим данному варианту граничных условий название Заделка по торцу (рис. 7).

Рисунок 7 – Присвоение названия граничным условиям

Повернув модель, при помощи динамического вращения – кнопка , так, чтобы был виден требуемый торец узла (для окончания вращения нажать ENTER, или кнопку OK на панели Dynamic Display), выберем пункт меню Model=>Constraint =>On Surface (Модель=>Граничные условия=>На поверхности) и укажем мышью поверхность торца, и нажмем ОК (рис. 8.)

Рисунок 8 – Задание граничных условий, указанием требуемого торца

В появившемся далее окне установим опцию Fixed. Остальные параметры – как указано на рис. 9 (по умолчанию). Нажимаем ОК, далее отказываемся от предложения продолжить указание граничных условий (рис. 8), нажав Cancel.

Рисунок 9 – Задание параметров

5) Задание нагрузки

Определим название варианта нагрузок в пункте Model=>Load=>Set как 25 кН (рис. 10), нажмем ОК. Примем в данном расчете равномерное распределение нагрузок по поверхности, к которой она приложена.

Рисунок 10 – Задание названия нагрузки

Повернув модель, при помощи динамического вращения – кнопка , так, чтобы был виден противоположный заделке торец узла, выберем пункт меню Model=>Load=>On Surface (Модель=>Нагрузки=>На поверхности), укажем противоположный заделке торец изделия и нажмем ОК.

В появившемся диалоговом окне Create Loads On Surfaces (Создание нагрузок на поверхностях) выберем Force и зададим значение FX: 25000 (рис. 11), нажмем ОК, далее отказываемся от предложения продолжить задание нагрузок, нажав Cancel.

Рисунок 11 – Задание значения нагрузки

6. Расчет и отображение результатов:

- изображения напряженно-деформированного состояния сварного соединения

- численные значения рассчитанных напряжений и деформаций

Выберем команду меню File=>Analyze (Файл=>Анализ). В панели NASTRAN Analysis Control (рис. 12) оставим все опции установленными по умолчанию, нажмем ОК и сохраним модель при запросе об этом.

Рисунок 12 – Окно данных об анализе

По окончании расчета, что сопровождается звуковым сигналом, нажмем кнопку Continue.

Используя кнопки , затем  выведем окно выбора выходных данных Select Postprocessing Data. В разделе Output Set (рис. 13) представлен выполненный расчет – 1..MSC/NASTRAN Case 1. Выберем в разделе Output Vectors для Deformation – Total Translation (Суммарные деформации), а для Contour – Solid VonMises Stress (Максимальные эквивалентные напряжения). Нажмем ОК.

Рисунок 13 – Окно выбора выходных данных

Для представления контурных данных (распределение напряжений) нажмем кнопку Contour , в результате чего получим изображение распределения эквивалентных напряжений на поверхности конструкции (рис. 14).

Рисунок 14 – Распределение напряжений

Нажмем также кнопку  для одновременного представления деформированного состояния (рис. 15).

Рисунок 15 – Распределение напряжений в деформированном состоянии

Полученные результаты: максимальное напряжение в конструкции – 667 Па, суммарная деформация – 12,2·10-6 м.

7. Выводы


 

А также другие работы, которые могут Вас заинтересовать

39588. Лента конвейерная 109.87 KB
  Тяговым каркасом резинотканевой ленты рис. Резинотросовые ленты рис. имеют тяговый каркас состоящий из стальных тросов уложенных в один ряд параллельно друг другу вдоль ленты с обеих сторон покрытый резиной. Количество прокладок может быть от 3 до 10 в зависимости от условий эксплуатации свойств транспортируемого груза ширины прочности и жесткости ленты.
39589. Натяжные устройства ленточного конвейера 34.2 KB
  Грузовые натяжные устройства делятся на грузовые тележечные и грузовые вертикальные рамные. Каждое из названных натяжных устройств состоит из натяжной тележки или натяжной рамы и грузового устройства. Грузовые устройства могут быть без полиспаста с полиспастом или грузолебедочные.
39590. Приводы ленточного конвейера 152.77 KB
  Приводы ленточного конвейера выполняютсяоднобарабанными с одним или двумя двигателями рис. 1;двухбарабанными с близко расположенными друг около друга приводными барабанами рис. 2 а 3 и с раздельным расположением приводных барабанов на переднем и заднем концах конвейера рис. 3 3;трехбарабанными с близко расположенными друг около друга барабанами рис.
39591. Разгрузочные устройства 189.55 KB
  Наименование воронки Характеристика воронки Схема воронки Исполнение воронки Трехрукавная Разгрузка на две стороны и вперед I Двухрукавная Разгрузка на две стороны II Двухрукавная односторонняя правая Разгрузка на правую сторону или вперед III Двухрукавная односторонняя левая Разгрузка на левую сторону или вперед IV Однорукавная правая Разгрузка на правую сторону V Однорукавная левая Разгрузка на левую сторону VI Тележки могут иметь левое и правое расположение привода по направлению движения ленты. Пример условного обозначения...
39592. Ролики конвейерные 113.41 KB
  Верхние желобчатые усиленные роликоопоры предназначаются для транспортировки по верхней ветви ленты материалов, имеющих размер кусков 150 - 500 мм. Они находят применение в тяжелонагруженных магистральных конвейерах, к примеру, в угольных разрезах, шахтах и пр.
39593. Привод ленточного транспортёра с червячным редуктором 591 KB
  Подготовка исходных данных для расчета редуктора на ЭВМ и выбор электродвигателя Расчет червячного редуктора Предварительный расчет валов Уточнённый расчёт валов. Выбор смазки редуктора Проверка прочности шпоночного соединения Расчёт штифтового соединения. Подготовка исходных данных для расчета редуктора на ЭВМ...
39594. ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС РАБОТЫ СТАНЦИИ БОЙНЯ МОСКОВСКО-КУРСКОГО ЦЕНТРА ОРГАНИЗАЦИИ РАБОТЫ ЖЕЛЕЗНОДОРОЖНЫХ СТАНЦИЙ 2.13 MB
  В успешном решении задач полного удовлетворения потребностей государства в перевозках ведущая роль отводится железным дорогам и их основным линейным подразделениям – станциям, которые предназначены для организации перевозок грузов, пассажиров и багажа. Именно на железнодорожных станциях начинается и завершается перевозочный процесс.
39595. Разработка основных принципов организации работы станции 1.2 MB
  Сортировочные станции предназначены для массовой переработки вагонов и формирования поездов в соответствии с общесетевым планом формирования. Формирование на сортировочных станциях сквозных поездов дает возможность пропускать эти поезда без переработки через многие участковые и некоторые попутные сортировочные станции что ускоряет доставку грузов оборот вагонов и снижает себестоимость перевозок. На сортировочных станциях выполняются также операции с транзитными грузовыми поездами ремонт вагонов экипировка локомотивов снабжение льдом...