37564

ОСНОВЫ ФИЛОСОФИИ НАУКИ

Книга

Логика и философия

Фатхи ОСНОВЫФИЛОСОФИИ НАУКИ Учебное пособие для аспирантов OCR: В. К 55 Основы философии науки: Учебное пособие для аспирантов. Основное внимание уделено философскому анализу науки как специфической системы знания формы духовного производства и социального института. Рассмотрены общие закономерности развития науки ее генезис и история структура уровни и методология научного исследования актуальные проблемы философии науки роль науки в жизни человека и общества перспективы ее развития и ряд других проблем.

Русский

2013-09-24

2.68 MB

8 чел.

В.П. Кохановский, Т.Г. Лешкевич,
Т.П. Матяш, Т.Б. Фатхи

ОСНОВЫ
ФИЛОСОФИИ НАУКИ

Учебное пособие для аспирантов

OCR: В. М. Шкарупа

(Омск, май 2005 г.)

Ростов-на-Дону

2004

ББК 87

К 55

Ответственный редактор: доктор философских наук, профессор В. П. Кохановский

Кохановский В.П., Лешкевич Т.Г., Матяш Т. П., Фатхи Т.Б.

К 55 Основы философии науки: Учебное пособие для аспирантов. Ростов н/Д: Феникс, 2004. — 608 с. (Серия «Высшее образование».)

Учебное пособие написано в соответствии с новыми требованиями к подготовке, содержащимися в государственных образовательных стандартах, а также с учетом рекомендаций Института философии РАН (2003 г.).

Основное внимание уделено философскому анализу науки как специфической системы знания, формы духовного производства и социального института. Рассмотрены общие закономерности развития науки, ее генезис и история, структура, уровни и методология научного исследования, актуальные проблемы философии науки, роль науки в жизни человека и общества, перспективы ее развития и ряд других проблем.

Пособие рассчитано прежде всего на аспирантов и соискателей, готовящихся к экзаменам кандидатского минимума, ,а также на научных работников, студентов и всех желающих составить собственное представление о философской рефлексии над развитием науки.

ISBN 5-222-04626-5

© Кохановский В.П., Лешкевич Т.Г., Матяш Т. П., Фатхи Т.Б., 2004

© Оформление, изд-во «Феникс», 2004

3

От авторов

Эта книга предназначена для аспирантов и соискателей — молодых ученых, занимающихся разными специальностями как в области естественных, так и в области гуманитарных наук. Она дает им возможность подготовиться к наиболее серьезному в их жизни официальному экзамену по философии — кандидатскому экзамену. Поэтому мы находим возможным обратиться непосредственно к самим будущим читателям книги.

Дорогие наши читатели, соискатели и аспиранты!

Вы стоите сейчас перед непростой задачей — сдать наряду с собственной специальностью и иностранным языком еще одну важную дисциплину — философию, но в том ее ракурсе, где она тесно смыкается и взаимодействует с наукой. Как вы уже знаете, философия — теоретическая рефлексия об отношениях человека и мира — занимается самыми разными проблемами: сущностью человека и смыслом жизни, спецификой познания и деятельности, вопросами о Боге, смерти и бессмертии и т.д. Эти вопросы важны и интересны для любого человека, и подобная тематика может привлекать и волновать вас даже за пределами учебных занятий. Однако сейчас вам необходимо встретиться с тем обликом философии, который крайне необходим для вас как для профессиональных ученых, но еще не знаком вам в достаточной мере, — с философией науки.

Дело в том, что ученый, специалист, если он всерьез занят собственным делом, не может обойтись без рефлексии, размышления над смыслом своих научных занятий, без попытки осознать специфику той интеллектуальной деятельности, которой он посвящает жизнь. Именно поэтому в самое ближайшее время вам предстоит понять и усвоить особенности научного мироотношения» познакомиться с этапам» развития науки, обратиться к особенностям взаимодействия науки с другими сферами жизни.

4

Наша реальная практика работы с аспирантами разных специальностей показывает, что, сдав сначала курсовой, а затем вступительный аспирантский экзамен по философии, вы в достаточной мере овладеваете содержанием этой дисциплины, предусмотренным государственным образовательным стандартом высшего образования. У вас уже есть определенная философская эрудиция, некоторый запас знаний, полученных в студенчестве. В историко-философском разделе вы приобрели представление о структуре и специфике философии, рассмотрели генезис и основные этапы ее исторического развития. В теоретической (фундаментальной) философии изучили проблемы онтологии, теории познания и методологии. В социальной философии главными проблемами, с которыми вы соприкоснулись, были: человек и общество, социальная структура, гражданское общество и государство, роль ценностей в человеческой жизни, будущее человечества и др.

Весь этот объем философских знаний является вполне достаточным, для того чтобы каждый из вас, став аспирантом, мог перейти к более глубокому изучению философии, подняться на еще одну ступень философской подготовки. Потребность в таком «философском росте» возникает у самих аспирантов, в чем вы сможете убедиться, как только прикоснетесь к фундаментальным проблемам собственной науки. Кроме того, как мы уже отметили, кроме чисто теоретического интереса у аспирантов есть н практическая проблема — экзамен, который хотя и называется «кандидатский минимум», тем не менее требует активизации ваших знаний «по максимуму». Книга, которую вы сейчас держите в руках, как раз и призвана, с одной стороны, помочь вам в реализации ваших философско-теоретических интересов, а с другой — оказать серьезное содействие в подготовке к экзамену.

При создании нашей книги мы исходили из того, что выпускнику аспирантуры — будет ли он работать в «чистой науке» или в сфере образования — изложенные в этом пособии проблемы философии науки будут отнюдь не бесполезны. Пособие предлагает содержательное описание требований Госстандарта по курсу философии и методологии науки и заполняет возникший дефицит учебной литературы по данной дисциплине.

Наука — сложное многогранное целостное явление, а процесс развития научного познания — в силу его сложной и многослойной

5

структуры — не однонаправленный монотонный, «одноплоскостной» процесс. Это всегда, в любую эпоху процесс нелинейный, характеризующийся разнонаправленностью изменения форм научного знания, в котором постоянно возникают новые точки роста, нововведения и центры изменения, многообразные возможности и ситуации выбора. Поэтому не только возможны, но и необходимы разные модели и образы развития науки.

Научное познание развивается в контексте исторического развития общества. А это значит, чтобы понять его природу, особенности и историческую динамику, необходимо рассматривать научное познание как социально-культурный процесс. Надо понять, как осуществляется и развивается социальная жизнь людей, как она определяет на разных этапах своей истории состояние и особенности научной деятельности.

Наука — это та сфера человеческой деятельности, в которой происходят выработка и теоретическая систематизация объективных знаний о действительности, в которую науки — по мере своего развития — проникают все более глубоко и широко. Вместе с тем наука ориентируется и на человека, на безграничное развитое его интеллекта, его творческих способностей, культуры мышления.

Наряду со знаниями об объектах наука формирует знания и о методах, принципах и приемах научной деятельности. Потребность в развертывании и систематизации знаний второго типа приводит на высших стадиях развития науки к формированию методологии как особой отрасли научного исследования, призванной направлять научный поиск.

Наука изучает не только окружающую действительность, но и сама себя с помощью комплекса дисциплин, куда входят история и логика науки, психология научного творчества, социология знания в науки, науковедение и др. В настоящее время бурно развивается философия и методология науки, исследующая общие закономерности научно-познавательной деятельности, структуру и динамику научного знания, его уровни и формы, его социокультурную детерминацию, средства и методы научного познания, способы его обоснования и механизмы развития знания.

философия науки сложилась к середине XX в. и как философское направление, исследующее общие характеристики научной деятельности в целом, и как раздел философии, разрабатываемый

6

в рамках различных философских течений, поскольку они так или иначе обращаются к феномену науки.

Рассматривая проблему философии науки, мы имели в виду не отдельные науки, которые, конечно, сильно отличаются друг от друга, а науку как своеобразную форму познания, специфический тип духовного производства и социальный институт. Можно сказать, что речь идет о «науке вообще», которая, при всем многообразии своих обликов, несомненно, отличается от других сфер человеческой жизни — производства, морали, искусства, религии, обыденного сознания и т. п.

Мы надеемся, что предлагаемое вашему вниманию учебное пособие в равной мере будет полезным для представителей всех частных научных дисциплин — как для «физиков», так и для «лириков».

Авторский коллектив: доктор философских наук, профессор В. П. Кохановский (глава I, § 2, 4; глава П, § 1, 5; глава Ш, § 1— 5; глава IV, § 1, 6; глава V; глава VII, § 1; глава VIII); доктор философских наук, профессор Т. Г. Лешкевич (Введение; глава I, § 1, 3, 5; глава II, § 3 (в соавторстве); глава Ш, § 6, 7; глава IV, §2—5; глава VII, § 2—8; глава IX); доктор философских наук, профессор Т. П. Матяш (гл. VI); кандидат философских наук, доцент Т. Б. Фатхи (гл. И, § 2, 3 (в соавторстве), 4, 6, 7).

7

Введение.

Предметная сфера

философии науки

Создавая образ философии науки, следует четко определить, о чем идет речь: о философии науки как о направлении западной и отечественной философии, или же о философии науки как о философской дисциплине, наряду с философией истории, логикой, методологией, культурологией исследующей свой срез рефлексивного отношения мышления к бытию, в данном случае к бытию науки. Философия науки как направление современной философии представлена множеством оригинальных концепций, предлагающих ту или иную модель развития науки и эпистемологии. Она сосредоточена на выявлении роли и значимости науки, характеристик когнитивной, теоретической деятельности.

Философия науки как дисциплина возникла в ответ на потребность осмыслить социокультурные функции науки в условиях НТР. Это молодая дисциплина, которая заявила о себе лишь во второй половине XX в. В то время как направление, имеющее название «философия науки», возникло столетием раньше. «Предметом философии науки, — как отмечают исследователи, — являются общие закономерности в тенденция научного познания как особой деятельности но производству научных знаний, взятых в их историческом развитии и рассматриваемых в исторически изменяющемся социокультурном контексте»1.

В высказываниях ученых можно встретиться с утверждением, что «аналитическая эпистемология и есть философия науки». Тем не менее многолетнее существование философии науки противоречит этому взгляду, хотя бы потому, что она на протяжении

1 Степин В. С., Горохов В. Г., Розов М. А. Философия науки и техники. М., 1996. С. 9.

8

своего развития становилась все более и более исторической, а не аналитической. Существующее мнение относительно отождествления философии науки с аналитической философией, высказанное, в частности, отечественным исследователем А. Никифоровым1, великолепно парируется тезисом Р. Рорти: «Я не думаю, что все еще существует нечто, отождествляемое с именем «аналитическая философия», за исключением некоторых социологических или стилистических деталей.., Аналитическое движение в философии разработало диалектические следствия множества посылок, и сейчас мало что осталось делать в этой области»2.

Как дисциплина философия науки испытывает на себе огромное влияние философско-мировоззренческих концепций и теоретических разработок, проводимых в рамках философии науки как современного направления западной философии. Однако цель ее — в интегративном анализе и синтетическом подходе к широкому спектру обсуждаемых проблем, в «поднятии на гора» тех отдельных концептуальных инноваций, которые можно обнаружить в авторских проектах современных философов науки. Сегодня для философии науки характерна тенденция содержательной детализации, а также персонификации заявленной тематики, когда обсуждение проблемы ведется не анонимно и безличност-но, а с учетом достигнутых тем или иным автором конкретных результатов. Например, конвенции, как неустранимый элемент научного исследования, анализируются в контексте достижений Анри Пуанкаре — автора, считающегося родоначальником кон-венциализма. А отрицание идеала деперсонифицированного научного знания и утверждение значимости личностного знания обсуждается от имени творца и родоначальника данной концепции Майкла Полани. От деятельности Венского кружка, возглавляемого Морицом Шпиком, в философию науки как научную дисциплину перешло отношение К языку как к нейтральному средству познания, термины которого служат для выражения результатов наблюдений. Таким образом, мы сталкиваемся с принципиально иной питательной основой дисциплины, когда сама тематика, концептуальный аппарат и стержневые проблемы обретают

1  См.: Никифоров A. Л. Философия науки: история и методология. М., 1998.

2 Рорти Р. Философия и зеркало природы. Новосибирск, 1997. С. 127.

9

свой статус в контексте разработок и выводов конкретного ученого той или иной школы.

Философия науки имеет статус исторического социокультурного знания независимо от того, ориентирована она на изучение естествознания или социально-гуманитарных наук. Даже когда методолог изучает тексты естествоиспытателя, он не становится при этом исследователем физического поля или элементарных частиц. Философа науки интересует научный поиск, «алгоритм открытия», динамика развития научного знания, методы исследовательской деятельности. Философия науки, понятая как рефлексия над наукой, выявила изменчивость и глубину методологических установок и расширила границы самой рациональности. Опираясь на дословную интерпретацию выражения «философия науки», можно сделать вывод, что оно означает любовь к мудрости науки. Если основная цель науки — получение Истины, то философия науки становится одной из важнейших для человечества областей применения его интеллекта, в рамках которой ведется обсуждение вопроса, как возможно достижение истины. Она пытается открыть миру великую тайну того, что есть истина и что именно истина дороже всех общественных убеждений. Человечество, ограниченное четырехмерным пространственно-временным континуумом, в лице ученых не теряет веру в возможность постижения истины, бесконечного универсума. А из того, что человечество должно быть достойно истины, вытекает великий этический и гуманистический пафос этой дисциплины.

Соотношение философии науки с близкими ей областями науковедения и наукометрии иногда истолковывается в пользу отождествления последних или по крайней мере как нечто весьма родственное науковедению, а также дисциплинам, включающим в себя историю н социологию науки. Однако такое отождествление неправомерно. Социология науки исследует взаимоотношения науки как социального института со структурой общества, типологию поведения ученых в различных социальных системах, взаимодействие формальных и профессиональных неформальных сообществ ученых, динамику их групповых взаимодействий, а также конкретные социокультурные условия развития науки в различных типах общественного устройства.

Науковедение изучает общие закономерности развития и функционирования науки» оно, как правило, малопроблемно и тяготеет

10

исключительно к описательному характеру. Науковедение как специальная дисциплина сложилось к 60-м гг. XX в. В самом общем смысле науковедческие исследования можно определять как разработку теоретических основ политического государственного регулирования науки, выработку рекомендаций но повышению эффективности научной деятельности, принципов организации, планирования и управления научным исследованием. Можно столкнуться и с позицией, когда весь комплекс наук о науке называют науковедением. Тогда ему придается предельно широкий и общий смысл и оно неизбежно становится междисциплинарным исследованием, выступая как конгломерат дисциплин.

Область статистического изучения динамики информационных массивов науки, потоков научной информации оформилась под названием «наукометрия». Восходящая к трудам Прайса и его школы, она представляет собой применение методов математической статистики к анализу потока научных публикаций, ссылочного аппарата, роста научных кадров, финансовых затрат.

П. В. Копнин в свое время справедливо отмечал, что науковедение не может рассматриваться как самостоятельная комплексная наука, ибо всякая наука должна иметь некоторую общую теорию, единый метод, проблематику или по меньшей мере некоторый набор общих методов и проблем1. Науковедение, полагает П. Копнин, не располагает какой-либо общей теорией или набором теорий. Нередко из поля его зрения выпадают собственно философские проблемы науки.

В определении центральной проблемы философии науки существуют некоторые разночтения. По мнению известного философа наука Ф. Франка, «центральной проблемой философии науки является вопрос о том, как мы переходим от утверждений обыденного здравого смысла к общим научным принципам»2. К. Поппер считал, что центральная проблема философии знания, начиная, по крайней мере, с Реформации, состояла в том, как возможно рассудить или оценить далеко идущие притязания конкурирующих теорий или верований. «Я, — писал К. Поппер, — называю ее первой проблемой. Она исторически привела ко вто-

1 См.: Копнин П. В. Гносеологические в логические основы науки. М., 1974.

2 Франк Ф. Философия науки. М., I960. С. 56.

11

рой проблеме: как можно обосновать (justify) наши теорий и верования».

Вместе с тем крут проблем философии науки достаточно широк, к ним можно отнести вопросы типа: детерминируются ли общие положения науки однозначно или один и тот же комплекс опытных данных может породить различные общие положения? Как отличить научное от ненаучного? Каковы критерии научности, возможности обоснования? Как мы находим основания, по которым верим, что одна теория лучше другой? В чем состоит логика научного знания? Каковы модели его развития? Все эти и многие другие формулировки органично вплетены в ткань философских размышлений о науке и, что более важно, вырастают из центральной проблемы философии наукипроблемы роста, развития научного знания (см. гл. IV, § 1).

Можно разделить все проблемы философии науки на три подвида. К первым относятся проблемы, идущие от философии к науке, вектор направленности которых отталкивается от специфики философского знания. Поскольку философия стремится к универсальному постижению мира и познанию его общих принципов, то эти интенции наследует и философия науки. В данном контексте философия науки занята рефлексией над наукой в ее предельных Глубинах и подлинных первоначалах. Здесь в полной мере используется концептуальный аппарат философии, необходимо наличие определенной мировоззренческой позиции.

Вторая группа возникает внутри самой науки и нуждается в компетентном арбитре, в роли которого оказывается философия. В этой группе очень тесно переплетены проблемы познавательной деятельности как таковой, теория отражения, когнитивные процессы и собственно «философские подсказки» решения парадоксальных проблем.

К третьей группе относят проблемы взаимодействия науки и философии с учетом их фундаментальных различий и органичных переплетений во всех возможных плоскостях приложения. Исследования по истории науки убедительно показали, какую огромную роль играет философское мировоззрение в развитии науки. Особенно заметно радикальное влияние философии в эпохи так называемых научных революций, связанных с возникновением античной математики и астрономии, коперниканским переворотом — гелиоцентрической системой Коперника, становлением

12

классической научной картины мира — физикой Галилея—Ньютона, революцией в естествознании на рубеже XIXXX вв. и т.д. При таком подходе философия науки включает в себя эпистемологию, методологию и социологии научного познания, хотя так очерченные ее границы следует рассматривать не как окончательные, а как имеющие тенденцию к уточнению и изменению.

Типология представлений о природе философии науки предполагает различие той или иной ее ориентации, к примеру, онтологически ориентированной (А. Уайтхед) или методологически ориентированной (критический рационализм К. Поппера). Совершенно ясно, что в первой приоритеты будут принадлежать процедурам анализа, обобщения научных знаний с целью построения единой картины мира, целостного образа универсума. Во второй главным станет рассмотрение многообразных процедур научного исследования, как-то: обоснования, идеализации, фальсификации, а также анализ содержательных предпосылок знания.

Иногда о философии науки говорят в более широком историко-философском контексте с учетом представлений конкретных авторов, так или иначе отзывавшихся о науке на протяжении многовекового развития философии. Таким образом можно получить неокантианскую философию науки, философию науки неореализма и пр. К версиям философии науки относят сциентистскую н антисциентистскую. Эти ориентации по-разному оценивают статус науки в культурном континууме XX в. Сциентистская версия философии науки пытается освободить ее от свойственных ей недостатков, заретушировать или оправдать их. Для нее также характерно стремление провести демаркацию науки и метафизики, произвести редукцию (сведение) качественно различных теоретических структур к единому эмпирическому основанию, очистить науку от несвойственных ей установок и ориентиров.

Антисциентистская версия философии науки, представленная именами К. Хюбнера, Т. Роззака, П. Фейерабенда, требует равноправия науки и вненаучных способов видения мира, критикует науку за то, что она подавляет другие формы общественного сознания, представляет собой отчужденное мышление и источник догматизма (см. гл. VII, § 7).

По-разному оценивается и место философии науки. Некоторые авторы видят в этой дисциплине тип философствования» основывающего свои выводы исключительно на результатах и ме-

13

тодах науки (Р. Карнап, М. Бунге). Другие усматривают в философии науки посредствующее звено между естественнонаучным и гуманитарным знанием (Ф. Франк). Третьи связывают с философией науки задачи методологического анализа, научного знания (И. Лакатос). Есть и крайние позиции, рассматривающие философию науки как идеологическую спекуляцию на науке, вредную для нее и для общества (П. Фейерабенд).

Весьма любопытна типология представлений о природе философии науки, предложенная Дж. Лоузи:

• философия науки является мировоззрением, совместимым с научными теориями и основанным на них;

• она связана с выявлением предпосылок научного мышления и деятельности;

• предполагает экспликацию понятий и теорий науки;

• философия науки — метанаучная методология, определяющая, чем научное мышление отличается от ненаучного, какими методами должны пользоваться ученые в своих исследованиях, каковы необходимые условия корректности научного объяснения, в чем состоит когнитивный (познавательный) статус научных законов.

К перечисленной типологии можно добавить еще одну очень важную особенность: философию науки следует понимать прежде всего как область, в рамках которой предлагаются, изучаются и сравниваются модели развития науки.

С точки зрения получившего широкое распространение дескриптивного подхода философия науки есть описание разнообразных, имеющих место в науке ситуаций: от гипотез «ad hoc» (для данного, конкретного случая) до исследования по типу «case studies», ориентирующегося на анализ реального события в науке или истории конкретного открытия в том или ином социокультурном контексте,. Преимущество такого подхода состоит в его доступности. И с этой позиции каждый мыслитель может внести свою лепту в развитие философии науки, всего лишь поделившись собственными соображениями по поводу какого-либо этапа научного исследования. Однако такой подход имеет и свои недостатки, он мало концептуален и ведет к размыванию философии науки, растворению ее в простом описании фактов и событий научно-познавательной деятельности.

14

Если выделить стержневую проблематику философии науки, то в первой трети XX в. она была занята:

• построением целостной научной картины мира;

• исследованием соотношения детерминизма и причинности;

• изучением динамических и статистических закономерностей. Внимание привлекают также и структурные компоненты научного исследования: соотношение логики и интуиции; индукции и дедукции; анализа и синтеза; открытия и обоснования; теории и факта.

Вторая треть XX в. занята анализом проблемы эмпирического обоснования науки, выяснением того, достаточен ли для всего ее здания фундамент чисто эмпирического исследования, можно ли свести все теоретические термины к эмпирическим, как соотносится их онтологический и инструментальный смысл и в чем сложности проблемы теоретической нагруженности опыта. Заявляют о себе сложности процедур верификации, фальсификации, дедуктивно-номологического объяснения. Предлагается также анализ парадигмы научного знания, научно-исследовательской программы, а также проблемы тематического анализа науки.

В последней трети XX в. обсуждается новое, расширенное понятие научной рациональности, обостряется конкуренция различных объяснительных моделей развития научного знания, попыток реконструкции логики научного поиска. Новое содержание приобретают критерии научности, методологические нормы и понятийный аппарат последней, постнеклассической стадии развития науки. Возникает осознанное стремление к историзации науки, выдвигается требование соотношения философии науки с ее историей, остро встает проблема универсальности методов и процедур, применяемых в рамках философии науке. Пользуется ли историк методами, вырабатываемыми философией науки, и что дает методологу история науки, как соотносятся историцистская и методологическая версии реконструкции развития науки. Эта проблематика возвращает нас к исходной позиции философии науки, т.е. к анализу мировоззренческих и социальных проблем, сопровождающих рост и развитие науки. Вновь обретает силу вопрос о социальной детерминации научного звания, актуальными оказываются проблемы гуманизации и гуманитаризации науки, ее нейтральности.

15

Громкий лозунг, предвосхищающий «смерть традиционной философии науки», не означает ничего иного, как существование тех или иных ее параметров в рамках конкретно-исторического периода времени, и затем изменение их в другой. Когда философию науки связывают с программами, идущими от эмпиризма Ф. Бэкона и рационализма Р. Декарта, то обилие концепций философии науки XX столетия неизбежно приводит к выводу о «смерти» традиционной философии науки. Но если согласиться со столь радикальной установкой, то неизбежно возникнет вопрос: что придет или уже пришло на смену той, ушедшей философии науки? Существует точка зрения, утверждающая, что после смерти традиционной философии науки ее заменит когнитивная социология науки. Последняя будет начинаться с решения вопроса о консенсусе — согласии между учеными. И, конечно же, подвергнет принципиальной критике стандартную теорию науки. Стандартная концепция науки уверена, что наблюдения адекватны реальности и исключают эмоциональность, предрассудки и интеллектуальную предубежденность ученых. В этом она противоречит самым простым истинам психологии. Наблюдения не могут быть оторваны от наблюдателя и не могут быть пассивны. На деятельность ученых мощно влияют глубинные психологические факторы, оказывают давление механизмы социальной детерминации.                                                                    

Современная философия науки выступает в качестве недостающего звена между естественнонаучным и гуманитарным знанием и пытается понять место науки в современной цивилизации в ее многообразных отношениях к этике, политике, религии. Тем самым философия науки выполняет и общекультурную функцию, ее позволяя ученым стать невеждами при узкопрофессиональном подходе к явлениям и процессам. Она призывает обращать внимание на философский план любой проблемы, а следовательно, на отношение мысли к действительности во всей его полноте и многоаспектности. Стимулируя сам интерес к науке, философия науки предстает как развернутая диаграмма воззрений на проблему целостности научного знания и его динамики, развития.

Глава I

Наука в культуре современной цивилизации

§1. О многообразии форм знания. Научное и вненаучное знание

Познание не ограничено сферой науки, знание в той или иной своей форме существует и за пределами науки. Появление научного знания не упразднило и не сделало бесполезными другие формы знания. Каждой форме общественного сознания: науке, философии, мифологии, политике, религии и т. д. соответствуют специфические формы знания. Различают также формы знания, имеющие понятийную, символическую или художественно-образную основу. В отличие от всех многообразных форм звания научное познание—это процесс получения объективного, истинного знания, направленного на отражение закономерностей действительности. Научное познание имеет троякую задачу и связано с описанием, объяснением н предсказанием процессов и явлений действительности.

Когда разграничивают научное, основанное на рациональности, и вненаучное знание, то важно понять, что последнее не является чьей-то выдумкой или фикцией. Оно производится в определенных интеллектуальных сообществах, в соответствии с другими (отличными от рационалистических) нормами, эталонами, имеет собственные источники и понятийные средства. Очевидно, что многие формы вненаучного звания старше знания, признаваемого в качестве научного, например, астрология старше астрономии, алхимия старше химии. В история культуры многообразные

17

формы знания, отличающиеся от классического научного образца и стандарта, отнесены к ведомству вненаучного знания. Выделяют следующие формы вненаучного знания:

паранаучное как несовместимое с имеющимся гносеологическим стандартом. Широкий класс паранаучного (пара от греч. — около, при) знания включает в себя учения или размышления о феноменах, объяснение которых не является убедительным с точки зрения критериев научности;

лженаучное как сознательно эксплуатирующее домыслы и предрассудки. Лженаучное знание часто представляет науку как дело аутсайдеров. Иногда его связывают с патологической деятельностью психики творца, которого в обиходе величают «маньяком», «сумасшедшим». В качестве симптомов лженауки выделяют малограмотный пафос, принципиальную нетерпимость к опровергающим доводам, а также претенциозность. Лженаучное знание очень чувствительно к злобе дня, сенсации. Его особенностью является то, что оно не может быть объединено парадигмой, не может обладать систематичностью, универсальностью. Лженаучные знания пятнами и вкраплениями сосуществуют с научными званиями. Считается, что лженаучное обнаруживает себя и развивается через квазинаучное;

квазинаучное знание ищет себе сторонников и приверженцев, опираясь на методы насилия и принуждения. Оно, как правило, расцветает в условиях строго иерархированной науки, где невозможна критика власть предержащих, где жестко проявлен идеологический режим. В истории нашей страны периоды «триумфа квазинауки» хорошо известны: лысенковщина, фиксизм как квазинаука в советской геологии 50-х гг., шельмование кибернетики и т.п.;

антинаучное знание как утопичное и сознательно искажающее представления о действительности. Приставка «анти» обращает внимание на то, что предмет и способы исследования противоположны науке. Это как бы подход с «противоположным знаком». С ним связывают извечную потребность в обнаружении общего легко доступного «лекарства от всех болезней». Особый интерес и тяга к антинауке возникает в периоды социальной нестабильности. Но хотя данный феиомеи достаточно опасен, прин-ципиального избавления от антинауки произойти не может;

18

псевдонаучное знание представляет собой интеллектуальную активность, спекулирующую на совокупности популярных теорий, например, истории о древних астронавтах, о снежном человеке, о чудовище из озера Лох-Несс.

Еще на ранних этапах человеческой истории существовало обыденно-практическое знание, доставлявшее элементарные сведения о природе и окружающей действительности. Его основой был опыт повседневной жизни, имеющий, однако, разрозненный, несистематический характер, представляющий собой простой набор сведений. Люди, как правило, располагают большим объемом обыденного знания, которое производится повседневно и является исходным пластом всякого познания. Иногда аксиомы здравомыслия противоречат научным положениям, препятствуют развитию наука, вживаются в человеческое сознание так крепко, что становятся предрассудками и сдерживающими прогресс преградами. Иногда, напротив, наука длинным и трудным путем доказательств и опровержений приходит к формулировке тех положений, которые давно утвердили себя в среде обыденного знания.

Обыденное знание включает в себя и здравый смысл, и приметы, и назидания, в рецепты, и личный опыт, и традиции. Оно хотя и фиксирует истину, но делает это не систематично и бездоказательно. Его особенностью является то, что оно используется человеком практически неосознанно и в своем применении не требует предварительных систем доказательств. Иногда знание повседневного опыта даже перескакивает ступень артикуляций, а просто и молчаливо руководит действиями субъекта.

Другая его особенность — принципиально бесписьменный характер. Те пословицы и поговорки, которыми располагает фольклор каждой этнической общности, лишь фиксируют этот факт, но никак не прописывают теорию обыденного звания. Заметим, что ученый, используя узкоспециализированный арсенал научных понятий и теорий для данной конкретной сферы действительности, всегда внедрен также и в сферу неспециализированного повседневного опыта, имеющего общечеловеческий характер. Ибо ученый, оставаясь ученым, не перестает быть просто человеком. Иногда обыденное знание определяют посредством указания на общие представления здравого смысла или неспециализированный повседневный опыт, который обеспечивает предварительное ориентировочное восприятие в понимание мира.

19

К исторически первым формам человеческого знания относят игровое познание, которое строится на основе условно принимаемых правил и целей. Оно дает возможность возвыситься над повседневным бытием, не заботиться о практической выгоде и вести себя в соответствии со свободно принятыми игровыми нормами. В игровом познании возможно сокрытие истины, обман партнера. Оно носит обучающе-развивающий характер, выявляет качества и возможности человека, позволяет раздвинуть психологические границы общения.

Особую разновидность знания, являющегося достоянием отдельной личности, представляет личностное знание. Оно ставится в зависимость от способностей того или иного субъекта и от особенностей его интеллектуальной познавательной деятельности. Коллективное знание общезначимо или надличностно и предполагает наличие необходимой в общей для всех системы понятий, способов, приемов и правил построения знания. Личностное знание, в котором человек проявляет свою индивидуальность и творческие способности, признается необходимой и реально существующей компонентой знания. Оно подчеркивает тот очевидный факт, что науку делают люда в что искусству или познавательной деятельности нельзя научиться по учебнику, оно достигается лишь в общении с мастером.

Особую форму вненаучного и внерационального знания представляет собой так называемая народная наука, которая в настоящее время «ала делом отдельных групп или отдельных субъектов: знахарей, экстрасенсов, а ранее шаманов, жрецов, старейшин рода. При своем возникновении народная наука обнаруживала себя как феномен коллективного сознания и выступала как этнонаука. В эпоху доминирования классической науки она потеряла статус интерсубъективности и прочно расположилась на периферии, вдали от центра официальных экспериментальных и теоретических изысканий. Как правило, народная наука существует и транслируется в бесписьменной форме от наставника к ученику. Иногда можно выделить ее конденсат в виде заветов, примет, наставлений, ритуалов и пр. Несмотря на то, что в народной науке видят ее огромную проницательность, ее час-тенько обвиняют в необоснованных притязаниях на обладание

20

Примечательно, что феномен народной науки представляет предмет специального изучения для этнологов, которые и называют таковую «этнонаукой», сохраняющей в этнических обрядах и ритуалах формы социальной памяти. Очень часто деформация пространственно-временных условий существования этноса приводят к исчезновению народных наук, которые обычно не восстанавливаются. Они жестко связаны с передающимся от поколения к поколению рецептурным и рутинным, неписаным знанием знахарей, целителей, ворожей и пр. Принципиальная модификация мировоззрения блокирует весь рецептурно-рутинный комплекс сведений, наполняющих народную науку. От ее развитой формы в распоряжении последующих поколений в этом случае могут остаться лишь какие-либо реликтовые ее следы. Прав М. Полани, отмечая, что искусство, которое не практикуется в течение жизни одного поколения, остается безвозвратно утраченным. Этому можно привести сотни примеров; подобные потери, как правило, невосполнимы.

В картине мира, предлагаемой народной наукой, большое значение имеет круговорот могущественных стихий бытия. Природа выступает как «дом человека», человек, в свою очередь, как органичная его частичка, через которую постоянно проходят силовые линии мирового круговорота. Считается, что народные науки обращены, с одной стороны, к самым элементарным и с другой — к самым жизненно важным сферам человеческой деятельности, как-то: здоровье, земледелие, скотоводство, строительство.

Поскольку разномастная совокупность внерационального знания не поддается строгой и исчерпывающей классификации, можно встретиться с выделением следующих трех видов познавательных технологий: паранормальное знание, псевдонаука и девиантная наука. Причем фиксируется некая эволюция от паранормального знания к разряду более респектабельной псевдонауки и от нее к девиантному знанию. Это косвенным образом свидетельствует о развитии вненаучного знания.

Широкий класс паранормального знания включает в себя учения о тайных природных и психических силах и отношениях, скрывающихся за обычными явлениями. Самыми яркими представителями паранормального знания считаются мистика и спиритизм. Для описания способов получения информации, выходящий за рамки науки, кроме термина «паранормальность» используется

21

термин «внечувственное восприятие» — ВЧВ или «парачувствительность», «пси-феномены». Оно предполагает возможность получать информацию или оказывать влияние, не прибегая к непосредственным физическим способам. Наука пока еще не может объяснить задействованные в данном случае механизмы, как не может и игнорировать подобные феномены. Различают экстрасенсорное восприятие (ЭСВ) и психокинез. ЭСВ разделяется на телепатию и ясновидение. Телепатия предполагает обмен информацией между двумя и более особями паранормальными способами. Ясновидение означает способность получать информацию по некоторому неодушевленному предмету (ткань, кошелек, фотография и т.п.). Психокинез — это способность воздействовать на внешние системы, находящиеся вне сферы нашей моторной деятельности, перемещать предметы нефизическим способом.

Заслуживает внимания то, что в настоящее время исследования паранормальных эффектов ставятся на конвейер науки, которая после серий различных экспериментов приходит к следующим выводам:

1) с помощью ЭСВ можно получить значимую информацию;

2) расстояние, разделяющее испытуемого и воспринимаемый объект, не влияет на точность восприятия;

3) использование электромагнитных экранов не снижает качества и точности получаемой информации, и под сомнение может быть поставлена существовавшая ранее гипотеза об электромагнитных каналах ЭСВ. Можно предполагать наличие какого-то другого, например, психофизического канала, природа которого не ясна.

Вместе с тем сфера паранормального знания имеет особенности, которые противоречат сугубо научному подходу:

• во-первых, результаты парапсихическнх исследований и экспериментов, как правило, не воспроизводимы повторно;

• во-вторых, их невозможно предсказать и прогнозировать. Современный философ науки К. Поппер достаточно высоко

ценил псевдонауку, отмечая, что наука может ошибаться, а псевдонаука «может случайно натолкнуться на истину». У него есть и другой значимый вывод: если некоторая теория оказывается ненаучной — это не значит, что она не важна.

Для псевдонаучного знания характерна сенсационность тем, признание тайн и загадок, «умелая обработка фактов». Ко всем

22

этим априорным условиям присоединяется свойство исследования через истолкование. Привлекается материал, который содержит высказывания, намеки или подтверждения высказанным взглядам и может быть истолкован в их пользу. По форме псевдонаука — это, прежде всего, рассказ или история о тех или иных событиях. Такой типичный для нее способ подачи материала называют «объяснением через сценарий». Другой отличительный признак — безошибочность. Бессмысленно надеяться на корректировку псевдонаучных взглядов, ибо критические аргументы никак не влияют на суть истолкования рассказанной истории.

Термин «девиантное» означает отклоняющуюся от принятых и устоявшихся стандартов познавательную деятельность. Причем сравнение происходит не с ориентацией на эталон и образец, а в сопоставлении с нормами, разделяемыми большинством членов научного сообщества. Отличительной особенностью девиантного знания является то, что им занимаются, как правило, люди, имеющие научную подготовку, но по тем или иным причинам выбирающие весьма расходящиеся с общепринятыми представлениями методы и объекты исследования. Представители девиантного знания работают, как правило, в одиночестве либо небольшими группами. Результаты их деятельности, равно как и само направление, обладают довольно-таки кратковременным периодом существования.

Иногда встречается термин анормальное знание, которые не означает ничего иного, кроме того, что способ получения знания либо само знание не соответствует тем нормам, которые считаются общепринятыми в науке на данном историческом этапе. Анормальное знание можно разделить на три типа.

• Первый тип возникает в результате расхождения регулятивов здравого смысла с установленными наукой нормами. Этот тип достаточно распространен и внедрен в реальную жизнедеятельность людей. Он не отталкивает своей аномальностью, а привлекает к себе внимание в ситуации, когда действующий индивид, имея профессиональное образование и специальные научные знания, фиксирует проблему расхождения норм обыденного мироотношения и научного (например, в воспитании, в ситуациях общения с младенцами и пр.).

• Второй тип возникает при сопоставлении норм одной парадигмы с нормами другой.

23

• Третий тип обнаруживается при объединении норм и идеалов из принципиально различных форм человеческой деятельности1.

Уже давно вненаучное знание не рассматривают только как заблуждение. И раз существуют многообразные его формы, следовательно, они отвечают какой-то изначально имеющейся в них потребности. Можно сказать, что вывод, который разделяется современно мыслящими учеными, понимающими всю ограниченность рационализма, сводится к следующему. Нельзя запрещать развитие вненаучных форм знания, как нельзя и культивировать сугубо и исключительно псевдонауку, нецелесообразно также отказывать в кредите доверия вызревшим в их недрах интересным идеям, какими бы сомнительными первоначально они ни казались. Даже если неожиданные аналогии, тайны и истории окажутся всего лишь «инофондом» идей, в нем очень остро нуждается как интеллектуальная элита, так и многочисленная армия ученых.

Достаточно часто звучит заявление, что традиционная наука, сделав ставку на рационализм, завела человечество в тупик, выход из которого может подсказать вненаучное знание. К вненаучным же дисциплинам относят те, практика которых опирается на внерациональные или иррациональные основания — на мистических обрядах и ритуалах, мифологических и религиозных представлениях. Интерес представляет позиция современных философов науки и, в частности, К. Фейерабенда, который уверен, что элементы нерационального имеют право на существование внутри самой науки.

Развитие подобной позиции можно связать и с именами Т. Роззака, и Дж. Холтона. Последний пришел к выводу, что в конце прошлого столетия в Европе возникло и стало шириться движение, провозгласившее банкротство науки. Оно включало в себя четыре наиболее одиозных течения ниспровергателей научного разума:

1. Течения в современной философии, утверждавшие, что статус науки не выше любого функционального мифа.

2. Малочисленную, но довольно влиятельную в культуре группу отчужденных маргинальных интеллектуалов, например А. Кестлера.

1 См: Дынич В. К., Емельяшевич М. А., Толкачев Е. А., Томильчик Л. М. Вненаучное знание и современный кризис научного мировоззрения // Вопросы философии. 1994. № 9.

24

3. Настроения научного сообщества, связанные стремлением отыскать соответствия между мышлением «Нового века» и восточным мистицизмом, найти выход из интеллектуального анархизма наших дней к «хрустально-чистой власти».

4. Радикальное крыло научного направления, склонного к высказываниям, принижающим значение научного знания, типа «сегодняшняя физика — это всего лишь примитивная модель подлинно физического»1.

Мнение о том, что именно научные знания обладают большей информационной емкостью, также оспаривается сторонниками подобной точки зрения. Наука может «знать меньше» по сравнению с многообразием вненаучного знания, так как все, что предлагает наука, должно выдержать жесткую проверку на достоверность фактов, гипотез и объяснений. Не выдерживающее эту проверку знание отбрасывается, и даже потенциально истинная информация может оказаться за пределами науки.

Иногда вненаучное знание именует себя как «Его величество» иной способ истинного познания. И поскольку интерес к многообразию его форм в последние годы повсеместно и значительно возрос, а престиж профессии инженера и ученого значительно снизился, то напряжение, связанное с тенденцией размыва науки, возросло.

На особое отношение претендует религиозное знание, которое базируется на вере и устремляется за пределы рационального в сферу постижения сверхъестественного. Религиозное знание, являясь одним из наиболее ранних форм знания, заключает в себе механизмы регулирования и регламентирования жизни общества. Его атрибутами являются храм, икона, тексты Священного писания, молитвы, многообразная религиозная символика. Вера — это не только основное понятие религии, но и важнейший компонент внутреннего духовного мира человека, психический акт и элемент познавательной деятельности.

Вера в отличие от знания есть сознательное признание чего-либо истинным на основании преобладания субъективной значимости. Основанное на вере религиозное знание обнаруживает себя в непосредственном, не требующем доказательств принятии тех

1 Холтон Дж. Что такое антинаука // Вопросы философии. 1992. № 2.

25

или иных положений, норм, истин. Как психологический акт вера проявляется в состоянии убежденности, связана с чувством одобрения или неодобрения. Как внутреннее духовное состояние она требует от человека соблюдения тех принципов и моральных предписаний, в которые он верит, например, в справедливость, в нравственную чистоту, в мировой порядок, в добро.

Понятие веры может полностью совпадать с понятием религии и выступать как религиозная вера, противоположная рациональному знанию. Поэтому соотношение знания (разума) и веры не может быть решено в пользу одной или другой компоненты. Как знание не может заменить веру, так и вера не может заменить знание. Нельзя верой решить проблемы физики, химии, экономики. Однако вера как доинтеллектуальный акт, досозна-тельная связь субъекта с миром предшествовала появлению знания. Она была связана не с понятиями, логикой и разумом, а с чувственно-образным фантастическим восприятием мира. Религиозное знание предполагает не доказательство, а откровение и основывается на авторитете догматов. Откровение трактуется как дар и как результат напряженного самоуглубления и постижения истины.

§2. Научное знание как система, его особенности и структура

Наука это форма духовной деятельности людей, направленная на производство знаний о природе, обществе и о самом познании, имеющая непосредственной целью постижение истины и открытие объективных законов на основе обобщения реальных фактов в их взаимосвязи, для того чтобы предвидеть тенденции развития действительности и способствовать ее изменению.

Наука — это и творческая деятельность по получению нового знания, и результат этой деятельности: совокупность знаний (преимущественно в понятийной форме), приведенных в целостную систему на основе определенных принципов, и процесс их воспроизводства. Собрание, сумма разрозненных, хаотических сведений не есть научное знание. Как и другие формы познания, наука есть социокультурная деятельность, а не только «чистое знание».

26

Таким образом, основные стороны бытия науки — это, во-первых, сложный, противоречивый процесс получения нового знания; во-вторых — результат этого процесса, т. е. объединение полученных знаний в целостную, развивающуюся органическую систему (а не простое их суммирование); в-третьих — социальный институт со всей своей инфраструктурой: организация науки, научные учреждения и т. п.; этос (нравственность) науки, профессиональные объединения ученых, ресурсы, финансы, научное оборудование, система научной информации, различного рода коммуникации ученых и т. п.; в-четвертых — особая область человеческой деятельности и важнейший элемент (сторона) культуры.

Рассмотрим основные особенности научного познания, или критерии научности, которые отличают ее от других форм познания (искусства, обыденного познания, религиозного постижения мира и др.).

1.  Его основная задача — обнаружение объективных законов действительности — природных, социальных (общественных), законов самого познания, мышления и др. Отсюда ориентация исследования главным образом на общие, существенные свойства предмета, его необходимые характеристики и их выражение в системе абстракции, в форме идеализированных объектов. Если этого нет, то нет и науки, ибо само понятие научности предполагает открытие законов, углубление в сущность изучаемых явлений. Это основной признак науки, главная ее особенность.

2. На основе знания законов функционирования и развития исследуемых объектов наука осуществляет предвидение будущего с целью дальнейшего практического освоения действительности. Нацеленность науки на изучение не только объектов, преобразуемых в сегодняшней практике, но и тех, которые могут стать предметом практического освоения в будущем, является важной отличительной чертой научного познания.

Предвидение будущего — это, во-первых, такая категория, которая объединяет любые способы получения и использования информации о будущем, в отличие от прошлого и настоящего, и которая конкретизируется в понятиях «прогноз», «план», «программа», «проект» и др. Во-вторых, под будущим понимается главным образом то, что должно еще произойти, появиться, а не только то, что уже реально существует, но еще не открыто, не стало известным.

Предвидение будущего — третье звено в цепи логической операции, два предшествующих звена которой составляют анализ настоящего и исследование прошлого. Точность и достоверность предвидения и определяются прежде всего тем, насколько глубоко и всесторонне изучены как предшествующее и современное состояния предмета исследования, так и закономерности его изменения. Без знания этих двух важнейших моментов в их единстве невозможно и само научное предвидение как таковое.

Хотя «механизм» превращения прошлого в настоящее и настоящего в будущее в принципе одинаков (оно, в частности, неосуществимо без определенных предпосылок и известной степени их зрелости, развитости), однако, с точки зрения познающего эти процессы мышления, здесь имеется существенное различие. Последнее заключается в том, что если в первом случае познание имеет дело с тем, что уже было и прошло, то во втором — с тем, чего еще не было и что может только произойти. Первый путь — это реконструкция прошлого по его «обломкам» в настоящем, второй путь — конструирование будущего по его «зародышам» в настоящем, так как будущее вырастает не откуда-нибудь, а именно из настоящего.

Теоретический, строго научный анализ действительности исходит из того, что в процессе развития одна конкретно-историческая система взаимодействия —. настоящее превращается в другую систему исторической конкретности — в будущее и те элементы, которые в первой системе были единичными, подчиненными, но соответствовали общей основной тенденции развития, во второй системе становятся всеобщими, определяющими «лицо» данной системы.

Таким образом, научное предвидение в своей сущности сводится к тому, чтобы мысленно, в самом общем виде, в соответствии с выявленными законами, сконструировать «модель» будущего по тем его единичным фрагментам («кусочкам», предпосылкам и т. п.), которые существуют сегодня. А для этого нужно уметь найти эти фрагменты и выделить их из огромного числа других единичностей, затемняющих, скрывающих те «ростки», которые станут впоследствии элементами будущей конкретно-исторической целостности. Наука, тем самым, «постоянно выходит за рамки предметных структур наличных видов и способов практического освоения мира и открывает человечеству новые предметные меры его возможной будущей деятельности»1.

Когда осуществляется предвидение событий, еще не имеющих места в действительности, то на основе уже известных законов и теорий происходит экстраполяция на будущее процессов настоящего и прошлого. Однако это не означает фатальной предопределенности, ибо при данной экстраполяции учитываются допустимые пределы, в рамках которых можно проецировать в будущее закономерности, выявленные в настоящем, возможность изменения данных пределов и данных тенденций и т. д.

Любое научное предвидение, каким бы точным оно ни было, всегда неизбежно ограничено, имеет свои пределы, за которыми оно превращается в утопию, в пустую беспочвенную фантазию. В науке очень важно знать также и то, чего принципиально быть (появиться в будущем) никогда, ни при каких условиях не может. По мере развития практики и самого познания предвидение становится все более точным и достоверным, одни его элементы не подтверждаются и отбрасываются, другие — находят свою реализацию, предвидение в целом развивается, конкретизируется, наполняется новым, более глубоким содержанием.

3. Существенным признаком научного познания является его системность, т. е. совокупность знаний, приведенных в порядок на основании определенных теоретических принципов, которые и объединяют отдельные знания в целостную органическую систему. Собрание разрозненных знаний (а тем более их механический агрегат, «суммативное целое»), не объединенных в систему, еще не образует науки. Знания превращаются в научные, когда целенаправленное собирание фактов, их описание и обобщение доводятся до уровня их включения в систему понятий, в состав теории.

4. Для науки характерна постоянная методологическая рефлексия. Это означает, что в ней изучение объектов, выявление их специфики, свойств и связей всегда сопровождается — в той или иной мере — осознанием методов и приемов, посредством которых исследуются данные объекты. При этом следует иметь в виду, что хотя наука в сущности своей рациональна, но вней всегда присутствует иррациональная компонента, в том числе и в ее методологии (что особенно характерно для гуманитарных наук). Это и понятно: ведь ученый — это человек со всеми своими достоинствами и недостатками, пристрастиями и интересами и т. п. Поэтому-то и невозможно его деятельность выразить только при помощи чисто рациональных принципов и приемов, он, как и любой человек, не вмещается полностью в их рамки.

5. Непосредственная цель и высшая ценность научного познания — объективная истина, постигаемая преимущественно рациональными средствами и методами, но, разумеется, не без участия живого созерцания и внерациональных средств. Отсюда характерная черта научного познания — объективность, устранение не присущих предмету исследования субъективистских моментов для реализации «чистоты» его рассмотрения. Вместе с тем надо иметь в виду, что активность субъекта — важнейшее условие и предпосылка научного познания. Последнее неосуществимо без конструктивно-критического и самокритического отношения субъекта к действительности и к самому себе, исключающего косность, догматизм, апологетику, субъективизм.

Постоянная ориентация на истину, признание ее самоценности, непрерывные ее поиски в трудных и сложных условиях — существенная характеристика научного познания, отличающая его от других форм познавательной деятельности. Научная истина, по словам В. И. Вернадского, более важная часть науки, чем гипотезы и теории (которые преходящи), поскольку научная истина «переживает века и тысячелетия».

6. Научное познание есть сложный, противоречивый процесс производства и воспроизводства новых знаний, образующих целостную развивающуюся систему понятий, теорий, гипотез, законов и других идеальных форм, закрепленных в языке — естественном или (что более характерно) искусственном: математическая символика, химические формулы и т. п. Выработка специализированного (и прежде всего — искусственного) научного языка — важнейшее условие успешной работы в науке.

Научное знание не просто фиксирует свои элементы в языке, но непрерывно воспроизводит их на своей собственной основе, формирует их в соответствии со своими нормами и принципами. Процесс непрерывного самообновления наукой своего концептуального арсенала — важный показатель (критерий) научности.

7. В процессе научного познания применяются такие специфические материальные средства, как приборы, инструменты, другое так называемое «научное оборудование», зачастую очень сложное и дорогостоящее (синхрофазотроны, радиотелескопы, ракетно-космическая техника и т. д.). Кроме того, для науки в большей мере, чем для других форм познания, характерно использование для исследования своих объектов и самой себя таких идеальных (духовных) средств и методов, как современная логика, математические методы, диалектика, системный, кибернетический, синергетический и другие приемы и методы (см. об этом ниже). Широкое применение экспериментальных средств и систематическая работа с идеализированными объектами — характерные черты развитой науки.

8. Научному познанию присущи строгая доказательность, обоснованность полученных результатов, достоверность выводов. Знание для науки есть доказательное знание. Иначе говоря, знание (если оно претендует на статус научного) должно быть подтверждено фактами и аргументами. Вместе с тем в науке немало гипотез, догадок, предположений, вероятностных суждений и т. п. Вот почему тут важнейшее значение имеет логико-методологическая подготовка исследователей, их философская культура, постоянное совершенствование своего мышления, умение правильно применять его законы и принципы.

9. Опытная проверяемость и возможность многократного воспроизведения результатов (другими исследователями, в разных странах и т. д.). Если этот критерий «не работает», то нет и науки как таковой.

В современной методологии выделяют различные уровни критериев научности, относя к ним — кроме названных — такие, как формальная непротиворечивость знания, открытость для критики, свобода от предвзятости, строгость и т. д. В других формах познания рассмотренные критерии могут иметь место (в разной мере), но там они не являются определяющими.

Интересные и оригинальные идеи об отличиях научного мышления от других духовных «исканий человечества» развивал В. И. Вернадский. Он, в частности, считал, что только в истории научных идей четко и ясно проявляется прогресс, чего нет в других сторонах культурной жизни (в искусстве, литературе, музыке) и даже в истории человечества, которую «едва ли можно принимать за нечто единое и целое». По мнению русского мыслителя, характерными особенностями исторического процесса научного творчества являются, во-первых, единство процесса развития научной мысли; во-вторых, общеобязательность научных результатов; в-третьих, большая и своеобразная независимость науки (по сравнению с другими духовными образованиями — философией, религией, искусством и др.) от исторической обстановки; в-четвертых, очень глубокое (подобно религии), но совершенно своеобразное влияние научного познания на понимание человеком смысла и цели своего существования; в-пятых, научное творчество является основным элементом «научной веры» (противоположной религиозной), которая является могущественным созидательным фактором в науке1.

Научное познание есть целостная развивающаяся система, имеющая довольно сложную структуру. Последняя выражает собой единство устойчивых взаимосвязей между элементами данной системы. Структура научного познания может быть представлена в различных ее срезах и соответственно — в совокупности специфических своих элементов.

Предварительно отметим, что в структуре всякого научного знания существуют элементы, не укладывающиеся в традиционное понятие научности: философские, религиозные, магические представления; интеллектуальные и сенсорные навыки, не поддающиеся вербализации и рефлексии; социально-психологические стереотипы, интересы и потребности; определенные конвенции, метафоры, противоречия и парадоксы; следы личных пристрастий и антипатий, привычек, ошибок и т. д. Имея в виду подобные элементы, В. И. Вернадский указывал, что «есть одно коренное явление, которое определяет научную мысль и отличает научные результаты и научные заключения ясно и просто от утверждений философии и религии, — это общеобязательность и бесспорность правильно сделанных научных выводов, научных утверждений, понятий, заключений»1. Этим наука отличается и от всякого другого знания и духовного проявления человечества. Рассматривая основную структуру научного знания, В. И. Вернадский считал, что «основной неоспоримый вечный остов науки» (т. е. ее твердое ядро) включает в себя следующие главные элементы (стороны):

1) Математические науки во всем их объеме.

2) Логические науки почти всецело.

3) Научные факты в их системе, классификации и сделанные из них эмпирические обобщения — научный аппарат, взятый в целом.

Все эти стороны научного знания — единой науки — находятся в бурном развитии, и область, ими охватываемая, все увеличивается»2. При этом, согласно Вернадскому, во-первых, новые науки всецело проникнуты этими элементами и создаются «в их всеоружии». Во-вторых, научный аппарат фактов и обобщений растет непрерывно в результате научной работы в геометрической прогрессии. В-третьих, живой, динамичный процесс такого бытия науки, связывающий прошлое с настоящим, стихийно отражается в среде жизни человечества, является все растущей геологической силой, превращающей биосферу в ноосферу — сферу разума.

С точки зрения взаимодействия объекта и субъекта научного познания, последнее включает в себя четыре необходимых компонента в их единстве:

а) Субъект науки — ключевой ее элемент: отдельный исследователь, научное сообщество, научный коллектив и т. п., в конечном счете — общество целом. Они-то, т. е. субъекты науки, и исследуют свойства, стороны и отношения объектов и их классов (материальных или духовных) в данных условиях и в определенное время. Научная деятельность требует специфической подготовки познающего субъекта, в ходе которой он осваивает предшествующий и современный ему концептуальный материал, сложившиеся средства и методы его постижения, делает их своим достоянием, учится грамотно им оперировать, усваивает определенную систему ценностных,мировоззренческих и нравственных ориентации и целевых установок, специфичных именно для научного познания.

б) Объект (предмет, предметная область), т. е. то, что именно изучает данная наука или научная дисциплина. Иначе говоря, это все то, на что направлена мысль исследователя, все, что может быть описано, воспринято, названо, выражено в мышлении и т.п. В широком смысле понятие «предмет», во-первых, обозначает некоторую ограниченную целостность, выделенную из мира объектов в процессе человеческой деятельности и познания; во-вторых, — объект (вещь) в совокупности своих сторон, свойств и отношений, противостоящий субъекту познания.

Понятие «предмет» может быть использовано для выражения системы законов, свойственных данному объекту (например, предмет диалектики — всеобщие законы развития). По мере развития знаний об объекте открываются новые его стороны и связи, которые становятся предметом познания. Различные науки об одном и том же объекте имеют различные предметы познания (например, анатомия изучает строение организма, физиология — функции его органов, медицина — болезни и т. п.). Предмет познания может быть материальным (атом, живые организмы, электромагнитное поле, галактика и др.) или идеальным (сам познавательный процесс, концепции, теории, понятия и т. п.). Тем самым в гносеологическом плане различие предмета и объекта относительно и состоит в том, что в предмет входят лишь главные, наиболее существенные (с точки зрения данного исследования) свойства и признаки объекта.

в) Система методов и приемов, характерных для данной науки или научной дисциплины и обусловленных своеобразием их предметов.

г) Свой специфический, именно для них язык — как естественный, так и особенно искусственный (знаки, символы, математические уравнения, химические формулы и т. п.).

При ином «срезе» научного познания в нем следует различать такие элементы его структуры: а) фактический материал, почерпнутый из эмпирического опыта; б) результаты первоначального концептуального его обобщения в понятиях и других абстракциях; в) основанные на фактах проблемы и научные предположения (гипотезы); г) «вырастающие» из них законы, принципы и теории, картины мира; д) философские установки (основания); е) социокультурные ценностные и мировоззренческие основы; ж) методы, идеалы и нормы научного познания, его эталоны, регулятивы и императивы; з) стиль мышления и некоторые другие элементы (например, внерациональные).

Идеалы и нормы научного познания — совокупность определенных концептуальных, ценностных, методологических и иных установок, свойственных науке на каждом конкретно-историческом этапе ее развития. Их основная функция — организация и регуляция процесса научного исследования, ориентация на более эффективные пути, способы и формы достижения истинных результатов. При переходе на новый этап научного исследования (например, от классической к неклассической науке) кардинально меняются его идеалы и нормы. Их характер определяется в первую очередь предметом познания, спецификой изучаемых объектов, а их содержание всегда формируется в конкретном социокультурном контексте.

Целостное единство норм и идеалов научного познания, господствующих на определенном этапе развития науки, выражает понятие «стиль мышления». Он выполняет в научном познании регулятивную функцию, носит многослойный, вариативный и ценностный характер. Выражая общепринятые стереотипы интеллектуальной деятельности, присущие данному этапу, стиль мышления всегда воплощается в определенной конкретно-исторической форме. Чаще всего различают классический, неклассический и постнеклассический (современный) стили научного мышления.

Понятие «философские основания науки» выражает философские идеи и принципы, которые содержатся в данной науке (научной дисциплине, концепции и т. п.) и дают самые общие ориентиры для познавательной деятельности. Философские основания науки наряду с функцией обоснования уже добытых знаний выполняют также эвристическую (участвуют в построении новых теорий) и методологическую функции. Являясь средством (орудием) приращения нового знания, они способствуют формированию новых методов научного исследования. Философские основания науки разнородны и историчны: при переходе от одного этапа развития науки к другому в ходе научных революций один их «набор»

35

сменяется другим, но определенная преемственность при этом сохраняется.

Научная картина мира —целостная система представлений об общих свойствах и закономерностях действительности, построенная в результате обобщения и синтеза фундаментальных научных понятий и принципов. В зависимости от основании деления различают общенаучную картину мира, которая включает представления о всей действительности (т. е. о природе, обществе и самом познании) и естественнонаучную картину мира. Последняя — в зависимости от предмета познания — может быть физической, астрономической, химической, биологической и т. п. В общенаучной картине мира определяющим элементом выступает картина мира той области научного знания, которая занимает лидирующее положение на конкретном этапе развития науки.

Каждая картина мира строится на основе определенных фундаментальных научных теорий и по мере развития практики и познания одни научные картины мира сменяются другими. Так, естественнонаучная (и прежде всего физическая) картина строилась сначала (с XVII в.) на базе классической механики, затем электродинамики, потом — квантовой механики и теории относительности (с начала XX в.), а сегодня — на основе синергетики.

Научные картины мира выполняют эвристическую роль в процессе построения фундаментальных научных теорий. Они тесно связаны с мировоззрением, являясь одним из важных питательных источников его формирования1.

Сложную и своеобразную структуру имеет социально-гуманитарное научное познание, по поводу которой (структуры) идут оживленные дискуссии как в отечественной, так и западной литературе2.

Наука в единстве всех своих аспектов изучается целым рядом особых дисциплин: историей науки, логикой науки, когнитологией, социологией науки, психологией научного творчества, науковедением и др. С середины XX в. активно начала формироваться особая область (сфера) философских изысканий, стремящаяся объединить все эти дисциплины в комплексное, системное, всестороннее исследование — философию науки.

1  См.: Степин В. С. Теоретическое знание. М., 2000. Гл. III.

2 Ом., например: Структура и уровни социологического знания: традиции и новые концепции // Социологические исследования. 2003. № 8.

36

§3. Наука и философия. Наука и искусство

Соотношение науки и философии

На вопрос «Что такое философия?» — можно услышать ответ: «Это наука всех наук». И он во многом удобен. Такой статус философии — быть наукой всех наук — внушает априорное к ней уважение. Ее царственное положение обращает в ее ведение все сферы человеческой мысли. Однако средневековый принцип гласит: «Незачем множить сущности без надобности», следовательно, если бы философия выступила в роли совокупного свода конкретных наук, то, растворясь в нем, оказалась бы излишней. Переносить на одно полотно достижения многообразных наук, создавая научную картину мира, — занятие трудоемкое. Однако в нем нет ни грана специфически философского. Философия как сжатая сумма знания обречена на жалкий жребий шекспировского короля Лира. Раздав дочерям все свое состояние, он, как известно, остался ни с чем и был выдворен на улицу. Так и у философии, в случае отождествления ее с наукой при отпочковании и дальнейшей дифференциации наук, не остается ни собственного предмета, ни собственной специфики, ни самостоятельной проблематики, о чем весьма громко заявляют позитивисты.

Совершенно очевидно, что никакая сфера человеческого духа, и философия в том числе, не может вобрать в себя всю совокупность специально-научных знаний о мироздании. Философ не может и не должен подменять собой работу медика, биолога, математика, физика и т. п. Философия не может быть наукой всех наук, т. е. стоять над частными дисциплинами, равно как она не может быть одной из частных наук в ряду прочих. Многолетний спор философии и науки о том, в чем больше нуждается общество — в философии или науке, какова их действительная взаимосвязь, породил множество точек зрения и интерпретаций этой проблемы. Каково же соотношение науки и философии?

• Специальные науки служат отдельным конкретным потребностям общества: технике, экономике, обучению, законодательству и пр. Они изучают свой специфический срез действительности, свой фрагмент бытия, ограничиваются отдельными частями мира. Согласно Гегелю, научное мышление погружено в конечный материал и ограничено рассудочным

37

постижением конечного. Философию же интересует мир в целом, она устремлена к целостному постижению универсума. Она задумывается о всеохватывающем единстве всего сущего, ищет ответ на вопрос: «Что есть сущее, поскольку оно есть». В этом смысле справедливо определение философии как науки «о первоначалах и первопричинах». • Частные науки обращены к явлениям, существующим объективно, т.е. вне человека, независимо ни от человека, ни от человечества. Свои выводы наука формулирует в теориях, законах и формулах, вынося за скобки личностное, эмоциональное отношение ученого к изучаемым явлениям и тем социальным последствиям, к которым может привести то или иное открытие. Фигура ученого, строй его мыслей и темперамент, характер исповеданий и жизненных предпочтений также не вызывает особого интереса. Закон тяготения, квадратные уравнения, система Менделеева, законы термодинамики объективны. Их действие реально и не зависит от мнений, настроений и личности ученого.

Мир в глазах философа — не просто статичный пласт реальности, но живое динамичное целое. Это многообразие взаимодействий, в котором переплетены причина и следствие, цикличность и спонтанность, упорядоченность и деструкция, силы добра и зла, гармонии и хаоса. Философствующий разум должен определить свое отношение к миру. Потому-то основной вопрос философии и формулируется как вопрос об отношении мышления к бытию (человека к миру). Принимая во внимание научные данные, она идет дальше, рассматривая вопрос о сущностном смысле и значимости процессов и явлений в контексте человеческого бытия.

• Ни один из узких специалистов в процессе непосредственной научно-исследовательской деятельности не задается вопросом, как возникла его дисциплина, в чем ее собственная специфика и отличие от прочих. Если эти проблемы затрагиваются, «узкий ученый» вступает в сферу истории и философии науки. Философия же всегда стремилась выяснить исходные предпосылки всякого знания, в том числе и собственно философского. Она направлена на выявление таких достоверных основ, которые могли бы служить точкой отсчета и критерием для понимания и оценки всего остального (отличия истины

38

от мнения, эмпирии от теории, свободы от произвола, насилия от власти). Предельные и пограничные вопросы, которыми отдельная познавательная область либо начинается, либо заканчивается, — излюбленная тема философских размышлений.

• Наука занимает приоритетное место как сфера деятельности, направленная на выработку и систематизацию строгих, обоснованных объективных знаний о действительности. Наука — это форма общественного сознания, направленная на предметное постижение мира, выявление закономерностей и получение нового знания. Цель науки всегда была связана с описанием, объяснением и предсказанием процессов и явлений действительности на основе открываемых ею законов. Философия основывается на теоретико-рефлексивном и духовно-практическом отношении субъекта к объекту. Она оказывает активное воздействие на бытие посредством формирования новых идеалов, норм и культурных ценностей. К ее основным, исторически сложившимся разделам относятся: онтология, гносеология, диалектика, логика, этика, эстетика, а также антропология, социальная философия, история философии, философия религии, методология, философия науки и пр. Главные тенденции развития философии связаны с осмыслением таких проблем, как мир и место в нем человека, судьбы современной цивилизации, единство и многообразие культур, природа человеческого познания, бытие и язык и др.

Специфика понятийного аппарата философии и науки

• Философия стремится найти предельные основания и регулятивы всякого сознательного отношения человека к действительности. Поэтому философское знание выступает не в виде логически упорядоченной схемы, а принимает вид развернутого обсуждения, детального формулирования всех трудностей анализа, критического сопоставления и оценки возможных путей решения поставленной проблемы. Отсюда известная сентенция: в философии важен не только достигнутый

39

результат, но и путь к этому результату. Ибо путь (т. е. процесс постижения последнего) и является специфическим способом обоснования результата.

Когда И. Ньютон восклицал: «Физика, бойся метафизики!» — он протестовал против того, что в философии, тем более умозрительной, невозможно найти один-единственный удовлетворяющий ответ на поставленный вопрос. И если наука реализует достаточно строгую форму организованности, то философия не может похвастаться подобной однозначностью. Она всякий раз сталкивается с выстраиванием множества вариантов обоснований и опровержений. В ней нет таких истин, которые не вызывали бы возражений. Знаменитое изречение: «подвергай все сомнению!», а также страстная неприязнь догматов — вот кредо философствующего разума.

• В науке по традиции принимается прогрессивное постепенное движение вперед, т. е. развитие на основе накопления уже полученных результатов (не будет же ученый заново открывать таблицу умножения или законы классической механики), что, конечно, не исключает научных революций. Здесь уместен образ копилки, в которой, словно монетки, скапливаются крупицы истинных знаний. Философия, напротив, не может довольствоваться заимствованием уже полученных результатов. Нельзя, скажем, удовлетвориться ответом на вопрос в смысле жизни, предложенным средневековыми мыслителями. Каждая эпоха будет по-своему ставить и решать этот вопрос. Специфика философии проявляется в том, что она применяет свой особый метод рефлексии — метод оборачивания на себя. Это челночное движение, предполагающее возвращение к исходным предпосылкам и обогащение новым содержанием. Для философии характерна переформулировка основных проблем на протяжении всей истории человеческой мысли. Условно это ее свойство может быть обозначено как обратимость или рефлексивность философии. • Наука опирается на факты, их экспериментальную проверку. Философия отстоит от сферы повседневности и уносится в мир интеллигибельных сущностей. Intelligibilis — умопостигаемый, обозначает существование объектов, постигаемых только умом и не доступных чувственному познанию. Вопросы «что есть красота, истина, добро, справедливость» выходят

40

за рамки эмпирических обобщений. Красота не есть тот или иной прекрасный цветок, кристалл, пейзаж или девушка. Философское понимание красоты ориентировано на постижение этого явления с точки зрения всеобщего. Оно выходит за пределы эмпирической данности, преодолевает их и «трансцендирует к сущностному определению». Популярно разъясняя специфику философии, выдающийся британский философ Бертран Рассел утверждал, что философия «является чем-то промежуточным между теологией и наукой. Подобно теологии, она состоит в спекуляциях по поводу предметов, относительно которых точное знание оказывалось до сих пор недостижимым; но подобно науке, она взывает скорее к человеческому разуму, чем к авторитету, будь то авторитет традиции или откровения»1. Философия, по его мнению, Ничейная Земля между наукой и теологией, открытая, однако, для атак с обеих сторон. На многие философские вопросы: «Что есть мудрость, добро, в чем смысл жизни?» — нельзя найти ответ в научной лаборатории. Не устраивают и версии богословов со ссылкой на акт творения и Священное писание. Неразрешимые вопросы с точки зрения науки и теологии оказываются уделом философии.

• В соотношении науки и философии очевидны различия в понятийном аппарате. Язык философии существенно отличается как от языка науки с его четкой фиксацией термина и предмета, так и от языка поэтического, в котором реальность лишь образно намечается, а также от языка обыденного, где предметность обозначается в рамках утилитарных потребностей. Философия, предполагая разговор о мире с точки зрения всеобщего, нуждается в таких языковых средствах, которые бы смогли отразить безмерность и бесконечность мироздания. Поэтому она создает свой собственный язык — язык категорий, предельно широких понятий, обладающих статусом всеобщности и необходимости. Они настолько широки, что не могут мыслиться составляющими других более широких понятий. Причина и следствие, необходимость и случайность, возможность и действительность и т. д. — примеры философских категорий.

1 Рассел Б. История западной философии: В 2 т. Новосибирск, 1994. Т. 1. С. 11.

41

• Если конкретно-научные дисциплины могут развиваться, не учитывая опыт других форм общественного сознания (физика, например, может благополучно прогрессировать без учета опыта истории искусства, а химия — невзирая на распространение религии, математика может выдвигать свои теории без учета норм нравственности, а биология не оглядываться на императивы правоведения), то в философии все обстоит иначе. В ней в качестве эмпирической базы и исходного пункта обобщенных представлений о мире принимается совокупный опыт духовного развития человечества, всех форм общественного сознания: науки, искусства, религии, политики, права, морали и пр.

Философия — не наука, однако в ней господствует понятий-ность, ориентация на объективность, идея причинности и стремление к обнаружению наиболее общих, часто повторяющихся связей и отношений, т. е. закономерностей. Философия — не искусство, хотя в ней образ — признанная гносеологическая категория, достойное место занимает чувственное познание, используются метафора и интуиция. Философия — не религия, хотя уносится в мир интеллигибельных сущностей, трансцендирует и часто имеет дело с чувственно-сверхчувственным материалом.

• В науке ценностно-человеческий аспект отнесен на второй план, хотя в современной науке (в том числе и в естествознании) его значение увеличивается («ценностно-целевые структуры»). В философии наряду с теоретико-познавательным аспектом особую значимость приобретают ценностные ориентации. Согласно тезису античного мыслителя Протагора «человек есть мера всех вещей», философия и по сей день выдвигает свои обоснования в ценностной шкале человеческих смыслов. Она пристально интересуется судьбой научных открытий и теми социальными последствиями, к которым они могут привести, утверждая в качестве абсолютной ценности человеческую жизнь. Личность творца, мыслителя и ученого не может быть безразлична в исследовательском процессе. В философском творчестве всегда происходит углубление человека в самого себя. Мыслитель стремится к более точному и адекватному определению своего места в мире. Это создает все новые и новые оттенки миросозерцания. Поэтому в философии каждая система авторизована, и при освоении философских знаний

42

достаточно значимой оказывается роль персоналий. Философия — это такой род интеллектуальной деятельности, который требует постоянного общения с великими умами прошлого и современности: Платоном, Аристотелем, Августином, Кантом, Гегелем, Хайдеггером, Соловьевым, Бердяевым и пр.

• В философии важен и ярко выражен национальный элемент. Есть русская философия, немецкая философия, английская, французская и, наконец, греческая философия. Однако нет ни русской, ни немецкой химии, физики, математики. Русский философ Н. И. Кареев начал свою статью с примечательным названием «О духе русской науки» следующими словами: «...каждая нация имеет право вносить в единую общечеловеческую науку свои идеи, но не имеет право всю науку сводить к одним этим целям...»1

О статусе научности философии

В многочисленных учебниках и учебных пособиях по так называемому диамату (диалектическому материализму), которыми так богата наша отечественная философская школа, философию определяли именно как науку о наиболее общих законах природы, общества и мышления. Причем законы мыслились как имеющие универсальный и всеобщий характер. Конкретизировались они с указанием на закон единства и борьбы противоположностей, взаимоперехода качественных и количественных изменений, закон отрицания. Однако смущало то обстоятельство, что эта наука о наиболее общих законах в свое время ожесточенно боролась с генетикой, кибернетикой, теорией относительности, наделяла их весьма бранными эпитетами. По отношению к кибернетике было сказано: «Продажная девка капитализма», а по отношению к микрофизике — что она свихнулась в идеализм, наделив электрон свободой воли. В таком контексте философию скорее можно было принять не за мать всех наук, а за злую мачеху. Тот, кто знаком с историей философии, с легкостью сделает вывод, что понимание философии как науки самым последовательным образом было сформулировано первым позитивистом Огюстом Контом. Частные науки (физика, химия, биология), по Конту,

1 Кареев Н. И. О духе русской науки // Русская идея. М., 1992. С. 172.

43

рисуют частные позитивные изображения окружающего нас мира, по необходимости друг с другом не связанные, а научное изображение мира в целом из разрозненных фрагментов обеспечивается научной (позитивной) философией.

Справедливости ради отметим, что уже по мысли Ф. Энгельса философия должна решительно отказаться от претензий на роль «науки наук». Научное мировоззрение «не нуждается больше ни в какой философии, стоящей над прочими науками. Как только перед каждой отдельной наукой ставится требование выяснить свое место во всеобщей связи вещей и знаний о вещах, какая-либо особая наука об этой всеобщей связи становится излишней. И тогда из всей прежней философии самостоятельное существование сохраняет еще учение о мышлении и его законах — формальная логика и диалектика. Все остальное входит в положительную науку о природе и истории»1.

Но если поднимать вопрос, насколько правомерно представление о философии как о науке (даже при оговорке, что это особая наука, наиболее общая, интересующаяся всем миром в целом, а не частная, рассматривающая какой-либо фрагмент действительности), необходимо выявление критериев научности (см. об этом предыдущий параграф). Однако последние вряд ли приемлемы для философии с ее обилием авторизованных концепций и стремлением к самовыражению в поиске всеобщего. В науке же господствует представление, что если разные ученые, исследующие одну и ту же проблему одинаковыми методами, получают идентичный результат, то он считается научным и принимается научным сообществом. Наука, претендующая на отражение мира в понятийной форме и с точки зрения закономерности, рассматривается как высший этап развития человеческого познания, свободный от предрассудков метод постижения истины, совокупность эмпирически достоверного, логически организованного и обоснованного знания.

Вместе с тем исторические параллели философии и науки достаточно очевидны. Философия и наука как «звенья единой цепи» в направленности человеческого интеллекта к постижению основ бытия, в сфере натурфилософии, космологии, онтологии совпадали друг с другом. По справедливому замечанию Ф. Франка, «один конец этой цепи касался основания — непосредственно познаваемых

1 Маркс К., Энгельс Ф. Соч. 2-е изд. Т. 20. С. 25.

44

наблюдений, другой, более высокий, соединялся с интеллигибельными принципами. Вся цепь от наблюдаемых фактов до интеллигибельных принципов называлась и наукой, и философией»1.

• «Три кита», на которых держится научное здание: это опыт, логика и критика. Знание рассматривается как результат познавательной деятельности. А с глаголом «знать» связывают наличие той или иной информации, либо совокупность навыков для выполнения той или иной деятельности. В этом смысле допустимо суждение: «Я знаю, как это делается». Научное знание претендует на адекватное отражение действительности и выступает от имени истины. О нем говорят как о способе приобщения субъекта к истине. В отличие от веры, которая есть сознательное признание чего-либо истинным на основании преобладания субъективной значимости, научное знание обладает объективностью и универсальностью и претендует на общезначимость.

Научное знание как форма сознательного поиска и познания истины — многообразно: оно и фундаментальное и прикладное, и экспериментальное и теоретическое. Однако все научные знания должны отвечать определенным стандартам. Во всем реальном массиве законов, теорий и концепций действует закон достаточного основания. Согласно ему ни одно положение не может считаться истинным, если оно не имеет достаточного основания. Этот закон достаточного основания является логическим критерием отличения знания от незнания. Другим критерием выступает предметно-практическая деятельность, которая переводит спор об истине в практическую плоскость.

•  Наука видит реальность как совокупность причинно обусловленных естественных событий и процессов, охватываемых закономерностью. Это не поле действия одухотворенных сил, претворяющих в действительности свою волю и желание, и в силу этого непредсказуемых. Наука ратует за естественный порядок, который может быть выражен законами естественных наук и математики.

Отвечает ли подобным критериям научности философия? Можно ли предположить, что философы различных направлений будут слово в слою повторять положения одной и той же

1 Франк Ф. Философия науки. М., 1960 С. 68.

45

теории, приходить к идентичным выводам и добиваться воспроизводимости суждений? Вряд ли. Философские теории нельзя проверить при помощи опыта или эксперимента, они исключительно зависимы от личности мыслителя, каждая философская система авторизована. Сам статус научности, который многие века оспаривала философия, предполагает ряд необходимых признаков. Помимо отмеченных выше, критериями отнесения той или иной области человеческого освоения мира к сфере науки считаются:

— определение предмета исследования;

—выработка понятийного и категориального аппарата, этому предмету соответствующего;

—установление фундаментальных законов, присущих данному предмету;

— открытие принципов или создание теории, позволяющей объяснить множество фактов.

Исходя из указанных критериев, может ли быть философия причислена к ордену наук? Предмет ее — «всеобщее в системе человек — мир», т. е. обоснование факта самой закономерности бытия. Вспоминая аристотелевскую постановку данной проблемы, следует заметить, что Аристотель прямо утверждал, чтоесть некоторая наука, которая рассматривает сущее как таковое и то, что ему присуще само по себе. Предметом ее исследования являются начала и причины всего сущего и «ни одна из других наук не исследует общую природу сущего так такового». Мы не будем вслед за Аристотелем объявлять философию «божественной наукой» и заметим, что те закономерности сущего, которые пытается усмотреть и вычленить философия, не имеют жестко детерминистического характера, на манер лапласовского детерминизма. Современная философия видит в сущем его стихийно-спонтанное становление, которое может охватываться вероятностным и статистическим знанием.

Если проводить соотношение науки и философии, имея в виду структурные параметры, в частности то, что наука включает в свою структуру субъект, объект, средства познания и прогнозируемые результаты, то справедливости ради следует отметить, такая структурность не чужда и философии. Правда, философия обогащает данную структурность возможностью выхода за пределы частных проблем, ее субъект одарен возможностью устремляться в сферы трансцендентного. Средства, представленные категориальным аппаратом философии, отвечают самым высоким требованиям, так как обладают статусом всеобщности и необходимости. Результат включает в себя рефлексию не только по поводу достижения отдельной, частной проблемы, но одновременно и по поводу его значимости для общества, ценности для человечества.

О практической значимости философии и науки

Разделение науки и философии частенько проводится со ссылкой на то, что наука обладает непосредственной практической значимостью, а философия нет. На основании открытий и достижений науки можно построить технические сооружения, интеллигибельные же рассуждения философии не имеют практического значения, бесполезны, а иногда и просто вредны. Любопытны в связи с этим возражения знаменитого философа науки Ф. Франка, который был уверен, что философия тоже служит практической цели. В то время как наука использует свои методы для достижения собственных целей, философия дает методы, с помощью которых можно направлять поведение людей. Таким образом, она достигает своей практической цели даже еще более прямым путем, чем собственно наука.

Многие мыслители объясняли эту парадоксальную ситуацию тем, что философия требовала близкого соответствия между всеобщими принципами и опытом здравого смысла. Наука же, чем больше углублялась в теоретическую область, тем более удаленными от обыденного понимания становились формулировки ее общих принципов. (Вспомним дефиниции законов классической механики, или основоположения коперниканской, гелиоцентрической системы, второе начало термодинамики.) Считается, что успех в науке в большей степени зависит от удачной замены мира обыденного здравого смысла миром абстрактных символов и что для ученого чрезвычайно важно отказаться от естественного языка и уметь пользоваться искусственным языком абстрактных символов, увязывая их в единую систему Таким образом, философия, несмотря на свою якобы пугающую трансцендентность, тем не менее оказывается ближе к обыденному здравому смыслу, чем наука.

Стремление к демаркации (разделению) науки и философии вызвано желанием освободить науку от экзистенциальных предпосылок, идеологических наслоений и иррациональных мифообразований, квазинаучных явлений. Вместе с тем уязвимым пунктом одного из критериев науки — опытной проверки (верификации) — является ее несамодостаточность. Это означает, что могут быть встречены такие факты, которые не подтверждают данную теорию. Опытное знание не может привести к полной уверенности, что теория истинна, ведь достаточно одного факта, противоречащего теории, чтобы стало возможным ее опровержение, фальсификация. Традиционный пример: биологи были уверены, что все лебеди белые, пока в Австралии не обнаружили черных лебедей. Принимая во внимание эти обстоятельства, британский философ и социолог Карл Поппер предложил в качестве критерия научности принципиальную опровержимость теории, ее фальсификацию. Иначе говоря, в отличие от научных теорий, в принципе фальсифицируемых, ненаучные построения, и в частности философия, в принципе неопровержимы. Их не может опровергнуть какой-либо факт, ибо они по большей части с фактами дела не имеют.

В ответ на потребность осмыслить статус и социокультурные функции науки в условиях НТР возникла новая молодая дисциплина — философия науки, которая заявила о себе лишь во второй половине XX в. Однако образ науки всегда приковывал к себе внимание философов и методологов. Воссоздавая его, философия веком раньше оформилась в специальное направление, получившее название «философия науки». У истоков возникновения философии науки как направления современной философии стоят имена Дж. С. Милля, О. Конта, Г. Спенсера, Дж. Гершеля. Концепция «позитивной (положительной) науки» была представлена достаточно обширной деятельностью французского мыслителя Огюста Конта (1798—1857). По его мнению, наука— это «здоровая философия», которая коренным образом изгоняет все вопросы, неизбежно неразрешимые. В другой («метафизической») философии нужды нет. Позитивная философия одновременно и есть универсальный метод.

48

Философия и наука совпадают и отождествляются в пределах позитивизма при условии, что философия отказывается от имиджа метафизики (с ее стремлением к смысложизненным проблемам) и остается только поглощенной контекстом физики — науки о природе. Подобная постановка проблемы, как и само возникновение позитивизма, не являлась беспочвенной. Быстрые успехи в самых различных областях знания: математики, химии, биологии и, конечно же, физики — делали науку все более и более популярной, приковывающей к себе всеобщее внимание. Научные методы завладевали умами людей, престиж ученых повышался, наука превращалась в социальный институт, отстаивая свою автономию и специфические принципы научного исследования. О самой философии пытались говорить как о сугубо строгой системе, и только в этом качестве она пользовалась успехом.

В своем главном произведении «Курс позитивной философии» в шести томах, изданных в 1830—1846 гг., О. Конт широко пропагандировал идею научности применительно ко всем проявлениям природы и общества. И до сих пор его имя вспоминается в связи с созданной им оригинальной классификацией наук и с самой идеей социологии как науки об общественной жизни, включающей в себя социальную статику и социальную динамику.

О перспективах взаимоотношений философии и науки

Взаимоотношения философии и науки являются острой проблемой для современных философов. Так, американский мыслитель Ричард Рорти утверждает, что «постепенное отделение философии от науки стало возможным благодаря представлению, согласно которому «сердцем» философии служит теория познания, теория, отличная от наук, потому что она была их основанием»1. Такая точка зрения подкрепляется ссылкой на историко-философскую традицию, где еще от Канта пробивала себе дорогу установка заменить философию базисной дисциплиной по основаниям. Это согласовывалось хотя бы с тем неявным допущением, что философия всегда лежала в основаниях или в основе чего-либо, а точнее, всего мироздания. Поставленный Кантом вопрос, как возможно наше познание, стал программой для всего последующего

1 Рорти Р. Философия и зеркало природы. Новосибирск, 1997. С. 97.

49

рационализма — доминирующего мироощущения европейской философии. В этом вопросе содержался и императив, что за дело должны браться профессионалы, а не любители метафизики, и неявное признание того, что от конструирования систем и системок необходимо перейти к кропотливому сортированию данных, к отделению объективного содержания от субъективных напластований.

Ретроспективно просматриваются следующие корреляции взаимоотношений философии и науки:

— наука отпочковалась от философии;

— философия, стремясь сохранить за собой функции «трибунала» чистого разума, сделала центральной теоретико-познавательную проблематику, проработав ее во всех направлениях;

—современная философия мыслится как вышедшая из эпистемологии.

Наука не содержит внутри себя критериев социальной значимости своих результатов. А это означает, что ее достижения могут применяться как во благо, так и во вред человечеству. Получается, что размышлениями по поводу негативных последствий применения достижений науки обременена не сама наука, а философия. Именно она должна сделать предметом своего анализа рассмотрение науки как совокупного целого в ее антропологическом измерении, нести ответственность за науку перед человечеством. Выходит, что достижения науки не могут функционировать в обществе спонтанно и бесконтрольно. Функции контроля, упирающиеся в необходимость предотвращения негативных последствий наисовременнейших научных и технологических разработок, связанных с угрозой существования самого рода Homo sapiens, вынесены во вне, за пределы корпуса науки. Однако осуществление их находится не только во власти философов и философии. Необходима поддержка институтов государства, права, идеологии, общественного мнения. Положительная задача философии состоит в том, чтобы, выполняя функции арбитра, оценивающего совокупность результатов научных исследований в их гуманистической перспективе, двигаться по логике развития научных исследований, доходя до исходных рубежей. То есть до той точки, где возникает сам тип подобных этико-мировоззренческих проблем. Философы науки уверены, что коренные изменения в науке сопровождаются интенсивным углублением в ее философские основания,

50

и тот, кто хочет добиться удовлетворительного понимания современной науки, должен хорошо освоиться с философской мыслью. Хотя философия исключает из своего рассмотрения частные проблемы наук, за ней стоит весь опыт познания человечества. Она осмысливает стороны общественного мироощущения и жизнедеятельности людей, а это не попадает в поле зрения частных наук. В отличие от них, которые иерархизированы и автономно разведены по своим предметным областям, философия имеет общие грани пересечения с каждой из них. Это фиксируется областью, которая называлась «философские вопросы естествознания» и подчеркивала огромное значение достижений естественных наук. Как отмечали классики, философия меняет свою форму с каждым новым открытием в естествознании. Фундаментальные открытия науки предвещают подвижку во всем корпусе философского знания. Следовательно, философия, рефлексируя по поводу развития науки, одновременно проводит и саморефлексию, т. е. она сочетает рефлексию над наукой с саморефлексией.

О науке принято говорить как об области, в которой естественные и технические познания неразрывно слиты в своей совокупности и способствуют пониманию фундаментальных физических констант Вселенной. Особые задачи науки: самосогласованность научных выводов, устремленность к самоидентификации научного образа мира, а также направленность на познание нового и неизвестного — стали особенно ясны, когда произошел разрыв между наукой и философией. Тогда обнаружилась невозможность их достижения посредством какой-либо одной системы мышления. Многие считали, что наука обеспечивает только прикладное и техническое познание, для глубинного понимания Вселенной необходима философия. Она объясняет важность открытых наукой законов и принципов, но, вместе с тем, не дает точного практического знания. Это и есть наиболее стандартный способ истолкования пути, на котором наука и философия разошлись. Однако нет никакого сомнения в том, что их взаимосвязь обоюдная и органичная. Раздел философии, имеющий название «Современная научная картина мира и ее эволюция», есть секущая плоскость, как разделяющая, так и соединяющая философию и науку. Образно говоря, современная философия «питается» достижениями конкретных наук.

Тезис, фиксирующий взаимовлияние философии и науки, когда развитие философии стимулируется развитием частных наук,

51

а интеллектуальные инновации философского постижения мироздания служат строительными лесами эпохальных научных открытий, обосновывается с учетом следующих обстоятельств. Философия выступает формой теоретического освоения действительности, которая опирается на категориальный аппарат, вобравший в себя всю историю человеческого мышления. В той своей части, которая называется «методология», современная философия предлагает дополнения в осмыслении формализованного и содержательного аппарата конкретных наук, а также ставит и решает проблему теоретических оснований науки и конкурирующих моделей роста научного знания. Исследователи выделяют специфическую эвристическую функцию философии по отношению к научному познанию, которая наиболее заметна при выдвижении принципиально новых научных теорий. Именно философские исследования формируют самосознание науки, ее рефлексивность, развивают присущее ей понимание своих возможностей и перспектив, задают ориентиры ее последующего развития.

Наука и искусство

Искусство — это форма общественного сознания, связанная с надэмпирической трансляцией опыта человечества посредством художественных образов. Понятие «искусство» помимо обозначения многоплановой сферы творческой деятельности означает еще и мастерство, умение того или иного субъекта, а также искус, искушение, хитрость и обман. Искусство предлагает одну из древнейших форм знания — художественное знание, которое предстает как личностно-субъективное отображение мира на основе художественных образов. Оно конструирует специфический мир по отношению к эмпирической действительности и ориентирует на нахождение прекрасного и художественный идеал. Искусство подвержено историческим изменениям, оно находится в зависимости от духа эпохи, а также от способностей того или иного субъекта — творца художественного процесса, от особенностей его духовной и творческой манеры и стилистики, его мышления и ментальности. Однако художественный образ как основная матричная единица искусства является и неустранимым элементом научного исследования, подпитываемым питательными соками воображения и облаченным в наряды метафоры. В этом проявляется родственность науки и искусства.

52

В отличие от науки и научного знания, которое общезначимо или надличностно, отражает мир в понятиях и предполагает наличие общей для всех системы способов и правил построения знания, в художественном знании человек проявляет свою индивидуальность, творческие способности, закрепляет личностно-эмо-ционалъное видение мира. Искусство сопряжено с богатой палитрой эмоциональных переживаний, предоставляет возможности для самовыражения человека, для отражения и познания отдельных, частных сторон жизни и пограничных жизненных ситуаций, ус-кользающих из сферы ведения науки. Этим искусство обеспечивает способ надэмпирической трансляции человеческого опыта и выступает как источник духовного обогащения личности на основании сопереживания судьбам героев и драматическим ситуациям, отраженным в ткани художественного произведения. Именно искусство с очевидностью показывает, насколько отражение действительности зависит от способа ее восприятия. Ученый, как и художник, — это творец, способный подчинить своему замыслу окружающую действительность, наделенный недюжинной силой воли и энергии. В своей деятельности он испытывает огромные интеллектуальные и эмоциональные нагрузки, и его мысль способна к невероятному напряжению. Существует предположение, согласно которому чрезмерное развитие рациональных способностей ведет к сужению и даже атрофированию всех прочих каналов мировосприятия. И когда ученые ссылаются на интуицию, они тем самым манифестируют свое стремление вырваться за пределы жесткой рациональности.

Искусство включает в себя знаковые системы разнообразных видов искусств, однако к ним не сводится. Оно обнажает ту особенность, что искусству нельзя научиться по учебнику, оно воплощает творческое вдохновение, содержит в себе личностные смыслы. В искусстве много интуитивного, оно обеспечивает вид удовольствия, который сродни свободному чувству эстетического наслаждения. Опредмечивание художественного видения мира, вхождение в сферу искусства формируется в процессе общения с учителем, мастером, но возможно лишь благодаря особым способностям и одаренности личности. Прекрасное — это высший род организации чувственных впечатлений и движения смыслов, а выражаясь языком науки, содержательной предметности. Прекрасное — это «несокрытая» истина. От Платона к Канту и далее к

53

русским философам идет традиция наделять прекрасное, эстетическое законодательной силой. И, действительно, гармония мира должна отразиться гармонией уравнений. В этом плане искусство и эстетическое может претендовать на роль парадигмальной установки, и в этом качестве войти через парадный вход в корпус философии науки.

§4. Классификация наук

Наука как таковая, как целостное развивающееся формообразование, включает в себя ряд частных наук, которые подразделяются в свою очередь на множество научных дисциплин. Выявление структуры науки в этом ее аспекте ставит проблему классификации наук — раскрытие их взаимосвязи на основании определенных принципов и критериев и выражение их связи в виде логически обоснованного расположения в определенный ряд («структурный срез»). Поскольку наука не есть нечто неизменное, а представляет собой развивающуюся целостность, исторический феномен, то возникает проблема периодизации истории науки, т. е. выделение качественно своеобразных этапов ее развития («эволюционный срез»). Обе проблемы решаются по-разному в зависимости от предмета исследования отдельных наук, их методов, целей научного познания и других многообразных обстоятельств.

Одна из первых попыток систематизации и классификации накопленного знания (или «зачатков», «зародышей» науки) принадлежит Аристотелю. Все знание — а оно в античности совпадало с философией — в зависимости от сферы его применения он разделил на три группы: теоретическое, где познание ведется ради него самого; практическое, которое дает руководящие идеи для поведения человека; творческое, где познание осуществляется для достижения чего-либо прекрасного. Теоретическое знание Аристотель в свою очередь разделил (по его предмету) на три части: а) «первая философия» (впоследствии «метафизика») — наука о высших началах и первых причинах всего существующего, не доступных для органов чувств и постигаемых умозрительно; б) математика; в) физика, которая изучает различные состояния тел в природе. Созданную им формальную логику Аристотель не отождествлял с философией или с ее разделами, а считал «органоном» (орудием) всякого познания.

54

В период возникновения науки как целостного социокультурного феномена (XVIXVII вв.) «Великое Восстановление Наук» предпринял Ф. Бэкон. В зависимости от познавательных способностей человека (таких как память, рассудок и воображение) он разделил науки на три большие группы: а) история как описание фактов, в том числе естественная и гражданская; б) теоретические науки, или «философия» в широком смысле слова; в) поэзия, литература, искусство вообще. В составе «философии» в широком смысле слова Бэкон выделил «первую философию» (или собственно философию), которую в свою очередь подразделил на «естественную теологию», «антропологию» и «философию природы». Антропология разделяется на собственно «философию человека» (куда входят психология, логика, теория познания и этика) и на «гражданскую философию» (т. е. политику). При этом Бэкон считал, что науки, изучающие мышление (логика, диалектика, теория познания и риторика), являются ключом ко всем остальным наукам, ибо они содержат в себе «умственные орудия», которые дают разуму указания и предостерегают его от заблуждений («идолов»).

Классификацию наук на диалектико-идеалистической основе дал Гегель. Положив в основу принцип развития, субординации (иерархии) форм знания, он свою философскую систему разделил на три крупных раздела, соответствующих основным этапам развития Абсолютной Идеи («мирового духа»): а) Логика, которая совпадает у Гегеля с диалектикой и теорией познания и включает три учения: о бытии, о сущности, понятии, б) Философия природы, в) Философия духа.

Философия природы подразделялась далее на механику, физику (включающую и изучение химических процессов) и органическую физику, которая последовательно рассматривает геологическую природу, растительную природу и животный организм. Указанное подразделение содержит по крайней мере две важные позитивные идеи: направленность против механизма (т. е. стремления-только с помощью законов механики объяснить все явления действительности, включая человека и общество); подчеркивание иерархичности — расположение областей (сфер) природы по восходящим ступеням от низшего к высшему. Эти идеи были ничем иным, как «догадками» о взаимосвязанных формах движения материи и о классификации естественных наук по этому основанию — что потом сделал Ф. Энгельс.

55

«Философию духа Гегель расчленил на три раздела: субъективный дух, объективный дух, абсолютный дух. Учение о «субъективном духе» последовательно раскрывается в таких науках, как антропология, феноменология и психология. В разделе «объективный дух» немецкий мыслитель исследует социально-историческую жизнь человечества в разных ее аспектах. Раздел об абсолютном духе завершается анализом философии как «мыслящего рассмотрения предметов». При этом Гегель ставит философию выше частнонаучного знания, изображает ее как «науку наук».

При всем своем схематизме и искусственности гегелевская классификация наук выразила идею развития действительности как органического целого от низших ее ступеней до высших, вплоть до порождения мыслящего духа.

Свою классификацию наук предложил основоположник позитивизма О. Конт. Отвергая бэконовский принцип деления наук по различным способностям человеческого ума, он считал, что этот принцип должен вытекать из изучения самих классифицируемых предметов и определяться действительными, естественными связями, которые между ними существуют.

Реализуя свои замыслы в отношении классификации (иерархии) наук, французский философ исходил из того, что:

а) существуют науки, относящиеся к внешнему миру, с одной стороны, и к человеку — с другой;

б) философию природы (т. е. совокупность наук о природе) следует разделить на две отрасли: неорганическую и органическую (в соответствии с их предметами изучения);

в) естественная философия последовательно охватывает «три великих отрасли знания» — астрономию, химию и биологию. Заключая свои размышления об иерархии наук, философ подчеркивает, что мы, в конце концов, «постепенно приходим к открытию неизменной иерархии... — одинаково научной и логической — шести основных наук — математики (включая механику. — В. К.), астрономии, физики, химии и социологии»1.

Чтобы облегчить употребление этой своей иерархической формулы, Конт предлагал эту формулу «сжать», а именно сгруппировать науки в виде трех пар: а) начальной, математико-астрономической; б) промежуточной, физико-химической; в) конечной, биолого-социологической.

1 Конт О. Дух позитивной философии. Ростов н/Д, 2003. С. 234.

56

Введя в свою иерархию наук социологию, Конт, как известно стал основоположником этой науки, которая бурно развивается в наши дни. Он был убежден, что социология должна иметь свои собственные методы, не сводимые ни к каким другим как «недостаточным» для нее.

Конт доказывал, что между всеми видами знаний существует глубокая внутренняя связь. Однако контовская классификация наук носит в основном статический характер, недооценивает принцип развития. Кроме того, он не избежал физикализма, релятивизма, агностицизма, индетерминизма и некоторых других недостатков.

Свои классификации наук предлагали В. Дильтей и основатели Баденской школы неокантианства В. Винделъбанд и Г. Риккерт, о чем будет идти речь в гл. VIII.

На материалистической и вместе с тем на диалектической основе проблему классификации наук решил Ф. Энгельс. Опираясь на современные ему естественнонаучные открытия, он в качестве главного критерия деления наук взял формы движения материи в природе.

Общим единым для всех областей природы понятием «форма движения материи» Энгельс охватил: во-первых, различные процессы в неживой природе; во-вторых, жизнь (биологическую форму движения). Отсюда следовало, что науки располагаются естественным образом в единый ряд — механика, физика, химия, биология, — подобно тому, как следуют друг за другом, переходят друг в друга и развиваются одна из другой сами формы движения материи — высшие из низших, сложные из простых. «Классификация наук, из которых каждая анализирует отдельную форму движения или ряд связанных между собой и переходящих друг в друга форм движения материи, является вместе с тем классификацией, расположением, согласно внутренне присущей им последовательности самих этих форм движения, и в этом именно и заключается ее значение»1.

При этом особое внимание Энгельс обращал на необходимость тщательного изучения сложных и тонких переходов от одной формы материи к другой. В связи с этим он предсказал (и это впоследствии многократно подтвердилось — и до сих пор), что именно

1 Маркс К., Энгельс Ф. Соч. 2-е изд. Т. 20. С. 564—565.

57

на стыках основных наук (физики и химии, химии и биологии и т. п.) можно ожидать наиболее важных и фундаментальных открытий. «Стыковые» науки выражают наиболее общие, существенные свойства и отношения, присущие совокупности форм движения.

В связи с тем, что резких границ между отдельными науками и научными дисциплинами нет, особенно в последнее время в современной науке значительное развитие получили междисциплинарные и комплексные исследования, объединяющие представителей весьма далеких друг от друга научных дисциплин и использующие методы разных наук. Все это делает проблему классификации наук весьма сложной.

Классификация наук, данная Энгельсом, не потеряла своей актуальности и по сей день, хотя, разумеется, она углубляется, совершенствуется, конкретизируется и т. п. по мере развития наших знаний о материи и формах ее движения.

В середине XX в. оригинальную классификацию наук предложил В. И. Вернадский. В зависимости от характера изучаемых объектов он выделял два рода (типа) наук: 1) науки, объекты (и законы) которых охватывают всю реальность — как нашу планету и ее биосферу, так и космические просторы. Иначе говоря, это науки, объекты которых отвечают основным, общим явлениям реальности; 2) науки, объекты (и законы) которых свойственны и характерны только для нашей Земли. В соответствии с таким пониманием объектов разных наук и «учитывая такое состояние наших знаний, мы можем различать в ноосфере (сфере разума. — В. К.) проявление влияния на ее строение двух областей человеческого ума: наук, общих для всей реальности (физика, астрономия, химия, математика), и наук о Земле (науки биологические, геологические и гуманитарные)»1. Логика, по мнению русского ученого, занимает особое положение, поскольку, будучи неразрывно связанной с человеческой мыслью, она одинаково охватывает все науки — и гуманитарные, и естественно-математические. Все стороны научного знания образуют единую науку, которая находится в бурном развитии, и область, охватываемая ею, все увеличивается.

1 Вернадский В. Л. О науке Т. 1. Научное знание. Научное творчество. Научная мысль. Дубна, 1997. С. 463.

58

Что касается классификаций современных наук, то они проводятся по самым различным основаниям (критериям). По предмету и методу познания можно выделить науки о природе — естествознание, об обществе — обществознание (гуманитарные, социальные науки) и о самом познании, мышлении (логика, гносеология, эпистемология и др.). Отдельную группу составляют технические науки. Очень своеобразной наукой является современная математика. По мнению некоторых ученых, она не относится к естественным наукам, но является важнейшим элементом их мышления.

В свою очередь каждая группа наук может быть подвергнута более подробному членению. Так, в состав естественных наук входят механика, физика, химия, геология, биология и др., каждая из которых подразделяется на целый ряд отдельных научных дисциплин. Наукой о наиболее общих законах действительности является философия, которую нельзя, однако, полностью относить только к науке.

По своей «удаленности» от практики науки можно разделить на два крупных типа: фундаментальные, которые выясняют основные законы и принципы реального мира и где нет прямой ориентации на практику, и прикладные — непосредственное применение результатов научного познания для решения конкретных производственных и социально-практических проблем, опираясь на закономерности, установленные фундаментальными науками. Вместе с тем границы между отдельными науками и научными дисциплинами условны и подвижны.

Могут быть и другие критерии (основания) для классификации наук. Так, например, выделение таких главных сфер естественных наук, как материя, жизнь, человек, Земля, Вселенная, позволяет сгруппировать эти науки в следующие ряды:

1) физика химическая физика химия;

2) биология ботаника зоология;

3) анатомия физиология эволюционное учение учение о наследственности;

4) геология минералогия петрография палеонтология физическая география и другие науки о Земле;

5) астрономия астрофизика астрохимия и другие науки о Вселенной.

59

Гуманитарные науки также подразделяются внутри себя: история, археология, экономическая теория, политология, культурология, экономическая география, социология, искусствоведение и т. п. Как бы ни подразделялись науки, «но наука одна, и едина, ибо, хотя количество наук постоянно растет, создаются новые, — они все связаны в единое научное построение и не могут логически противоречить одна другой»1.

В 60-х гг. прошлого века свою классификацию наук предложил известный отечественный философ и историк науки Б. М. Кедров. Он исходил из того, что общая классификация наук основывается на раскрытии взаимосвязи трех главных разделов научного знания: естествознания, общественных наук и философии. Каждый из главных разделов представляет целую группу (комплекс) наук.

Общая классификация наук Б. М. Кедрова выглядит следующим образом:

1) Философские науки: диалектика, логика.

2) Математические науки: математическая логика, математика (включая кибернетику).

3) Естественные и технические науки:

Механика (и прикладная механика и космонавтика).

• Астрономия и астрофизика (и техническая физика).

•  Физика:

• химическая физика,

• физическая химия.

• Химия и геохимия.

• Геология.

•  География.

• Биохимия.

• Биология (и сельхознауки, и медицинские науки).

• Физиология человека.

• Антропология.

4) Социальные науки: А. История.

Археология.

1 Вернадский В. И. Q науке. Т. 1. Научное знание. Научное творчество. Научная мысль. Дубна, 1997. С. 401—402.

60

Этнография.

Экономическая география. Социально-экономическая статистика. Б. Науки о базисе и надстройке:

• политическая экономия,

•  науки о государстве и праве (юридические науки),

•  история искусств и искусствоведение. В. Языкознание.

Психология.

Педагогические науки.

Науки об отдельных формах общественного сознания1. К настоящему времени наиболее обстоятельно разработана классификация естественных наук, хотя и тут немало дискуссионных, спорных моментов. Например, существует ли геологическая форма движения материи и каково в связи с этим место геологии в иерархической лестнице наук? Слабо разработана классификация социально-гуманитарных наук. Каковы причины этого обстоятельства? В чем тут дело?

А дело тут, на наш взгляд, в том, что долгое время анализ науки и научного познания проводился по «модели» естественно-математического знания. Характеристики последнего считались свойственными науке в целом как таковой, что особенно наглядно выражено в натуралистическом сциентизме. В последние десятилетия резко возрос исследовательский интерес к социально-гуманитарному познанию, которое рассматривается как один из своеобразных видов научного познания (об этом см. гл. VIII).

§5. Роль науки в современном образовании и формировании личности. Функции науки в жизни общества

Наука вплетена во все сферы человеческой деятельности, она внедряется и в базисные основания отношений самих людей. Особенно значима ее роль в образовании. В основании современного

1 См.: Философская энциклопедия: В 5 т. Т. 3. М., 1964. С. 581—583.

61

образовательного процесса лежит научная картина мира. А сама сфера образования опирается на научно апробированные и рекомендуемые методы. Рутинному принципу образования, реализующему принцип «Делай, как я!», современная образовательная система противопоставляет научно обоснованные подходы, в которых учитываются особенности нейрофизиологической, умственной и эмоционально-волевой сферы деятельности субъектов образовательного процесса. Роль науки в образовании распространяется на все компоненты образовательного процесса: цели, средства, результаты, принципы, формы и методы. Научные смыслы выступают основными единицами образовательной матрицы, они включают личность обучаемого в реальный процесс жизнедеятельности. Образовательный процесс выступает в качестве «исходной территории», на которой происходит встреча индивида и науки, а также его подготовка к жизнедеятельности в данном обществе и формирование зрелой личности.

Наука предполагает направленное воздействие на образовательный процесс и может в случае необходимости санкционировать изменение всей структуры обучения. Научно-мировоззренческие основоположения присутствуют в составе мыслительной деятельности педагога, они передаются им обучаемым. Научные подходы пронизывают и все содержание учебно-образовательного процесса. Сами образовательные модели опираются на сугубо научные обоснования и достижения многообразных наук о человеке, в частности антропологии, педагогики, психологии, физиологии, дидактики и пр. Образовательный процесс имеет не только собственные технологии, среди которых информационные в настоящее время заявляют о своем приоритетном положении, но и закономерности. Это предполагает наличие методик, программ, планов, методологических и дидактических материалов.

Образование понимается как процесс взаимодействия, предполагающий полюс, на котором сосредоточена важная информация, и полюс, к которому она обращена и на который транслируется. Образование — это необходимая ступень социализации личности. Это процесс вхождения индивида в образ «Я — личности», т. е. универсального субъекта, наследующего переданный ему потенциал предшествующего развития поколений. Процесс образования готовит тот человеческий материал, которому будет передана эстафета развития человеческой цивилизации. Образование

62

предполагает в качестве своего результата формирование смысловой сферы, обращенной внутрь субъекта познания и влияющей на его жизненную позицию, поведенческий и социальный выбор. Процесс образования, безусловно, должен иметь свою логику, формы, стандарты, установки и принципы и в отличие от спонтанного научения носит целенаправленный характер.

Целостный процесс образования служит интересам общества и личности. Формирование современного типа личности предстает не просто как передача тех или иных знаний, т. е. не только в своей знаниевой форме, но и как целостный процесс обработки, возделывания, окультуривания личности учащегося. Образование — это интегративный процесс. В нем присутствуют компонента обучения, компонента передачи и сохранения традиций, компонента, предполагающая развитие эвристической и поисковой деятельности. Образование предстает как непрерывный процесс, который проходит через свои институциональные и внеинституциональные формы, т.е. совершается как в рамках официальных учебных заведений, так и вне их в процессе всей жизнедеятельности людей. Процесс образования предполагает приобщение к базовым ценностям культуры и объединяет в себе обучение и воспитание. Образование обеспечивает необходимую подготовку личности к выполнению социальных и профессиональных ролей. Изменения в науке и технике диктуют необходимость изменений образовательной системы, опирающейся на достижения науки. Без повышения качества и уровня образования невозможно эффективное применение современной техники и технологии, непрерывное их развитие и внедрение новых достижений.

В настоящее время говорят о поликультурном образовательном пространстве, весьма актуальном для многонациональной России. В нашей стране утверждается личностно-ориентированная модель научного образования, возвращение к национальным и мировым культурно-историческим традициям. Эта задача реализуется с учетом возможностей новых информационных технологий. Вместе с тем его основной единицей выступает ступень школьного образования. В образовании выделяют этапы начального, среднего, специального и высшего образования. Актуально и выделение зоны самообразования, которая в силу своей разнонаправленности может значительно отдаляться от стандартов, рекомендованных наукой. В связи с этим исследователи выделяют

63

актуальные и потенциальные зоны образования. С учетом развиваемых способностей образование делится на общее и специальное. Если последнее готовит узких специалистов, то первое дает широкий кругозор, багаж универсальных знаний и выход за границы узкой специализации. Образование направлено на передачу навыков и знаний.

Современная наука обеспокоена созданием таких моделей образовательного процесса, в которых была бы значима его гуманитарная составляющая, его ориентация на толерантность и сбалансирование сциентистского и гуманистического содержания. Влияние науки на процесс образования ведет к выделению следующих уровней: операционального, межоперационального, тактического, стратегического, глобального. Первый — предполагает освоение логики учебного предмета, второй — совокупности дисциплин данного учебного курса, третий — отвечает за формирование содержания знания на основании пройденных дисциплин. Четвертый — ставит задачи интегрирования содержательного потенциала знания во внутреннюю смысловую структуру личности. И, последний, глобальный уровень свидетельствует о сущностном ядре личности, предстающей как результат интегративного и направленного образовательного процесса. Среди современных методов образования актуальными становятся активные формы: деловые игры, тренинги, изучение типичных и нетипичных ситуаций, информационные технологии и пр. Перемены в обществе ведут за собой изменения в системе образования, направленном на формирование личности.

Процесс формирования личности включает в себя принципы экстериоризации, т. е. направленности на внешние обстоятельства, и принципы интериоризации — т. е. формирование внутренних, глубинных установок. Кроме того, важна ценностная составляющая, предполагающая обращение к высшим ценностям: истине, добру, красоте, справедливости. Для личности очень важны ощущения собственного достоинства, прав, свобод, соответствующих гарантий, возможность отстаивать собственную позицию, стремление к взаимопониманию.

Важная роль в процессе первичной социализации, т.е. приобщения индивида к значимым формам общения и моделям поведения, принадлежит семье. Проблема состоит в том, что социальные качества не могут передаваться по наследству, они формируются.

64

Образование, обучение и воспитание выступают как механизмы их трансляции, привития социальных качеств и моделей поведений, передачи суммы знания и принципов деятельности подрастающему поколению. В отличие от семейного и спонтанного внесемейного влияния в процессе разнообразного общения и так называемых «уроков жизни» образование берет на себя задачу целенаправленного обеспечения процесса формирования личности. Процесс образования носит достаточно демократический характер, принципиальных ограничений на пути его прохождения нет. Однако можно фиксировать многочисленные негативы современного образовательного процесса, в том числе его осложнения вписанными в него отношениями коммерциализации, а также проявляющимся и в данной сфере бюрократизмом. Система образования должна являться тем «социальным лифтом», который обеспечивает пополнение социальной прослойки интеллигенции, подъем всего общества на новый интеллектуальный уровень на основе лучших достижений наиболее одаренных, талантливых, трудолюбивых и неординарных личностей из совокупной массы обучающихся. Современный процесс образования не предполагает механический перенос достоинств семьи и отцов на детей. Вступающему в жизнь индивиду предстоит самостоятельно пройти путь личностного становления, фильтры социальной селекции.

Личность, общество и государство связаны сложными взаимоотношениями. Традиционному обществу или обществу «закрытого типа» автономия личности не свойственна, реализовать себя человек может лишь принадлежа к какой-либо корпорации, как элемент корпоративных связей. В современных техногенных обществах автономия личности интерпретируется как возможность активного, деятельностного отношения ко всем происходящим процессам. По преимуществу эта деятельность экстенсивна, т. е. направлена вовне, на преобразование и переделку внешнего мира и природу, которую следует непременно покорить. Человек оказывается центром, излучающим токи активного, преобразующе-покоряющего импульса. Отсюда и характеристика общекультурных отношений с использованием понятия «сила»: производительные силы, силы знания, интеллектуальные силы и ресурсы, человеческий фактор.

65

В. И. Вернадский подчеркивал, что содержание науки не ограничивается научными теориями, гипотезами, моделями, создаваемой наукой картиной мира; главным живым содержанием является научная работа живых людей. Институциональное понимание науки подчеркивает ее связь с образованием и показывает бытие науки в качестве необходимой структуры любого типа общественного устройства. Наука представляет собой определенную систему взаимосвязей между научными организациями, членами научного сообщества, субъектами познавательного процесса. Она опирается на совокупность норм и ценностей. Однако то, что наука является институтом, в котором десятки и даже сотни тысяч людей нашли свою профессию, — результат недавнего развития. Только в XX в. профессия ученого становится сравнимой по значению с профессией церковника и законника. Наука предстает как наиболее сильный фактор формирования убеждений и отношения человека к миру.

В науке приветствуется поиск истины, а следовательно, критика, полемика, спор. Ученый находится в ситуации постоянного подтверждения своей профессиональности посредством публикаций, выступлений, квалификационных дисциплинарных требований и часто вступает в сложные отношения как со своими оппонентами-коллегами, так и с общественным мнением. Признание деятельности ученого связано с градацией степеней и званий. Самой престижной наградой является Нобелевская премия. Конечно же, творческий потенциал личности может остаться нереализованным либо оказаться подавленным общественной системой. Но совершить открытие, изобрести нечто новое может лишь индивид, обладающий проницательным умом и необходимыми знаниями, а не общество в целом.

В эпоху НТП роль науки столь возросла, что потребовалась новая шкала ее внутренней дифференциации. И речь уже не шла только о теоретиках или экспериментаторах. Стало очевидно, что в большой науке одни ученые более склоняются к эвристической поисковой деятельности — выдвижению новых идей, другие — к аналитической и экспликационной (уточняющей), третьи — к проверке и обоснованию имеющихся знаний, четвертые — к приложению добытого научного знания. Есть ученые теоретики, есть практики, есть эмпирики и классификаторы, есть и аналитики. Наиболее распространенным становится тип ученого, который занимается

66

решением многоплановой проблемы или развитием определенного направления в науке, привлекая к этой деятельности талантливых молодых исследователей.

По подсчетам социологов, наукой способны заниматься не более 6—8% населения. Иногда основным и эмпирически очевидным ее признаком считается совмещение исследовательской деятельности и высшего образования. Это весьма резонно в условиях, когда наука превращается в профессиональную деятельность. Научно-исследовательская деятельность признается необходимой и устойчивой социокультурной традицией, без которой нормальное существование и развитие общества невозможно. Наука составляет одно из приоритетных направлений деятельности любого цивилизованного государства.

Максима современного технократического века гласит: «Все должно быть научным, научно обоснованным и научно проверенным». Следует ли из такого высокого статуса науки ее легальная экспансия во все сферы человеческой жизни или же, напротив, это обязывает ее нести ответственность за все ущербные процессы существования человечества? Вопрос открытый. Ясно одно: как социокультурный феномен наука всегда опирается на сложившиеся в обществе культурные традиции, нормы и ценности. Познавательная деятельность вплетена в бытие культуры. Отсюда становится понятной собственно культурная и технологическая функции науки, которые связаны «с обработкой и возделыванием» человеческого материала, т. е. субъекта познавательной деятельности, с включением его в познавательный процесс.

Культурная функция науки не сводима только к оценке результатов научной деятельности, которые составляют также и совокупный потенциал культуры. Данная функция обнаруживает себя как процесс формирования человека в качестве субъекта деятельности и познания. Само индивидуальное познание совершается исключительно в окультуренных, социальных формах, принятых и существующих в культуре. Индивид застает уже готовыми («априори» в терминологии И. Канта) средства и способы познания, приобщаясь к ним в процессе социализации. Исторически человеческое сообщество той или иной эпохи всегда располагало и общими языковыми средствами, и общим научным инртрументарием, специальными понятиями и методами — так называемыми «очками», при помощи которых прочитывалась действительность,

67

«линзой», сквозь которую она разглядывалась. Научное знание, глубоко проникая в быт, составляя существенную основу формирования мировоззрения людей, превратилось в неотъемлемый компонент социальной среды, в которой происходит становление и формирование личности.

Наука, выступая как фактор социальной регуляции, не может не опираться на знания, ставшие общественным достоянием и хранящиеся в социальной памяти. Культурная сущность науки влечет за собой ее этическую и ценностную наполненность. Она стоит перед лицом проблем социальной ответственности за последствия научных открытий, морального и нравственного выбора, нравственного климата в научном сообществе.

Наука в функции фактора социальной регуляции воздействует на потребности общества, становится необходимым условием рационального управления. Любая инновация требует аргументированного научного обоснования. Проявление регулятивной функции науки осуществляется через сложившуюся в данном обществе систему образования, воспитания, обучения и подключения членов общества к исследовательской деятельности и этосу науки.

Наука развивается сообществом ученых. Еще Фрэнсис Бэкон в свое время отмечал: «Совершенствование науки следует ждать не от способности или проворства какого-нибудь отдельного человека, а от последовательной деятельности многих поколений, сменяющих друг друга». Ученый — всегда представитель той или иной социокультурной среды. «Силовое» воздействие всего социокультурного поля на имеющийся научно-творческий потенциал показывает степень «чистоты» и независимости науки.

Современную науку называют Большой наукой, которая располагает определенной социальной и профессиональной организацией, развитой системой коммуникаций. В конце XX в. численность ученых в мире достигла свыше 5 млн человек. Наука включает около 15 тыс. дисциплин и несколько сот тысяч научных журналов. Наше время называют эрой современной науки, открывающей новые источники энергии и информационные технологии. Возрастают тенденции интернационализации науки, которая становится предметом междисциплинарного комплексного анализа. К ее изучению приступают не только науковедение, наукометрия, философия науки, но и социология, психология, история.

68

Социально-психологические факторы, определяющие науку, требуют введения в контекст научного исследования представлений об исторической ограниченности научного познания, размышлений о личностном портрете ученого, когнитивных механизмах познания и мотивации его деятельности. Наука — «предприятие коммунитарное» (коллективное). Ни один ученый не может не опираться на достижения своих коллег, на совокупную память человеческого рода. Наука интерсубъективна и требует сотрудничества многих людей. Характерные для современности междисциплинарные исследования подчеркивают, что всякий результат есть плод коллективных усилий.

Наука имеет не только положительные, но и отрицательные последствия своего развития, что обязывает подвергать ее результаты многократной экспертизе. Философы особо предостерегают против ситуации, когда применение науки теряет нравственный и гуманистический смысл. Тогда она предстает объектом ожесточенной критики, остро встают проблемы контроля над деятельностью ученых.

Проблема, связанная с классификацией функций науки, до сих пор остается спорной потому, что наука, развиваясь, возлагает на себя новые и новые функции. Современная наука начинает больше заботиться о коэволюционном вписывании в мир всех достижений научно-технического прогресса и в качестве приоритетной выделяет свою социальную функцию.

Реализация этой функции предполагает, что методы науки и данные научных исследований используются для разработки крупномасштабных планов социального и экономического развития. Наука проявляет себя в функции социальной силы при решении глобальных проблем современности (истощение природных ресурсов, загрязнение атмосферы, определение масштабов экологической опасности). В этой своей функции наука затрагивает социальное управление.

Исследователи обращают внимание на проективно-конструктивную функцию науки, поскольку она предваряет фазу реального практического преобразования и является неотъемлемой стороной интеллектуального поиска любого ранга. Данная функция связана с созданием качественно новых технологий, что в наше время чрезвычайно актуально.

69

Так как основная цель науки всегда была связана с производством и систематизацией объективных знаний, то в состав необходимых функций науки необходимо включить описание, объяснение и предсказание процессов и явлений действительности на основе открываемых наукой законов.

Современные исследователи предлагают выделять две общие как для образования, так и для науки функции. Во-первых, это функция, предполагающая неогуманистическую ориентацию, в которой присутствует акцент на выживание человечества. Суть ее сводится к транслированию последующим поколениям не только совокупности накопленных знаний, но императивов на будущее, содержащих заботу о будущих поколениях. Вторая, тесно связанная с ней экологическая функция направлена на сохранение природы вообще (ресурсов, Земли, биосферы) и обеспечение максимально благоприятных и гармоничных экологических условий для существования человека, в частности. Современная система образования стремится к изменению парадигмы образовательного процесса в направлении от техногенно-экономической к эколого-гуманистической. На вопрос о том, выживет ли человечество в техногенном мире? — ученые отвечают, что это во многом зависит от того, насколько наука и образование совместными усилиями будут заботиться о нашем будущем.

Глава  II

Возникновение науки и основные стадии ее развития

§1. Генезис науки и проблема периодизации ее истории. Преднаука и наука в собственном смысле

Как своеобразная форма познания — специфический тип духовного производства и социальный институт — наука возникла в Европе, в Новое время, в XVIXVII вв. в эпоху становления капиталистического способа производства и дифференциации (разделения) единого ранее знания на философию и науку. Она (сначала в форме естествознания) начинает развиваться относительно самостоятельно. Однако наука постоянно связана с практикой, получает от нее импульсы для своего развития и в свою очередь воздействует на ход практической деятельности, опредмечивается, материализуется в ней.

Говоря о возникновении науки (эта проблема особенно обстоятельно рассмотрена в работах П. П. Гайденко, Л. М. Кесаревой, Л. А. Микешиной, В. С. Степина и др.), надо подчеркнуть следующее. В античности и средние века в основном имело место философское познание мира. Здесь понятия «философия», «знание», «наука» фактически совпадали: это было по существу «триединое целое», не разделенное еще на свои части. Строго говоря, в рамках философии объединялись сведения и знания и о «первых причинах и всеобщих началах», об отдельных природных явлениях, о жизни людей и истории человечества, о самом процессе познания, формулировалась определенная совокупность

71

логических (Аристотель) и математических (Эвклид) знаний и т. п. Все эти знания существовали в пределах единого целого (традиционно называемого философией) в виде ее отдельных аспектов, сторон. Иными словами, элементы, предпосылки, «ростки» будущей науки формировались в недрах другой духовной системы, но они еще не выделялись из них как автономное, самостоятельное целое.

Указывая важное значение древнегреческой философии в возникновении науки, А. Уайтхед, в частности, отмечает, что в диалогах Платона содержатся «первые ясные формулировки логики как особой науки». Однако, как считает Уайтхед, Платон очень мало пользовался этим методом «с точки зрения естествознания».

Аристотель создал целостную систему формальной логики, «первую философию» и диалектический метод. Уайтхед обращает внимание на то, что, во-первых, греческий философ широко использует в своих работах общее понятие классификации (особенно важное для познания природы) и дает мастерский анализ тех сложностей, с которыми связаны взаимоотношения различных классов объектов. Во-вторых, «свое теоретическое учение он (Аристотель. —В. К.) применил также к громадному материалу, собранному непосредственным наблюдением в зоологии, физике, социологии. Мы можем обнаружить у него начатки почти всех наших конкретных наук (выделено нами. — В. К.), как естественных, так и тех, которые связаны с активностью человеческого духа. Он заложил основы того стремления к точному анализу каждой конкретной ситуации, которое в конечном итоге привело к формированию современной европейской науки»1.

Действительно, предпосылки науки создавались в древневосточных цивилизациях — Египте, Вавилоне, Индии, Китае, Древней Греции в форме эмпирических знаний о природе и обществе, в виде отдельных элементов, «зачатков» астрономии, этики, логики, математики и др. Вот почему геометрия Эвклида — это не наука в целом, а только одна из ветвей математики, которая (математика) также лишь одна из наук, но не наука как таковая.

Причина такого положения, разумеется, коренится не в том, что до Нового времени не было таких великих ученых, как Коперник, Галилей, Кеплер, Ньютон и др., а в тех реальных обшественно-

1 Уайтхед Л. Избранные работы по философии. М., 1990. С. 544.

72

исторических, социокультурных факторах, которые еще не создавали объективных условий для формирования науки как особой системы знания, своеобразного духовного феномена и социального института — в этом «целостном триединстве».

Таким образом, в античный и средневековый периоды существовали лишь элементы, предпосылки, «кусочки» науки, но не сама наука в собственном смысле слова (как указанное «целостное триединство»), которая возникает только в Новое время, в процессе отпочкования науки от традиционной философии. Как писал в этой связи В. И. Вернадский, основа новой науки нашего времени — «это по существу создание XVIIXX вв., хотя отдельные попытки (имеются в виду математические и естественнонаучные знания античности. — В. К.) и довольно удачные ее построения уходят в глубь веков... Современный научный аппарат почти целиком создан в последние три столетия, но в него попали обрывки из научных аппаратов прошлого»1.

В конце XVI — начале XVII в. происходит буржуазная революция в Нидерландах, сыгравшая важную роль в развитии новых, а именно капиталистических, отношений (которые шли на смену феодальным) в ряде стран Европы. С середины XVII в. буржуазная революция развертывается в Англии, наиболее развитой в промышленном отношении европейской стране. Если в феодальном обществе формирующиеся в виде «зачатков» научные знания были «смиренной служанкой церкви» (были «растворены» в «эфире» религиозного сознания) и им не позволено было выходить за рамки, установленные верой, то нарождающемуся новому классу — буржуазии — нужна была «полнокровная» наука, т. е. такая система научного знания, которая — прежде всего для развития промышленности — исследовала бы свойства физических тел и формы проявления сил природы.

Буржуазные революции дали мощный толчок для невиданного развития промышленности и торговли, строительства, горного и военного дела, мореплавания и т. п. Развитие нового — буржуазного — общества порождает большие изменения не только в экономике, политике и социальных отношениях, оно сильно меняет и сознание людей. Важнейшим фактором всех этих изменений оказывается наука, и прежде всего экспериментально-математическое

1 Вернадский В. И. О науке. Т. 1. Научное знание. Научное творчество. Научная мысль. Дубна, 1997. С. 419.

73

естествознание, которое как раз в XVII в. переживает период своего становления. Постепенно складываются в самостоятельные отрасли знания астрономия, механика, физика, химия и другие частные науки. Следует в связи с этим сказать о том, что понятия «наука» и «естествознание» в этот период (и даже позднее) практически отождествлялись, так как формирование об-ществознания (социальных, гуманитарных наук) по своим темпам происходило несколько медленнее.

Таким образом, для возникновения науки в XVIXVII вв., кроме общественно-экономических (утверждение капитализма и острая потребность в росте его производительных сил), социальных (перелом в духовной культуре, подрыв господства религии и схоластически-умозрительного способа мышления) условий, необходим был определенный уровень развития самого знания, «запас» необходимого и достаточного количества фактов, которые бы подлежали описанию, систематизации и теоретическому обобщению. Поэтому-то первыми возникают механика, астрономия и математика, где таких фактов было накоплено больше. Они-то и образуют «первоначальное целое» единой науки как таковой, «науки вообще» в отличие от философии. Отныне основной задачей познания стало не «опутывание противника аргументацией» (как у схоластов), а изучение — на основе реальных фактов — самой природы, объективной действительности.

Тем самым в отличие от традиционной (особенно схоластической) философии становящаяся наука Нового времени кардинально по-новому поставила вопросы о специфике научного знания и своеобразии его формирования, о задачах познавательной деятельности и ее методах, о месте и роли науки в жизни общества, о необходимости господства человека над природой на основе знания ее законов.

В общественной жизни стала формироваться новая мировоззренческая установка, новый образ мира и стиль мышления, который по существу разрушил предшествующую, многими веками созданную картину мироздания и привел к оформлению «вещно-натуралистической» концепции космоса с ее ориентацией на механистичность и количественные методы. Характеризуя роль последних в становлении научного познания, Галилей писал: «Никогда я не стану от внешних тел требовать что-либо иное, чем величина, фигуры, количество движения, что если бы мы устранили

74

уши, языки, носы, то остались бы только фигуры, число и движение»1. В этой связи известно изречение Галилея о том, что «книга Вселенной написана на языке математики».

Галилей впервые ввел в познание то, что стало характерной особенностью именно научного познания — мысленный эксперимент, опирающийся на строгое количественно-математическое описание. Галилей «вдолбил» в сознание своего времени (опутанное схоластическими догмами) мысль о том, что наука без мысленного конструирования, без идеализации, без абстракций, без «обобщающих резолюций», опирающихся на факты — это все что угодно, но только не наука.

В. Гейзенберг выделил две характерные черты нового метода Галилея: а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены; б) сопоставление последних с математическими структурами, принимаемыми в качестве законов природы.

На новаторский характер методологических поисков Галилея обратил внимание П. Фейерабенд, который подчеркивает, что в его (Галилея) деятельности обыденный эмпирический опыт был заменен опытом, содержащим концептуальные элементы.

Рассматривая складывавшийся в XVIXVII вв. новый стиль мышления, В. В. Ильин и А. Т. Калинкин указывают на следующие его характерные черты: «...отношение к природе как самодостаточному естественному, «автоматическому» объекту, лишенному антропоморфно-символического элемента, данному в непосредственной деятельности и подлежащему практическому освоению; отказ от принципа конкретности (наивно квалитативистское телесно-физическое мышление античности и средневековья); становление принципа строгой количественной оценки (в области социальной — процесс становления меркантилизма, ростовщичества, статистики и т. д., в области научной — с успехами изобретательства, созданием измерительной аппаратуры, жестко детерминистская причинно-следственная типологизация явлений действительности, элиминация телеологических, организмических и анимистических категорий, введение каузализма; инструменталистская трактовка природы и ее атрибутов — пространства, времени, движения, причинности и т. д., которые механически комбинируются

1 Галилей Г. Избранные труды: В 2 т. Т. 1. М., 1964. С. 507.

75

наряду с составляющими всякую вещь онтологически фундаментальными формами; образ геометризированной гомогенно-унитарной действительности, управляемой единственными количественными законами; признание в динамике универсального метода описания поведения окружающих явлений (не вещественные модели, а формальные геометрические схемы и уравнения)»1.

В это время резко возрастает интерес не только к частнонаучным знаниям, но и к общетеоретическим, методологическим, философским проблемам. Рост интереса к этим проблемам был тесно связан не только с успехами частных (прежде всего естественных) наук, но и с их недостатками, ограниченностью. Различные отрасли науки были еще слабо развиты. Поэтому о многих сторонах природы и общества приходилось рассуждать без достаточного количества необходимого фактического материала и его обобщения, строить различные предположения, нередко умозрительные. А этого было невозможно достичь без помощи философии.

В Новое время ускоренными темпами развивается процесс размежевания между философией и частными науками. Процесс дифференциации нерасчлененного ранее знания идет по трем основным направлениям: 1. Отделение науки от философии. 2. Выделение в рамках науки как целого отдельных частных наук — механики, астрономии, физики, химии, биологии и др. 3. Вычленение в целостном философском знании таких философских дисциплин, как онтология, философия природы, философия истории, гносеология, логика и др. Поворотным пунктом в указанном процессе послужил XVIII и первая половина XIX в., когда, с одной стороны, из философии выделились все основные отрасли современного научного знания, и, с другой стороны, обособление отдельных областей внутри самой философии было доведено до отрыва их друг от друга, что было присуще в особенности для воззрений Канта.

Итак, характерное для Нового времени интенсивное развитие производительных сил в условиях нарождающейся капиталистической формации, вызвавшее бурный расцвет науки (особенно естествознания), потребовало коренных изменений в методологии, создания принципиально новых методов научного исследования — как философских, так и частнонаучных. Прогресс опытного знания, экспериментальной науки требовал замены схоластического

1 Ильин В. В., Калинкин А. Т. Природа науки. М., 1985. С. 56.

76

метода мышления новым методом познания, обращенным к реальному миру. Возрождались и развивались принципы материализма и элементы диалектики. Но материализм того времени был в целом механистическим и метафизическим. Наиболее крупными представителями философии и науки XVIXVII вв. были Д. Бруно, Н. Коперник, Г. Галилей, И. Ньютон, Ф. Бэкон, Р. Декарт, Д. Локк, Г. Лейбниц и др., которые, как правило, были и выдающимися философами, и крупными естествоиспытателями, и математиками, соединяя эти «ипостаси» в одном лице.

В понимании генезиса, возникновения науки в истории и философии науки сложились два противоположных подхода. С точки зрения экстернализма, появление науки обусловлено целиком и полностью внешними для нее обстоятельствами — социальными, экономическими и др. Поэтому основной задачей изучения науки, по мнению сторонников этого подхода, является реконструкция социокультурных условий и ориентиров научно-познавательной деятельности («социальных заказов», «социоэкономических условий», «культурно-исторических контекстов» и т. п.). Они-то и выступают в качестве главного фактора, непосредственно определяющего возникновение и развитие науки, ее структуру, особенности, направленность ее эволюции.

Интернализм, напротив, основной движущей силой развития науки считает факторы, связанные с внутренней природой научного знания: логика решения его проблем, соотношение традиций и новаций и т. п. Поэтому главное внимание при изучении науки сторонники интернализма направляют на описание собственно познавательных процессов. Социокультурным факторам придается второстепенное значение: в зависимости от ситуации они могут лишь тормозить или ускорять внутренний ход научного познания. Однако этот «ход» есть единство внутренних и внешних своих факторов, которые на разных этапах этого процесса меняются местами и ролями.

Обусловленность процессов возникновения и развития науки потребностями общественно-исторической практики — главный источник, основная движущая сила этих процессов. Не только развитие науки соответствует уровню развития практики, но и разделение научного знания, дифференциация наук также отражает определенные этапы развития практики, разделения труда, внутренней расчлененности человеческой деятельности в целом.

77

Практика и познание — две взаимосвязанные стороны единого исторического процесса, но решающую роль здесь играет практическая деятельность.

Если классификация наук — это их расчленение «по вертикали», то периодизация — это их развертывание «по горизонтали», т. е. по оси времени в форме определенных, следующих друг за другом, исторических периодов (ступеней, фаз, этапов). Прежде всего рассмотрим, что такое периодизация как таковая.

Исследуя историю любого материального или духовного явления (в том числе и науки), следует иметь в виду, что это сложный диалектический поступательный процесс «появления различий», включающий в себя ряд качественно своеобразных этапов, фаз и т. п. Поэтому задача познания состоит в том, чтобы добиться понимания действительного исторического процесса в его различных фазах, установить специфику этих фаз, их сходство и отличия, их границы и связь между ними. Каждую из этих ступеней, фаз следует рассматривать как некоторую целостность, как качественно определенную систему, имеющую свою специфическую структуру, свои «составляющие», свои элементы, связи и т. п. Хотя границы между этапами истории предмета не являются «абстрактно-строгими», а они гибки и подвижны, их правильное проведение в соответствии с объективной природой самих предметов является важнейшим условием успешного исследования. Причем следует стремиться к изучению всех ступеней развития предмета, всех фаз его истории (основных и неосновных, существенных и несущественных и т. п.) с тем, чтобы затем выделить среди них главные, необходимые, «узловые».

Существует два основных вида периодизации: 1) формальный, когда в основу деления истории предмета на соответствующие ступени кладется тот или иной отдельный «признак» (или их группа); 2) диалектический, когда основой (критерием) этого деления становится основное противоречие исследуемого предмета, которое необходимо выделить из всех других противоречий последнего. Формальная периодизация широко применяется особенно на начальных этапах исследования истории предмета, т. е. на эмпирическом уровне, на уровне «явления», и поэтому ее нельзя, разумеется, недооценивать или тем более полностью отвергать. Вместе с тем значение этого вида периодизации нельзя преувеличивать, абсолютизировать ее возможности. Переход в научном

78

исследовании на теоретический уровень, на ступень познания «сущности» предмета, вскрытие его противоречий и их развития означает, что периодизация истории предмета должна уже осуществляться с более высокой — диалектической точки зрения. На этом уровне предмет необходимо изобразить как «совершающее процесс противоречие». Главные формы, ступени развертывания этого противоречия (прежде всего основного) и будут главными этапами развития предмета, необходимыми фазами его истории.

Таким образом, развитие, история предмета, его переходы от одного этапа к другому, есть в конечном счете не что иное, как развертывание основного, фундаментального противоречия между его полюсами (противоположностями). Каждый основной этап, главная, необходимая ступень — это одно из посредствующих звеньев этого развертывания, причем эволюция основного противоречия — это процесс возрастания не только количества посредствующих, промежуточных звеньев, но и их качественных различий, выражающих специфику каждого главного этапа истории предмета.

Применяя сказанное о периодизации к истории науки, следует прежде всего подчеркнуть следующее. Наука — явление конкретное — историческое, проходящее в своем развитии ряд качественно-своеобразных этапов. Вопрос о периодизации истории науки и ее критериях по сей день является дискуссионным и активно обсуждается в отечественной и зарубежной литературе.

Один из подходов, который получает у нас все большее признание, разработан В. С. Степиным на материале истории естествознания — прежде всего физики — и состоит в следующем. «В истории формирования и развития науки можно выделить две стадии, которые соответствуют двум различным методам построения знаний и двум формам прогнозирования результатов деятельности. Первая стадия характеризует зарождающуюся науку (преднауку), вторая — науку в собственном смысле слова»1.

Тем самым науке как таковой (т. е. науке в собственном смысле слова) предшествует преднаука (доклассический этап), где зарождаются элементы (предпосылки) науки. Здесь имеются в виду зачатки знаний на Древнем Востоке, в Греции и Риме, а также в средние века, вплоть до XVIXVII столетий. Именно этот период

1 Степин В. С. Теоретическое знание. М., 2000. С. 54.

79

чаще всего считают началом, исходным пунктом естествознания (и науки в целом) как систематического исследования реальной действительности.

В. С. Степин полагает, что этап преднауки завершается тогда и «наука в собственном смысле» начинается с того момента, когда в последней «наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания — теория, позволяющая получить эмпирические зависимости как следствия из теоретических постулатов»1. Иначе говоря, когда познание «начинает строить фундамент новой системы знания как бы «сверху» по отношению к реальной практике и лишь после этого, путем опосредовании, проверяет созданные из идеальных объектов конструкции, сопоставляя их с предметными отношениями практики»2.

Наука как целостный феномен возникает в Новое время вследствие отпочкования от философии и проходит в своем развитии три основных этапа: классический, неклассический, постнеклассический (современный). На каждом из этих этапов разрабатываются соответствующие идеалы, нормы и методы научного исследования, формируется определенный стиль мышления, своеобразный понятийный аппарат и т. п. Критерием (основанием) данной периодизации является соотношение (противоречие) объекта и субъекта познания.

1. Классическая наука (XVII—ХГХ вв.), исследуя свои объекты, стремилась при их описании и теоретическом объяснении устранить по возможности все, что относится к субъекту, средствам, приемам и операциям его деятельности. Такое устранение рассматривалось как необходимое условие получения объективно-истинных знаний о мире. Здесь господствует объектный стиль мышления, стремление познать предмет сам по себе, безотносительно к условиям его изучения субъектом.

2. Неклассическая наука (первая половина XX в.), исходный пункт которой связан с разработкой релятивистской и квантовой теории, отвергает объективизм классической науки, отбрасывает представление реальности как чего-то не зависящего от средств ее познания, субъективного фактора. Она

1  Степин В. С. Теоретическое знание. М., 2000. С. 58.

2 Там же. С. 57.

80

осмысливает связи между знаниями объекта и характером средств и операций деятельности субъекта. Экспликация этих связей рассматривается в качестве условий объективно-истинного описания и объяснения мира.

3. Существенный признак постнеклассической науки (вторая половина XX — начало XXI в.) — постоянная включенность субъективной деятельности в «тело знания». Она учитывает соотнесенность характера получаемых знаний об объекте не только с особенностью средств и операций деятельности познающего субъекта, но и с ее ценностно-целевыми структурами. Каждая из названных стадий имеет свою парадигму (совокупность теоретико-методологических и иных установок), свою картину мира, свои фундаментальные идеи. Классическая стадия имеет своей парадигмой механику, ее картина мира строится на принципе жесткого (лапласовского) детерминизма, ей соответствует образ мироздания как часового механизма. С неклассической наукой связана парадигма относительности, дискретности, квантования, вероятности, дополнительности.

Постнеклассической стадии соответствует парадигма становления и самоорганизации. Основные черты нового (постнеклассического) образа науки выражаются синергетикой, изучающей общие принципы процессов самоорганизации, протекающих в системах самой различной природы (физических, биологических, технических, социальных и др.). Ориентация на «синергетическое движение» — это ориентация на историческое время, системность (целостность) и развитие как важнейшие характеристики бытия. При этом смену классического образа науки неклассическим, а последнего — постнеклассическим нельзя понимать упрощенно в том смысле, что каждый новый этап приводит к полному исчезновению представлений и методологических установок предшествующего этапа. Напротив, между ними существует преемственность. Налицо «закон субординации»: каждая из предыдущих стадий входит в преобразованном, модернизированном виде в последующую. Неклассическая наука вовсе не уничтожила классическую, а только ограничила сферу ее действия. Например, при решении ряда задач небесной механики не требовалось привлекать принципы квантовой механики, а достаточно было ограничиться классическими нормативами исследования.

81

Следует иметь в виду, что историю науки можно периодизировать и по другим основаниям Так, с точки зрения соотношения таких приемов познания, как анализ и синтез (опять же на материале естественных наук), можно выделить две крупные стадии.

I. Аналитическая, куда входит — по предыдущей периодизации — классическое и неклассическое естествознание. Причем в последнем идет постоянное и неуклонное нарастание «синтетической тенденции». Особенности этой стадии: непрерывная дифференциация наук; явное преобладание эмпирических знаний над теоретическими; акцентирование внимания прежде всего на самих исследуемых предметах, а не на их изменениях, превращениях, преобразованиях; рассмотрение природы, по преимуществу неизменной, вне развития, вне взаимосвязи ее явлений.

П. Синтетическая, интегративная стадия, которая практически совпадает с постнеклассическим естествознанием. Ясно, что строгих границ между названными стадиями провести невозможно: во-первых, глобальной тенденцией является усиление синтетической парадигмы, во-вторых, всегда имеет место взаимодействие обеих тенденций при преобладании одной из них.

Характерной особенностью интегративной стадии является возникновение (начавшееся уже, по крайней мере, со второй половины предыдущей стадии) междисциплинарных проблем и соответствующих «стыковых» научных дисциплин — таких как физхимия, биофизика, биохимия, психофизика, геохимия и др. Поэтому в современном естествознании уже нет ни одной науки «в рафинированном чистом виде» и идет процесс построения целостной науки о природе и единой науки о всей действительности в целом.

Заключая параграф, отметим, что наука не есть нечто неизменное, а представляет собой целостное развивающееся формообразование, которое имеет свое прошлое, настоящее и будущее. Последнее достаточно точно предвидел К. Маркс, который писал, что поскольку научное творчество возможно как истинно человеческое отношение к миру, то «впоследствии естествознание включит в себя науку о человеке в такой же мере, в какой наука о человеке включит в себя естествознание: это будет одна наука»1. Эта тенденция достаточно четко просматривается в развитии современной науки.

1 Маркс К., Энгельс Ф. Соч. 2-е изд. Т. 42. С. 124.

82

§2. Культура античного полиса и становление первых форм теоретической науки

Зарождение первых форм теоретического знания традиционно связывают с античностью. Хотя Древний Восток, Индия, Китай и удивляют нас чудесными изобретениями, но знания здесь носят специфический характер. Так, в древнеегипетской цивилизации возник сложный аппарат государственной власти, тесно сращенный с сакральным аппаратом жрецов. Носителями знаний были жрецы, в зависимости от уровня посвящения, обладавшие той или иной суммой знаний. Знания существовали в религиозно-мистической форме, и только жрецы могли читать священные книги и как носители практических знаний имели власть над людьми. Они накапливали знания в области математики, химии, медицины, фармакологии, психологии, искусно владели гипнозом. Искусное мумифицирование свидетельствует о том, что древние египтяне имели определенные достижения в области медицины, химии, хирургии, физике, ими была разработана иридодиагностика.

Так как любая хозяйственная деятельность была связана с вычислениями, то был накоплен большой массив знаний в области математики: вычисление площадей, подсчет произведенного продукта, расчет выплат, налогов; использовались пропорции, так как распределение благ велось пропорционально социальным и профессиональным рангам. Для практического употребления создавалось множество таблиц с готовыми решениями. Древние египтяне занимались только теми математическими операциями, которые были необходимы для их непосредственных хозяйственных нужд, но никогда они не создавали теорий, что является одним из важнейших признаков научного знания.

Шумеры изобрели гончарный круг, колесо, бронзу, цветное стекло, установили, что длительность года равна 365 дням, 6 часам, 15 минутам 41 секунде (для справки: современное значение 365 дней, 5 часов, 48 минут 46 секунд).

Специфика освоения мира шумерской и другими цивилизациями Древней Месопотамии обусловлена способом мышления, в корне отличающимся от европейского: нет рационального исследования мира, теоретического решения проблем, а чаще всего

83

для объяснения являющегося используются аналогии из жизни людей.

Предпосылкой возникновения научных знаний многие исследователи истории науки считают миф. Миф — не только сказание, предание или легенда, он еще и способ ориентации человека в мире, это особый тип мышления. В результате его «строятся» мифопоэтические модели мира. Одной из основных особенностей мифопоэтического мышления является антропоморфизм (или зооморфизм), т. е. очеловечивание окружающей природной среды. Эту особенность принято связывать с тем, что первобытный человек еще не выделил себя из окружающей среды — природной и социальной, а логическое мышление не было еще отделено от эмоционально аффектно-моторной сферы.

Все космогонические мифы состоят из двух частей: первая — это описание того, что было до «начала» (до акта творения), т. е. это описание хаоса; вторая — серия положительных суждений о последовательном стадиальном сотворении мироздания.

Этот процесс имеет строгую направленность от общего (небо, земля, солнце) к частному. Каждый объект в мире определен операционально, т.е. через действие, породившее этот объект. Объяснить структуру вещи или суть явления — значит описать создание этой вещи творцом. В мифе совмещены два аспекта: диахронический (рассказ о прошлом, о первопредках, о первопредметах в «начальном» сакрально-священном времени) и синхронический (объяснение настоящего, а иногда и будущего).

В мифе, как правило, происходит отождествление различных предметов, явлений, событий (Солнце=золото, вода=молоко = кровь). Для выполнения отождествления необходимо было овладеть операцией выделения существенных признаков, а также научиться сопоставлять различные предметы, явления по выделенным признакам. Указанные особенности в дальнейшем сыграли заметную роль в формировании научной методологии, так как нацеливали на выявление внутренних инвариантных причин явлений, т. е. ориентировали человека на разграничение мира явлений и мира их глубинных структур. Примером таких древних первичных структур могут служить элементы-стихии: земля, вода, воздух, огонь. За каждым из них стоит огромный класс природных явлений, как бы подчиненных этому элементу.

84

Формирование зачатков научных знаний и методов связывают с тем культурным переворотом, который произошел в древней Греции. «Великая колонизация», охватившая VIIIVI вв. до н. э., заключавшаяся в основании греческих поселений на чужой территории, дала возможность грекам выйти из изоляции, способствовала развитию предприимчивости, изобретательности, воспитывала терпимость к иным взглядам, обычаям, культурам. В это время ремесло начинает отделяться от сельского хозяйства, возникает товарное производство, развиваются товарно-денежные отношения, расцветает культура, философия, зарождается натурфилософия.

Что же послужило причиной культурного переворота? Рассмотрим, как нам кажется, две дополняющие друг друга концепции культурного переворота, разработанные М. К. Петровым и А. И. Зайцевым.                                                              

Рассматривая переход от традиционного общества к нетрадиционному, в котором возможно создание науки, развитие философии, искусства, М. К. Петров считает, что для традиционного общества характерна личностно-именная и профессионально-именная трансляция культуры. Каждая семья, являющаяся группой связанных кровным родством людей, — носитель определенной профессии. Большинство профессий наследственные. Семья является транслятором освоенных профессиональных навыков из поколения в поколение. Семьи обмениваются продуктами своей профессиональной деятельности. Соотношение между численностью профессиональных групп жестко регламентируется и зависит это от того, сколько продуктов земледелия можно выделить на нужды других профессий: гончаров, плотников, воинов и т. д. Как правило, на земле должно работать не менее 80% населения.

Общество такого типа может развиваться либо через совершенствование приемов и орудий труда, повышения качества продукта, либо за счет увеличения профессий путем их отпочкования. В этом случае объем и качество знаний, передаваемых из поколения в поколение, увеличивается благодаря специализации. Но при таком развитии наука появиться не могла, ей не на что было бы опереться, уж ли не на знания и навыки, передаваемые от отца сыну? Кроме того, в таком обществе невозможно совмещение разнородных профессий без снижения качества продукции. Что же тогда послужило причиной разрушения традиционного общества, положило конец развитию через специализацию?

85

По мнению М. К. Петрова, такой причиной стал пиратский корабль. Для людей, живущих на берегу, всегда существует угроза с моря, поэтому гончар, плотник обязательно должен быть еще и воином. Но и пираты на корабле — это тоже бывшие гончары и плотники. Следовательно, возникает настоятельная необходимость совмещения профессий. А защищаться и нападать можно только сообща, значит, необходима интеграция, которая гибельна для профессионально дифференцированного традиционного общества. Это означает и возрастание роли слова, подчиненность ему (одни решают, другие исполняют), что впоследствии приводит к осознанию роли закона (номоса) в жизни общества, равенства всех перед ним. Закон выступает и как знание для всех. Систематизация законов, устранение в них противоречий — это уже рациональная деятельность, опирающаяся на логику.

В концепции А. И. Зайцева упор делается на особенности общественной психологии древних греков, обусловленные социальными, политическими, природными и другими факторами. Хозяйственную и политическую жизнь античного полиса пронизывает дух соревнования, конкуренции. Причем, что очень важно с точки зрения А. И. Зайцева, соревновательный, атональный дух присущ чаще всего формам деятельности, лишенным утилитарного значения. Призы за победу не представляли никакой материальной ценности, ценной была сама победа. Кроме атлетического агона, существовал мусический агон, т. е. соревнования певцов, музыкантов, танцоров и т.д.

Около V в. до н. э. усиливаются демократические тенденции в жизни греческого общества, приводящие к критике аристократической системы ценностей, среди которых важнейшее место занимал атлетический агон. Но атональный дух не умер, он переместился в сферу культуры. В это время в социуме стали стимулироваться творческие задатки индивидуумов, даже если сначала плоды их деятельности были практически бесполезны. Стимулируются публичные споры по проблемам, не имеющим никакого прямого отношения к обыденным интересам спорящих, что способствовало развитию критичности, без которой немыслимо научное познание.

В отличие от Востока, где бурно развивалась техника счета для практических, хозяйственных нужд, в Греции начала формироваться «наука доказывающая», недаром термины «теорема», «аксиома», «лемма» — греческого происхождения.

86

По мнению В.С. Степина, существует два метода формирования знаний, соответствующих зарождению науки (преднауки) и науки в собственном смысле слова. Зарождающаяся наука изучает, как правило, те вещи и способы их изменений, с которыми человек многократно сталкивается в своей практической деятельности и обыденном опыте. Он пытается строить модели таких изменений для предвидения результатов своих действий. Деятельность мышления, формирующаяся на основе практики, представляла идеализированную схему практических действий. Так, египетские таблицы сложения представляют типичную схему практических преобразований, осуществляемых над предметными совокупностями. Такая же связь с практикой обнаруживается в первых знаниях, которые относятся к геометрии, основанной на практике измерения земельных участков.

Способ построения знаний путем абстрагирования и систематизации предметных отношений наличной практики обеспечивал предсказание ее результатов в границах уже сложившихся способов практического освоения мира Если на этапе преднауки как первичные идеальные объекты, так и их отношения (соответственно смыслы основных терминов языка и правила оперирования с ними) выводились непосредственно из практики и лишь затем внутри созданной системы знания (языка) формировались новые идеальные объекты, то теперь познание делает следующий шаг. Оно начинает строить фундамент новой системы знания как бы «сверху» по отношению к реальной практике и лишь после этого, путем ряда опосредствовании, проверяет созданные из идеальных объектов конструкции, сопоставляя их с предметными отношениями практики.

При таком методе исходные идеальные объекты черпаются уже не из практики, а заимствуются из ранее сложившихся систем знания (языка) и применяются в качестве строительного материала для формирования новых знаний. Эти объекты погружаются в особую «сеть отношений», структуру, которая заимствуется из другой области знания, где она предварительно обосновывается в качестве схематизированного образа предметных структур действительности. Соединение исходных идеальных объектов с новой «сеткой отношений» способно породить новую систему знаний, в рамках которой могут найти отображение существенные

87

черты ранее не изученных сторон действительности. Прямое или косвенное обоснование данной системы практикой превращает ее в достоверное знание.

В развитой науке такой способ исследования встречается буквально на каждом шагу. Так, например, по мере эволюции математики числа начинают рассматриваться не как прообраз предметных совокупностей, которыми оперируют в практике, а как относительно самостоятельные математические объекты, свойства которых подлежат систематическому изучению. С этого момента начинается собственно математическое исследование, в ходе которого из ранее изученных натуральных чисел строятся новые идеальные объекты. Применяя, например, операцию вычитания к любым парам положительных чисел, можно было получить отрицательные числа при вычитании из меньшего числа большего.

Открыв для себя класс отрицательных чисел, математика делает следующий шаг. Она распространяет на них все те операции, которые были приняты для положительных чисел, и таким путем создает новое знание, характеризующее ранее не исследованные структуры действительности. Описанный способ построения знаний распространяется не только в математике, но и в естественных науках (метод выдвижения гипотез с их последующим обоснованием опытом).

С этого момента заканчивается преднаука. Поскольку научное познание начинает ориентироваться на поиск предметных структур, которые не могут быть выявлены в обыденной практике и производственной деятельности, оно уже не может развиваться, опираясь только на эти формы практики. Возникает потребность в особой форме практики, обслуживающей развивающееся естествознание, — научном эксперименте1. Зачатки подобного метода формирования знаний можно наблюдать в античности. Древние греки пытаются описать и объяснить возникновение, развитие и строение мира в целом и вещей, его составляющих. Эти их представления получили название натурфилософских. Натурфилософией (философией природы) называют преимущественно философски-умозрительное истолкование природы, рассматриваемой в целостности, опирающееся на некоторые естественно-

1 См.: Степин В. С. Теоретическое знание. М., 2000. С. 57—58.

88

научные понятия. Некоторые из этих идей востребованы и сегодняшним естествознанием.

Для создания моделей Космоса нужен был достаточно развитый математический аппарат. Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным образом мироздания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения ключом к пониманию мироустройства. И это создавало особые предпосылки для возникновения теоретического уровня математики. Задачей становилось изучение чисел и их отношений не просто как моделей тех или иных практических ситуаций, а самих по себе, безотносительно к практическому применению. Ведь познание свойств и отношений чисел теперь мыслилось как познание начал и гармонии Космоса. Числа представали как особые объекты, которые нужно постигать разумом, изучать их свойства и связи, а затем уже, исходя из знаний об этих свойствах и связях, объяснять наблюдаемые явления.

Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений (познания, привязанного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к новым формам опыта, открывая неизвестные ранее веши, их свойства и отношения. В пифагорейской математике наряду с доказательством ряда теорем (наиболее известной из которых является знаменитая теорема Пифагора), были осуществлены важные шаги к соединению теоретического исследования свойств геометрических фигур со свойствами чисел. Так, число «10», которое рассматривалось как совершенное число, соотносилось с треугольником1.

К началу IV в. до н. э. было представлено Гиппократом Хиосским первое в истории человечества изложение основ геометрии, базирующейся на методе математической индукции. Достаточно полно была изучена окружность, так как для греков круг являлся идеальной фигурой и необходимым элементом их умозрительных

1 См.: Степин В.С. Теоретическое знание. М., 2000. С. 67—68.

89

построений. Немногим позже стала развиваться геометрия объемных тел — стереометрия. Теэтетом была создана теория правильных многогранников, он указал способы их построения, выразил их ребра через радиус описанной сферы и доказал, что никаких других правильных выпуклых многогранников существовать не может.

Особенности греческого мышления, которое было рациональным, теоретическим, что в данном случае равносильно созерцательному (θεωρεω — рассматриваю, созерцаю), наложили отпечаток на формирование знаний в этот период. Основная деятельность ученого состояла в созерцании и осмыслении созерцаемого. А что же созерцать, как не небесный свод, по которому движутся небесные светила? Без сомнения, наблюдения над небом производились и в чисто практических целях в интересах навигации, сельского хозяйства, для уточнения календаря. Но не это было для греков главным. Надо было не столько фиксировать видимые перемещения небесных светил по небесному своду и предсказывать их сочетания, а разобраться в смысле наблюдаемых явлений, включив их в общую схему мироздания. Причем в отличие? от Древнего Востока, который накопил огромный материал подобных наблюдений и использовал их в целях предсказаний, астрология в Древней Греции не находила своего применения.

Первая геометрическая модель Космоса была разработана Эвдоксом (IV в. до н. э.) и получила название модели гомоцентрических сфер. Затем она была усовершенствована Калиппом. Последним этапом в создании гомоцентрических моделей была модель, предложенная Аристотелем. В основе всех этих моделей лежит представление о том, что Космос состоит из ряда сфер или оболочек, обладающих общим центром, совпадающим с центром Земли. Сверху Космос ограничен сферой неподвижных звезд, которые совершают оборот вокруг мировой оси в течение суток. Все небесные тела (Луна, Солнце и пять в то время известных планет: Венера, Марс, Меркурий, Юпитер, Сатурн) описываются системой взаимосвязанных сфер, каждая из которых вращается равномерно вокруг своей оси, но направление оси и скорость движения для различных сфер могут быть различными. Небесное тело прикреплено к экватору внутренней сферы, ось которой жестко связана с двумя точками следующей по порядку сферой, и т, д. Таким образом, все сферы находятся в непрерывном движении.

90

Во всех гомоцентрических моделях расстояние от любой планеты до центра Земли всегда остается одинаковым, поэтому невозможно объяснить видимые колебания яркости таких планет, как Марс, Венера, следовательно, вполне резонно, что могли появиться иные модели Космоса.

И к таким моделям можно отнести гелиоцентрические модели Гераклида Понтийского (IV в. до н. э.) и Аристарха Самосского (III в. до н э.), но они не имели в то время широкого распространения и приверженцев, потому что гелиоцентризм расходился с традиционными воззрениями на центральное положение Земли как центра мира и гипотеза о ее движении встречала активное сопротивление со стороны астрономов.

Среди значимых натурфилософских идей античности представляют интерес атомистика и элементаризм. Как считал Аристотель, атомистика возникла в процессе решения космогонической проблемы, поставленной Парменидом Элейским (около 540— 450 гг до н. э ). Если проинтерпретировать мысль Парменида, то проблема будет звучать так: как найти единое, неизменное и не-уничтожающееся в многообразии изменчивого, возникающего и уничтожающегося. В античности известны два пути решения этой проблемы.

Согласно первому, все сущее построено из двух начал: начала неуничтожимого, неизменного, вещественного и оформленного и начала разрушения, изменчивости, невещественности и бесформенного. Первое — атом («нерассекаемое»), второе — пустота, ничем не наполненная протяженность. Такое решение было предложено Левкиппом (V в. до н. э.) и Демокритом (около 460— 370 гг. до н. э.). Бытие для них не едино, а представляет собой бесконечные по числу невидимые вследствие малости объемов частицы, которые движутся в пустоте; когда они соединяются, то это приводит к возникновению вещей, а когда разъединяются, то — к их гибели. Основа качественного многообразия мира — это многообразие геометрических форм и пространственных положений атомов.

Второй путь решения проблемы Парменида связывают с Эмпедоклом (около 490—430 гг. до н. э.). По его мнению, Космос образован четырьмя элементами-стихиями: огнем, воздухом, водой, землей и двумя силами: любовью и враждой. Элементы не подвержены качественным изменениям, они вечны и непреходящи,

91

однородны, способны вступать друг с другом в различные комбинации в разных пропорциях. Все вещи состоят из элементов.

Платон (427—347 гг. до н. э.) объединил учение об элементах и атомистическую концепцию строения вещества. В «Тимее» философ утверждает, что четыре элемента — огонь, воздух, вода и земля — не являются простейшими составными частями вещей. Он предлагает их называть началами и принимать за стихии (στοι→ειοω — т. е. «буквы»). Различия между элементами определяются различиями между мельчайшими частицами, из которых они состоят, Частицы имеют сложную внутреннюю структуру, могут разрушаться, переходить друг в друга, обладают разными формами и величинами. Платон, а это вытекает из структурно-геометрического склада его мышления, приписывает частицам, из которых состоят элементы, формы четырех правильных многогранников — куба, тетраэдра, октаэдра и икосаэдра. Им соответствуют земля, огонь, воздух, вода.

Так как некоторые элементы могут переходить друг в друга, то и преобразования одних многогранников в другие может происходить за счет перестройки их внутренних структур. Для этого необходимо найти в этих фигурах общее. Таким общим для тетраэдра, октаэдра и икосаэдра является грань этих фигур, представляющая собой правильный (равносторонний) треугольник. Куб из этих фигур не может быть получен, и только одна стихия, которая не может переходить в три другие, должна быть сопоставлена ему — это земля. Но равносторонний треугольник и квадрат, являющийся гранью куба, не элементарные частицы. Если в квадрате провести диагонали, а в равностороннем треугольнике высоты, то полученные прямоугольные треугольники — равнобедренный и с углами 30° и 60° соответственно и будут истинными элементами мира.

Как отмечает И. Д. Рожанский, предложенные американским физиком К. Гелл-Манном гипотетические простейшие структурные единицы материи — кварки — имеют некоторые черты, напоминающие платоновские элементарные треугольники. И те и другие не существуют отдельно, самостоятельно. Как и свойства треугольников, свойства кварков определяются числом 3: существует всего три рода кварков, электрический заряд кварка равен одной трети заряда электрона и т. д. Изложенная в «Тимее» атомистическая концепция Платона, заключает И. Д. Рожанский,

92

«представляет собой поразительное, уникальное и в каких-то отношениях провидческое явление в истории европейского естествознания»1.

Аристотель (384—322 гг. до н.э.) создал всеобъемлющую систему знаний о мире, наиболее адекватную сознанию своих современников. В эту систему вошли знания из области физики, этики, политики, логики, ботаники, зоологии, философии. Вот названия только некоторых из них: «Физика», «О происхождении и уничтожении», «О небе», «Механика», «О душе», «История животных» и др. Согласно Аристотелю, истинным бытием обладает не идея, не число (как, например, у Платона), а конкретная единичная вещь, представляющая сочетание материи и формы. Материя — это то, из чего возникает вещь, ее материал. Но чтобы стать вещью материя должна принять форму. Абсолютно бесформенна только первичная материя, в иерархии вещей лежащая на самом нижнем уровне. Над ней стоят четыре элемента, четыре стихии. Стихии — это первичная материя, получившая форму под действием той или иной пары первичных сил — горячего, сухого, холодного, влажного. Сочетание сухого и горячего дает огонь, сухого и холодного — землю, горячего и влажного — воздух, холодного и влажного — воду. Стихии могут переходить друг в друга, вступать во всевозможные соединения, образуя разнообразные вещества.

Чтобы объяснить процессы движения, изменения развития, которые происходят в мире, Аристотель вводит четыре вида причин: материальные, формальные, действующие и целевые. На примере с бронзовой статуей философ показывает, что материальная причина — бронза, действующая — деятельность ваятеля, формальная — форма, в которую облекли бронзу, целевая — то, ради чего ваялась статуя.

Для Аристотеля не существует движения помимо вещи. На основании этого он выводит четыре вида движения: в отношении сущности — возникновение и уничтожение; в отношении количества — рост и уменьшение; в отношении качества — качественные изменения; в отношении места — перемещение. Виды движения не сводимы друг к другу и друг из друга не выводимы. Но между ними существует некоторая иерархия, где первое движение

1 Романский И. Д. Платон и современная физика // Платон и его эпоха. М., 1979. С. 171.

93

— перемещение. Согласно Аристотелю, движение непрерывно, вечно и для осуществления его должен существовать первый неподвижный и тоже вечный двигатель. Движение по прямой для него не является вечным, так как прямая не бесконечна. Чтобы быть бесконечным, движение должно быть круговым, только шар движется и в то же самое время покоится, так как занимает одно и то же место.

На основе этих представлений Аристотелем построена своеобразная космология: Космос ограничен, имеет форму сферы, за пределами которой нет ничего. Космос вечен и неподвижен, он не сотворен никем и не возник в ходе естественного космического процесса. Он заполнен материальными телами, которые в «подлунной» области образованы из четырех элементов — воды, воздуха, огня и земли, в этой области тела возникают, преобразовываются, гибнут. В «надлунной» области нет возникновения и гибели, в ней находятся небесные тела — звезды, планеты, Земля, Луна, которые совершают свои круговые движения, и пятый элемент — эфир, «первое тело», ни с чем не смешиваемое, вечное, не переходящее в другие элементы. В центре Космоса находится шарообразная Земля, неподвижная, не вращающаяся вокруг своей оси. Аристотель впервые в истории человеческого знания попытался определить размеры Земли, вычисленный им диаметр земного шара примерно в два раза превысил истинный.

Велика заслуга Аристотеля в создании логики. И хотя были мыслители и до него, применявшие логические приемы рассуждений (Зенон из Элей, Демокрит, Сократ, математики, выходцы из пифагорейской и платоновских школ — Гиппократ из Хеоса, Евдокс из Книда), но Аристотель впервые представил приемы рассуждений как целостное образование и сделал их предметом научного исследования. Центральная проблема его учения — выяснение вопроса: как строится дедуктивное рассуждение (силлогизм), с помощью которого «ведут доказательства и математические науки, такие как арифметика, геометрия, оптика, и, можно сказать, все науки, исследующие причины»1.

Эпоху эллинизма (IV в. до н. э. — I в. до н. э.) считают наиболее блестящим периодом становления научного знания. В это

1 Аристотель. Вторая аналитика // Аристотель. Соч.: В 4 т. Т. 2. М., 1978. С. 282-283.

94

время хотя и происходило взаимодействие культур греческой и восточной на завоеванных землях, но преобладающее значение имела все-таки греческая культура. Основной чертой эллинистической культуры стал индивидуализм, вызванный неустойчивостью социально-политической ситуации, невозможностью для человека влиять на судьбу полиса, усилившейся миграцией населения, возросшей ролью правителя и бюрократии. Это отразилось как на основных философских системах эллинизма — стоицизме, скептицизме, эпикуреизме, неоплатонизме, так и на некоторых натурфилософских идеях. Так, в физике стоиков Зенона Катионского (336—264 гг. до н. э.), Клеанфа из Ассоса (331—232 гг. до н. э.), Христт из Сол (281—205 гг. до н. э.) большое значение придавалось законам, по которым существует Природа, т. е. мировому порядку, которому, осознав его, должны с радостью подчиняться стоики.

В физике стоиков использовались аристотелевские представления о первоэлементах, в которые ими вносились новые идеи: соединение огня и воздуха образует субстанцию, названную «пнев-мой» (πνευμα — «теплое дыхание»), которой приписывали функции мировой души. Она сообщает индивидуальность вещи, обеспечивая ее единство и целостность, выражает логос вещи, т.е. закон ее существования и развития. Пневма является активным мировым агентом в отличие от физического тела, которое — пассивный участник процессов.

Согласно стоикам, мир представляется единым и взаимосвязанным потоком событий, где все имеет причину и следствие. И эти всеобщие и необходимые связи они называли роком или судьбой. Наряду с причинной обусловленностью явлений, существует их определенная направленность к благой, прекрасной и разумной цели. Следовательно, кроме судьбы стоики признают и благотворное провидение (Trpovoicc), что свидетельствует о тесной связи стоической физики и этики.

Также тесно связаны физика и этика у Эпикура (342—270 гг. до н. э.), который считал, что все вещи потенциально делимы до бесконечности, но реально такое деление превращало бы вещь в ничто, поэтому надо мысленно где-то остановиться. Поэтому атом Эпикура — это мысленная конструкция, результат остановки деления вещи на некотором пределе.

95

Атомы Эпикура наделены тяжестью и поэтому движутся сверху вниз, но при этом могут «спонтанно отклоняться» от вертикального перемещения. В поэме Лукреция Кара «О природе вещей» это отклонение получило название clinamen. Отклонившиеся атомы описывают разнообразные кривые, сплетаются, ударяются друг об друга, в результате чего образуется вещный мир.

В эпоху эллинизма наибольшие успехи были зафиксированы в области математических знаний. Так, Евклиду (конец IV — начало III в. до н. э.) принадлежит выдающаяся работа античности — «Stoicheia» (т.е. «Элементы», что в современной литературе получило название «Начала»). Этот 15-томный труд явился результатом систематизации имевшихся в то время знаний в области математики, часть из которых, по утверждению исследователей, принадлежит предшественникам Эвклида. Успехами в разработке методов вычисления площадей поверхностей и объемов геометрических тел отмечена жизнь Архимеда (около 287—212 гг. до н. э.). Но в большей степени Архимед известен как гениальный механик и инженер.

III вв. до н.э. характеризуются упадком эллинистических государств как под воздействием взаимных войн, так и под ударами римских легионеров, теряют свое значение культурные центры, приходят в упадок библиотеки, научная жизнь замирает.

В это время в результате завоевательных войн прирастает новыми территориями и расцветает Римская империя. Хотя престиж системы знаний эллинов был достаточно высок и на первых порах знание греческого языка для римской знати было свидетельством высокой образованности, но дух своей избранности, предначертанной богами, приводил к мнению, что римлянину и без науки есть чем гордиться, теоретизирование — это удел иноземцев, и поэтому римляне изучали геометрию, чтобы «измерить свой надел», в то время как греки для того, чтобы познать мир. Это не могло не отразиться на книжно-компиляторском характере римской учености. Рим не дал миру ни одного мыслителя, который по своему уровню мог быть приближен к Платону, Аристотелю, Архимеду. Все это компенсировалось созданием компилятивных работ, носивших характер популярных энциклопедий.

Большой славой пользовалась девятитомная энциклопедия Марка Терренция Варрона (116—27 гг. до н.э.), содержавшая знания из области грамматики, логики, риторики, геометрии, арифметики,

96

астрономии, теории музыки, медицины и архитектуры. Веком позже шеститомный компендиум, посвященный сельскому хозяйству, военному делу, медицине, ораторскому искусству, философии и праву, составляет Авл Корнелий Цельс. Наиболее известное сочинение этой поры — поэма Тита Лукреция Кара (ок. 99—95 гг. — ок. 55 г. до н. э.) «О природе вещей», в которой дано наиболее полное и систематическое изложение эпикурейской философии. Энциклопедическими работами были труды Гая Плиния Секунда Старшего (23—79 гг. н.э.), Луция Аннея Сенеки (4 г. до н.э. — 65 г. н.э.).

Кроме этих компиляций, были созданы труды больших знатоков своего дела: это сочинения Витрувия «Об архитектуре», Секста Юлия Фронтина «О римских водопроводах», Луция Юния Модерета Колемеллы «О сельском хозяйстве» (I в. н.э.). Ко II в. нашей эры относится деятельность величайшего врача, физиолога и анатома Клавдия Галет (129—199 гг.) и астронома Клавдия Птолемея (умер около 170 г. н.э.), система которого наиболее приближенным образом объясняла движение небесных тел с позиций геоцентрического принципа и поэтому в течение столетий считалась наивысшей точкой развития теоретической астрономии.

В античности появляются такие системы знаний, которые можно представить как первые теоретические модели, рвущие узы натурфилософских схем и претендующих на самостоятельную значимость. Но отсутствие экспериментальной базы не дает возможности рождения подлинно теоретического естествознания и науки в целом.

§3. Средневековая наука

Эпоху Средневековья относят к началу II в. н. э., а ее завершение к XIVXV вв. Знания, которые формируются в эпоху Средних веков в Европе, вписаны в систему средневекового миросозерцания, для которого, характерно стремление к всеохватывающему знанию, что вытекает из представлений, заимствованных из античности: подлинное знание — это знание всеобщее, аподиктическое (доказательное). Но обладать им может только творец, только ему доступно знать, и это знание только универсальное. В этой парадигме нет места знанию неточному, частному, относительному, неисчерпывающему.

97

Так как все на земле сотворено, то существование любой вещи определено свыше, следовательно, она не может быть несимволической. Вспомним новозаветное: «Вначале было Слово, и Слово было у Бога, и Слово было Бог». Слово выступает орудием творения, а переданное человеку, оно выступает универсальным орудием постижения мира. Понятия отождествляются с их объективными аналогами, что выступает условием возможности знания. Если человек овладевает понятиями, значит, он получает исчерпывающее знание о действительности, которая производна от понятий. Познавательная деятельность сводится к исследованию последних, а наиболее репрезентативными являются тексты Священного писания.

Все «вещи видимые» воспроизводят, но не в равной степени «вещи невидимые», т. е. являются их символами. И в зависимости от приближенности или отдаленности от Бога, между символами существует определенная иерархия. Телеологизм выражается в том, что все явления действительности существуют по промыслу Бога и для предуготовленных им ролей (земля и вода служат растениям, которые в свою очередь служат скоту).

Как же, исходя из таких установок, может осуществляться познание? Только под контролем церкви. Формируется жесткая цензура, все противоречащее религии подлежит запрету. Так, в 1131 г. был наложен запрет на изучение медицинской и юридической литературы. Средневековье отказалось от многих провидческих идей античности, не вписывающихся в религиозные представления. Так как познавательная деятельность носит теологически-текстовой характер, то исследуются и анализируются не вещи и явления, а понятия. Поэтому универсальным методом становится дедукция (царствует дедуктивная логика Аристотеля). В мире, сотворенном Богом и по его планам, нет места объективным законам, без которых не могло бы формироваться естествознание. Но в это время существуют уже области знаний, которые подготавливали возможность рождения науки. К ним относят алхимию, астрологию, натуральную магию и др. Многие исследователи расценивают существование этих дисциплин как промежуточное звено между натурфилософией и техническим ремеслом, так как они представляли сплав умозрительности и грубого наивного эмпиризма.

98

Так, средневековые ученые, как правило, выходцы из арабских университетов, свое знание называли натуральной магией, понимая под ней надежное и глубокое познание тайн природы. Магия понималась как глубокое знание скрытых сил и законов Вселенной без их нарушения и, следовательно, без насилия над Природой. Маг — это больше практик-экспериментатор, нежели теоретик-концептуалист. Маг желает, чтобы опыт удался, и прибегает к всевозможным приемам, формулам, молитвам, заклинаниям и пр.

Схоластика (от лат. — школьный), оформившаяся в IX— ХП вв., стремится к обновлению религиозных догматов, приспосабливая их к удобствам преподавания в университетах и школах. Большое значение придается логике рассуждений, в которой схоласты видят путь постижения Бога. С расцветом схоластической учености связано оттачивание логического аппарата, рассудочных способов обоснования знания, при которых сталкиваются тезис и антитезис, аргументы и контраргументы Схоластом величает себя всякий, кто занимается преподавательской деятельностью: Эриугена, Альберт Великий, Фома Аквинский, Абеляр, Ансельм Кентерберийский. Важными для них являются вопросы о соотношении разума и веры, науки и религии. Соотношение философии и теологии истолковывается неоднозначно. Ансельм Кентерберийский считает, что истины, добытые разумом, но противоречащие авторитету Священного писания, должны быть забыты или отвергнуты.

Абеляр стремится к четкому разграничению между верой и знанием и предлагает сначала с помощью разума исследовать религиозные истины, а затем судить, заслуживают они веры или нет. Ему принадлежит ставший знаменитым принцип: «понимать, чтобы верить». В отличие от веры философия, как и знание, опирается на доказательства разума. Работа Абеляра «Да и нет» собрала 159 каверзных вопросов христианской догматики. На них были предложены ответы из авторитетных церковных писаний и показано, что на каждый из вопросов в распоряжении богослова имеется как утвердительный, так и отрицательный ответ.

Знаменитый ученый Альберт Великий (1193—1207) имел столь обширные сведения по естествознанию, что был удостоен звания «Doctor Universalis» (всеобъемлющий доктор»). Философ преподавал в Парижском университете и стремился согласовать богословие

99

(как опыт сверхъестественного) и науку (как опыт естественного). Главным методом научного исследования он считал наблюдение, и был уверен, что при исследовании природы надо постоянно обращаться к наблюдению и опыту. В своей тайной мастерской он проводил многочисленные эксперименты. Так как он много путешествовал, в его наследии есть географические сочинения, свидетельствующие о его наблюдательности. Его опыты по физике сообщают, что стеклянный шар, наполненный водой, собирает солнечные лучи в одну точку, в которой сосредоточивается большое количество теплоты. Он указывал и способ исследования воды: если два куска полотна, опущенные в разные источники, после высыхания будут иметь разный вес, то кусок, который окажется легче, свидетельствует о более чистой воде. Ученый «маг» придерживался убеждения, что все происходит на основании скрытых законов природы.

В учении Фомы Аквинского (1225—1274) есть указания на метод интеллектуального, т. е. постигающего, созерцания, который схватывает не образ предмета, дальше которого не могут идти ни физика, ни математика, но прообраз этого образа, действительную форму предмета, «которая есть само бытие и от которой бытие происходит».

Систему образования на первых порах в средневековье представляли монастырские школы, которые готовили священнослужителей. Более высокий класс школ, тоже готовивших священнослужителей, представляли собой так называемые епископские школы, начавшие появляться примерно с VIII в. В их деятельности принимал участие епископ и приближенные к нему духовные лица, а повседневное обучение осуществляли специально подготовленные учителя (magistri).

Что же касается содержания обучения во всех этих школах, то его первую ступень составляло светское знание, а вторую, высшую, — теология. Светским знанием назывались те семь «свободных искусств», которые сложились еще в поздней античности. Но по сравнению с римской эпохой содержание этих искусств было значительно урезано, так как приспосабливалось к выполнению религиозно-церковных и богословских функций. Грамматика, например, сводилась к изучению правил латинского языка, языка Священного писания. Риторика была сведена церковью к умению составления проповедей, а затем и к умению составления

100

различных документов. Арифметика, необходимая для элементарного счета, получала также функцию мистического истолкования чисел, встречающихся в Священном писании. Геометрия включала в себя некоторые, порой весьма фантастические, сведения относительно различных стран и земель, а также и населявших их народов. Музыка целиком была сведена к искусству организации церковного песнопения. Астрономия стала предметом, с помощью которого можно было прежде всего определять сроки наступления христианских праздников.

В дальнейшем, наряду с церковными школами, стали возникать и светские. Среди таких школ выделялись юридические (правовые). Нередко они возникали из светских же школ риторики. Усложнение экономики и всей жизни с необходимостью требовало правовых знаний. В Болонье уже в конце XI в. возник один из первых европейских университетов, который в течение всех Средних веков играл роль первого научного и преподавательского центра по изучению юриспруденции.

На протяжении всего Средневековья важнейшей составляющей образования являлась логика, которой отводилось значительное место в трудах многих авторов. Рассмотрим одну из более поздних концепций логики, принадлежащую Раймунду Луллию (1235—1315). В ней логика определяется как такое искусства, с помощью которого истина может быть отличаема от лжи (двузначное толкование истинности). Весьма плодотворно в исторической перспективе понимание Луллием задачи логики. Так как логики, подобно самому Аристотелю, ставили перед своей наукой задачу доказательства истин, а не их открытия, то именно такую задачу и поставил перед собой Луллий — дополнить логику доказательства логикой открытий. С этой целью он изложил свои попытки механического моделирования логического мышления, с помощью которого даже человек средних способностей сможет открывать новые истины и убеждаться в непоколебимой истинности только католической религии.

Механизм, описанный им, представляет собой систему семи концентрических кругов, каждый из которых содержит группу сходных понятий. На одном из них, например, помещались такие «субстанции», как бог, ангел, человек, небо и др., на другом — соответствующие им абсолютные предикаты, такие, как могущество, знание, благость, длительность и др., на третьем— такие

101

относительные предикаты, как великое, благое и др. Вращение кругов относительно друг друга дает разнообразные комбинации терминов, представляющие собой новые понятия (благой бог, великий бог, великая благость бога и т. п.). Логический механизм Луллия заключал в себе весьма значительную идею формализации логических действий посредством оперирования различными общими знаками. Связь такого рода логической техники с христианско-католической теологией более чем внешняя (вряд ли с ее помощью невозможно было обратить в христианство ни одного язычника). Но историки логики последних десятилетий квалифицируют Луллия как предшественника комбинаторных методов в новейшей логике. Не случайно в дальнейшем логический механизм Луллия (сама его идея) был высоко оценен Лейбницем, считающимся отцом математической логики.

Вскрывая особенности средневековой науки, ученые отмечают, что, прежде всего, она выступает как совокупность правил, в форме комментариев. Второй особенностью является тенденция к систематизации и классификации знаний. Компиляция, столь чуждая и неприемлемая для науки Нового времени, составляет характерную черту средневековой науки, связанную с общей мировоззренческой и культурной атмосферой этой эпохи.

Средневековая западная культура — специфический феномен. С одной стороны, продолжение традиций античности, свидетельство тому — существование таких мыслительных комплексов, как созерцательность, склонность к абстрактному умозрительному теоретизированию, принципиальный отказ от опытного познания, признание превосходства универсального над уникальным. С другой стороны, разрыв с античными традициями: алхимия, астрология, имеющие «экспериментальный» характер. А на Востоке в средние века наметился прогресс в области математических, физических, астрономических, медицинских знаний.

Начиная с VII в. в политической жизни стран Ближнего и Среднего Востока произошли важные изменения. Арабы в очень короткий срок захватили обширные территории, куда вошли земли Ирана, Северной Африки, азиатских провинций Византии, значительной части бывшей Римской империи, Армении, Северо-Западной Индии, на которых был создан Арабский халифат.

В городах халифата строились обсерватории, создавались библиотеки при дворцах, мечетях, медресе. Внутренняя и внешняя

102

торговля также способствовала распространению и передаче знаний. Первый научный центр халифата — Багдад (конец VIII — начало IX в.), где были сосредоточены ученые, переводчики и переписчики из разных стран, располагалась большая библиотека, постоянно пополняемая, функционировала своеобразная академия «Дом мудрости», на базе которого была создана обсерватория.

Труды ученых разных стран, которые в силу сложившихся обстоятельств оказываются на территории халифата, переводятся на арабский. В IX в. была переведена книга «Великая математическая система астрономии» Птолемея под названием «Аль-маги-сте» (великое), которая потом вернулась в Европу как «Альмагест». Переводы и комментарии «Альмагеста» служили образцом для составления таблиц и правил расчета положения небесных светил. Также были переведены и «Начала» Евклида и сочинения Аристотеля, труды Архимеда, которые способствовали развитию математики, астрономии, физики. Греческое влияние отразилось на стиле сочинений арабских авторов, которые характеризует систематичность изложения материала, полнота, строгость формулировок и доказательств, теоретичность. Вместе с тем в этих трудах присутствует характерное для восточной традиции обилие примеров и задач чисто практического содержания. В таких областях, как арифметика, алгебра, приближенные вычисления, был достигнут уровень, который значительно превзошел уровень, достигнутый александрийскими учеными.

Интерес для нас представляет личность Мухаммеда ибн Муса ал-Хорезми (780—850), автора нескольких сочинений по математике, которые в ХП в. были переведены на латынь и четыре столетия служили в Европе учебными пособиями. Через его «Арифметику» европейцы познакомились с десятичной системой счисления и правилами (алгоритмами — от имени ал-Хорезми) выполнения четырех действий над числами, записанными по этой системе. Ал-Хорезми была написана «Книга об ал-джебр и ал-мукабала», целью которой было обучить искусству решения уравнений, необходимых в случаях наследования, раздела имущества, торговли, при измерении земель, проведении каналов и т.д. «Ал-джебр» (отсюда идет название такого раздела математики, как алгебра) и «ал-мукабала» — приемы вычислений, которые были известны Хорезми еще из «Арифметики» позднегреческого математика (Ш в.) Диофанта. Но в Европе об алгебраических приемах

103

узнали только от ал-Хорезми. Никакой специальной алгебраической символики у него даже в зачаточном состоянии еще нет. Запись уравнений и приемы их решений осуществляются на естественном языке.

По известной характеристике Энгельса, после александрийского периода в развитии положительной науки именно у арабов она делает дальнейший шаг в своем развитии. Это относится к различным отраслям знания, и прежде всего к математике и астрономии. Важнейшее достижение арабоязычной науки состоит в заимствовании у индийских ученых позиционной системы счисления и в совершенствовании ее.

В дальнейшем другие арабоязычные ученые добились новых достижений в алгебре (например, рассматривали задачи, требующие решения уравнений третьей, четвертой и пятой степеней, а также извлечения корней тех же степеней). Были заложены основы тригонометрии, которая была связана с достижениями арабоязычной астрономии. Так, астроном аль-Баттани (858—927), автор комментария к птолемеевскому Альмагесту, с помощью впервые введенных им тригонометрических функций производил более точные по сравнению с Птолемеем астрономические наблюдения.

Аль-Фараби (870—950) первым среди арабоязычных философов осмыслил и в известной мере доработал логическое наследие Аристотеля. Мыслитель собрал и упорядочил весь комплекс аристотелевского «Органона» (присоединив к нему «Риторику», до тех пор неизвестную среди арабоязычных философов), написал комментарии ко всем его книгам и несколько собственных работ по вопросам логики. За заслуги в развитии логического знания он получил почетный титул «Второго учителя» («Первым» считался сам Аристотель).

Наиболее замечательное в области физики имя — алъ-Хайсам аль-Газен (965—1039) из Басры. Его труд по оптике, изданный на латинском языке в конце XVI в. и оказавший влияние на Кеплера, не только трактовал законы отражения и преломления света, но и давал поразительно точное для того времени описание строения глаза.

Как и в античности, в арабоязычном средневековье было немало ученых-энциклопедистов, сделавших значительный вклад в различные науки. Среди них — среднеазиатский ученый аль-Бируни

104

(973—1048), в произведениях которого трактовались вопросы математики, астрономии, физики, географии, общей геологии, минералогии, ботаники, этнографии, истории и хронологии. Так, Бируни установил метод определения географических долгот, близкий к современному, а также определил длину окружности Земли. Впервые на средневековом Востоке великий ученый сделал предположение о возможности обращения Земли вокруг Солнца. В своих трудах Бируни привел достаточно точные математические константы (например, определения удельных весов минералов), определил их распространенность (а также распространенность руд, металлов, сплавов), подробно описал календарные системы различных ближневосточных народов. Географические познания Бируни весьма показательны для успехов этой науки в арабоязычном мире, в котором широкая торговля в странах Южной Азии, Африки и Европы развивала географическую и этнографическую любознательность. Бируни, живший в Индии и изучавший санскритскую литературу, написал большой труд об этой стране. Следует также отметить, что он первым познакомил индийских ученых с достижениями древнегреческой математики и астрономии, переведя некоторые из трудов античных ученых на санскрит.

Широко известна деятельность арабских ученых в области алхимии, которая хотя и преследовала недостижимые цели (превращение неблагородных металлов в благородные), но в процессе этих многовековых поисков открыла новые элементы (ртуть, сера), впоследствии использованные химией. Хотя деятельность алхимиков (затем получившая широкое распространение и в Европе) не могла стать экспериментальным естествознанием, но в какой-то степени способствовала его будущему возникновению.

Известны достижения практической медицины в странах эпохи Средневековья. Еще задолго до Бируни автор многочисленных работ по естественным наукам и философии Закария Рази (864— 925) написал «Книгу объемлющую», своего рода медицинскую энциклопедию, составленную на основе работ античных и арабо-язычных ученых с добавлениями автора, почерпнутыми из его собственного богатого врачебного опыта. В других своих произведениях Рази весьма резко для своего времени говорил о чудесах, якобы творимых пророками, как об обмане и плутовстве, о вреде религиозных направлений и сект, религиозным книгам противопоставлял

105

произведения Платона, Аристотеля, Эвклида и Гиппократа.

К наиболее ярким представителям ближневосточного средневековья можно отнести Омара Хайяма (1048—1131), великого иранского ученого и значительного философа, великолепного поэта, автора всемирно известных четверостиший (рубай). В качестве ученого Хайям больше всего сделал в математике. В алгебре он систематически изложил решение уравнений до третьей степени включительно, написал «Комментарии» к «Началам» Евклида. Значительны достижения Хайяма в области астрономии: взамен лунного календаря, принесенного арабами, он возвратился к солнечному календарю, который был принят в Иране и Средней Азии до арабского завоевания, и усовершенствовал его.

Абу Али ибн Сына (Авиценна) (980—1037) — философ, математик, астроном, врач, чей «Канон врачебной науки» снискал мировую славу и представляет определенный познавательный интерес сегодня. На основе идей Аристотеля он создал своеобразную классификацию наук.

Ибн-Рушд (1126—1198) — философ, естествоиспытатель, добившийся больших успехов в области алхимии, автор медицинских трудов, комментатор Аристотеля, был сторонником единого интеллекта и космического детерминизма. Он считал, что активный интеллект, существуя вне и независимо от индивидуумов, есть вечный коллективный разум рода человеческого, который не возникает, не уничтожается и заключает в себе общие истины в обязательной для всех форме. Он есть субстанция истинно духовной жизни, и познавательная деятельность индивидуума образует лишь частное проявление ее. Разумное познание человека есть, следовательно, безличная и сверхличная функция: это временная причастность индивидуума к вечному разуму. Последняя есть та общая сущность, которая реализуется в высших проявлениях индивидуальной деятельности.

Эти и многие другие выдающиеся ученые арабского средневековья внесли большой вклад в развитие медицины, в частности глазной хирургии, что натолкнуло на мысль об изготовлении из хрусталя линз для увеличения изображения. В дальнейшем это привело к созданию оптики.

Работая на основе традиций, унаследованных от египтян и вавилонян, черпая некоторые знания от индийцев И китайцев и,

106

что самое важное, переняв у греков приемы рационального мышления, арабы применили все это в опытах с большим количеством веществ. Тем самым вплотную подойдя к созданию химии.

В XV в. после убийства Улугбека и разгрома Самаркандской обсерватории начинается период заката математических, физических и астрономических знаний на Востоке и центр разработки проблем естествознания, математики переносится в Западную Европу.

§4. Формирование опытной науки в новоевропейской культуре

Формирование опытной науки связано с изменяющимися представлениями человека о его взаимосвязи с природой. Человек должен представить себя активным началом в исследовании природы, и это связано с зарождением идеи экспериментального исследования в культуре Нового времени. В искусственных условиях эксперимента человек призван «испытать» природный объект с тем, чтобы выявить его скрытые сущностные определения, знание которых создаст ему условия более комфортного существования в мире.

Большинство исследователей средневековой науки отмечают, что в XIVXV вв. естествознание близко подошло к созданию методов новой науки. Этому предшествовал прогресс ремесленного производства, рост городов, а успешные торговые контакты с арабским Востоком вернули Западу многие труды античных мыслителей и вместе с ними принесли и натурфилософские труды

самих арабов.

Были возрождены основные натуралистические книги Аристотеля, а также труды, содержащие его методологию натуралистического опыта и наблюдения. В результате — усиление интереса к естественнонаучным идеям и исследованиям. Познание природы в этот период концентрируется вокруг двух университетских центров: Оксфордского и Парижского университетов.

Работа по переводу античных и арабоязычных философов, интенсивно проводившаяся в Толедо и в Палермо, в это время распространилась и на Оксфордский университет. Одним из первых переводчиков стал Альфред Английский (ум. ок. 1220), привезший

107

в Оксфорд некоторые естественнонаучные произведения Аристотеля.

Оксфордская школа сыграла значительную роль в развитии и распространении естествознания. Главная роль в становлении школы принадлежала францисканцу Роберту Гроссетесту (Большеголовому, 1175—1253), который был магистром, а затем и канцлером Оксфордского университета. В 1235 г. стал также епископом Линкольна. Зная еврейский, арабский и греческий языки, он один из первых стал переводить естественнонаучные произведения Аристотеля непосредственно с оригинала, писал комментарии к ним. Но более интересен Гроссетест как автор собственных естественнонаучных трактатов, среди которых важнейший трактат «О свете или о начале форм».

Научные интересы Гроссетеста концентрировались вокруг вопросов оптики, математики (особенно геометрии), астрономии. Он обосновал приложимость геометрических законов самоумножения света ко всей физической реальности, а также сформулировал учение о порождении, суммировании и соотношении бесконечных величин и доктрину о «мультипликации видов», развитую позднее Адамом Маршем и Роджером Бэконом. О Гроссетесте пишут как о ярком теоретике и даже практике экспериментального естествознания. В своих работах он высказывает мысли о том, что изучение явлений начинается с опыта, посредством их анализа (resolutio) устанавливается некоторое общее положение, рассматриваемое как гипотеза. Отправляясь от нее, уже дедуктивно (compositio) выводятся следствия, опытная проверка которых устанавливает их истинность или ложность. Эти свои идеи Исследователь проводил в опытах над преломлением света (особенно наблюдая явления радуги). Он размышлял также над распространением звуковых колебаний, над морскими приливами, над явлениями из области медицины. Для проверки гипотез Гроссетест использует методы фальсификации и верификации.

Метод фальсификации используется там, где нет еще никакой рациональной теории, и естествоиспытатель вынужден произвести отбор подходящих гипотез, т. е. отбросить то, что «не соответствует природе вещей». Метод верификации предполагает установление зависимостей путем наблюдения и проверку их в изолирующем эксперименте.

108

В построении объяснительных схем и в выборе между ними Гроссетест руководствовался двумя общими формальными «метафизическими» принципами. Один из них — принцип единообразия (uniformity) природы, подразумевающий, что причины всегда единообразны в своих действиях, что из разнородных действий следует умозаключать к разнородным причинам, и наоборот. Этот своеобразный принцип простоты был для него не только принципом отбора теорий или принципом, руководящим процессом индукции, он использовал его и в качестве принципа самого физического объяснения. Второе предположение, которое делает Гроссетест, состоит в принципе экономии (lex parsimoniae). Он заимствует его у Аристотеля, который установил этот принцип как некий прагматический регулятив: если одна вещь более доказана из многих предпосылок, а другая вещь — из немногих предпосылок, одинаково ясных, то лучшая из них та, которая доказана из немногих, потому что она быстрее дает нам знание.

«С такими предпосылками у Гроссетеста возникает противоречие между «онтологической» и «методологической» метафизикой, если к последней относить принципы, подобные только что перечисленным (природа проста, природа не делает скачков и т. д.). Так, например, в астрономии Гроссетеста не согласовывались геометрически более мощная модель эпициклов и метафизически более оправданная аристотелевская модель гомоцентрических сфер. В связи с этим начинает развиваться противопоставление чисто математической теории-простоты-ради и физико-метафизической «истинной» теории — противопоставление, сыгравшее в свое время чуть ли не решающую роль. В комментарии к VIII книге «Физики» (имеется в виду работа Аристотеля. — Т.Ф.) Гроссетест допускает анализ движения в вакууме в качестве нереального, чисто математического случая. «Пространство, взятое как нереальный математический образ, может быть представлено и как пустое и как бесконечное, хотя эти атрибуты не могут быть приписаны реальному пространству»1.

Гроссетест в попытке выработать общую методологию естественнонаучного исследования исходит из идей Аристотеля, изложенных им во «Второй Аналитике». Но для достижения этой цели необходимо изменить понятие причины и механизм при-

1 Ахутин А. В. История принципов физического эксперимента. М., 1976. С. 152.

109

чинного действия. Четыре аристотелевские причины Гроссетест заменяет двухполюсной причинно-следственной цепочкой, где действующая причина заняла место большей посылки, конечная причина — место вывода или заключения, а формальная и имматериальная причины — место среднего, специфического члена, исполняющего роль границ и условий обнаружения действия. Фундаментальность этой схемы для всего последующего развития физического мышления непреходяща.

«Именно это преобразование создает центр того прогрессивного в дальнейшем процесса, в котором рождается сама идея всеобщей физики, в котором преобразуется понятие научного объяснения, теоретического построения и точного эксперимента. Результат этого движения мы найдем в XVII в., но уже в ХШ в. совершается необходимое изменение в научной культуре и даже ...развивается определенный набросок всеобщей физики, не получивший, впрочем, особого развития»1. Необходимо напомнить, что обычной для множества средневековых трактатов была мысль о том, что только в математике вещи, известные нам, и вещи, существующие по природе, тождественны. Исходя из этого, модель математического объяснения становится моделью идеального знания, и даже теологическую аргументацию мыслители этой поры пытаются сформулировать согласно математико-дедуктивному методу.

Но математика описывает явления в чистом виде и ничего не говорит о том, почему это происходит именно так. Ответить на этот вопрос может только метафизика. «Именно в этом — корень того «эмпиризма» и «индуктивизма», который показался многим столь похожим на методологию науки Нового времени и ... скорее, является чертой, принципиально отличающей средневековый метод физического мышления от экспериментально-теоретического метода Новой науки»2.

Наиболее фундаментальным достижением оксфордской физики являются теория света и оптика, которые могут пониматься как основа некоторой универсальной физической теории. Натурфилософская концепция света Гроссетеста, например, уменьшала творческую роль бога. Согласно этой концепции, бог создает

1 Ахутин А. В. История принципов физического эксперимента. М., 1976. С. 153.

2 Там же. С. 157.

110

вначале некий светящийся пункт, который, мгновенно расширяясь, рождает огромную сферу, где слиты начала материи и формы. На поверхности сферы материя более разрежена, но она сгущается к центру. Такая поверхность и называется небом, «первым телом», — единство первой материи и первой формы. Небесная сфера ограничена в пространстве. Самое важное в этой концепции — понятие о свете, геометрические законы распространения которого составляют конститутивные законы мироздания, которые доступны человеческому познанию.

Природа познается посредством применения математики, а основу физики составляет оптика. Гроссетест видел в свете естественный источник природной активности, воздействия вещей друг на друга. Весь мир для него является результатом самовозрастающей светящейся массы. Эта тончайшая субстанция образует краски, звуки, растения и даже животных. И в человеке все — порождение единого светового начала, а свет человеческого знания — только ничтожно малая частица абсолютного божественного света.

Основные достижения Оксфордской школы связаны с научной деятельностью членов Мертонского колледжа при Оксфордском университете. Важное место среди них занимает Фома Бродвардин, который пытался выработать математический способ описания движений тел посредством придания физическим процессам количественных показателей. А его ученики — Ричард Кил-лингтон, Ричард Суиссет (Суайнсхед), Уильям Хейтесбери и Джон Дамблтон, так называемые «калькуляторы», стремясь объединить квалитативную физику Аристотеля и учение о пропорциях Евклида, пытались создать единую систему «математической физики», основанной на возможности арифметико-алгебраического выражения качества. К главным практическим достижениям «калькуляторов» относится теорема о среднем градусе скорости, или «мертоновское правило», согласно которому равномерно ускоряющееся или замедляющее движение эквивалентно равномерно ускоряющемуся движению со средней скоростью. В работах «калькуляторов» формировались такие понятия математики, как переменная величина, логарифм, дробный показатель, бесконечный ряд.

К ученикам Гроссетеста относят английского натурфилософа и богослова Роджера Бэкона (ок. 1214—1242) — одного из наиболее интересных, оригинальных мыслителей своего века, которого называли «удивительным доктором» («doctor mirabilis»). Мировоззрение

111

Р. Бэкона, с одной стороны, формировалось под влиянием естественнонаучных интересов оксфордского кружка, руководимого Гроссетестом, а с другой — в неприятии умозрительных рассуждений схоластиков. Схоластике Р. Бэкон противопоставлял программу практического назначения знания, с помощью которого человек может добиться своего могущества и улучшения жизни. Ему принадлежат идеи, которые предвосхищали будущее развитие науки и техники: о создании судов без гребцов, управляемых одним человеком; о колесницах, передвигающихся без коней; о летательных аппаратах, птичьеобразными крыльями которых двигал бы один человек, сидящий в его середине; о приспособлениях, которые позволили бы человеку передвигаться по дну рек и морей; о создании зеркала, концентрирующего солнечные лучи, способные сжигать все встречающееся на их пути, и др. Некоторые историки считают, что «удивительному доктору» удалось создать порох.

Вслед за арабскими философами и естествоиспытателями Р. Бэкон создает энциклопедию, значительное место в которой отводит математике, представляющей из себя комплекс дисциплин, прежде всего геометрии и арифметики, затем астрономии и музыки (предполагают, что имеется в виду акустика). Мыслитель считает, что только математика достоверна и несомненна и с помощью ее необходимо проверять все остальные науки. Она же и самая легкая из наук, ибо она «доступна уму каждого», следовательно, с нее и надо начинать обучение детей. Все «науки должны познаваться не с помощью диалектических и софистических доводов, а с помощью математических доказательств, доходящих до истин и дел других наук и управляющих ими»; благодаря применению математики «наука, полная сомнений, мнений и неясных мест, может быть удостоверена и достичь очевидности и истинности»1. Но для получения истинных знаний одних только математических доказательств недостаточно. Для лучшего понимания и устранения сомнений необходим опыт.

Р. Бэкон выделял два основных способа познания — «с помощью доказательств и из опыта». Также существует и два вида опыта. Один из них приобретается посредством «внешних

1 Антология мировой философии: В 2 т. Т. 1. Ч. 2. М., 1969. С. 870— 872.

112

чувств» — человек может полагаться на свои органы чувств (например, зрение), на свидетельства очевидцев, а также на специально изготовленные инструменты (если мы, например, исследуем небесные явления). Однако этого внешнего опыта недостаточно, «ибо он не вполне удостоверяет нас относительно телесных вещей из-за трудностей познания и совсем не касается духовных вещей». Поэтому необходим другой вид опыта — опыт «внутренний», который становится возможным только в мистических состояниях избранных благодаря обретению внутреннего озарения, божественной «иллюминации». Причем, добавляет Бэкон, этот второй род опыта гораздо лучше первого. Допускает Р. Бэкон и третью разновидность опыта.

В. В. Соколов отмечает: «Он учил, что существовал некий совсем уже фантастический праопыт, которым всемогущий бог наделил «святых отцов и пророков». Они совсем не опирались на свои органы чувств, ибо бог открыл им науки через внутреннее озарение (как открывает он их некоторым верующим и впоследствии). Ветхозаветные патриархи и пророки оказались в соответствии с этой концепцией первыми философами и учеными, знавшими всю истину и все науки, греческие же философы, в частности Аристотель, заимствовали от них только часть этих истин. И вообще бог, недовольный людьми, сообщает им лишь частичную истину, правду смешивает с ложью. Опираясь на опыт, они могут выявить ее, но истина в ее полном объеме не может быть доступна людям»1.

Р. Бэкон подчеркивал, что «голое доказательство», не сопровождаемое опытом, не может доставить полного удовлетворения. Как ни неопровержимы, например, доказательства различных теорем относительно равностороннего треугольника, окончательную убедительность они приобретают, если доказывающий строит данный треугольник и все, что связано с доказательством той или иной теоремы, собственными усилиями. Философ заключает: «Опытная наука — владычица умозрительных наук». Предполагают, что здесь впервые введен термин «опытная наука». Опыт включает в себя физику, в которую входят алхимия, астрономия, астрология, медицина, в известном смысле и математика. Согласно Р. Бэкону, опытная наука, являясь источником новых истин,

1 Соколов В. В. Средневековая философия. М., 1979. С. 331.

113

не входящих в эмпирическое содержание других наук, должна обеспечить верификацию (т. е. подтверждение или опровержение) умозрительных начал. Кроме того, она «предписывает, как делать удивительные орудия и как, создав их, ими пользоваться, а также рассуждает обо всех тайнах природы на благо государства и отдельных лиц и повелевает остальными науками, как своими служанками»1.

Как отмечает А. В. Ахутин, «когда средневековые ученые патетически призывают к опытному исследованию, порицают, подобно Роджеру Бэкону, ложный авторитет, дурную традицию и невежественные мнения толпы, отсюда еще никоим образом нельзя делать вывод, что здесь закладывается фундамент «экспериментальной науки» в современном смысле слова. Ни Гроссетесту, ни Альберту Великому, ни Р. Бэкону не приходило в голову сомневаться в основах христианского мировоззрения. Речь шла только о необходимости и, может быть, даже о преимуществе опытного постижения божественных истин через наблюдение порядка творения. Никто из них не нарушал иерархии средневековых наук с теологией и метафизикой во главе. Даже Р. Бэкон отводит лишь одну часть своего «Большого сочинения» для указания преимуществ опытной науки, в которую он включает астрологию и алхимию. Может быть, еще большую роль играла концепция мистического опыта, непосредственного, чувственного постижения божественных истин внутренним созерцанием, озарением, для которого простой «натуралистический» опыт служит лишь подготовительным этапом, известного рода упражнением и очищением2.

Английский философ и логик Уильям Окнам (ок. 1300—1349/ 1350) внес большой вклад в развитие логического учения. Он родился недалеко от Лондона, учился и преподавал в Оксфордском университете и, несомненно, испытал значительное воздействие эмпирической философской школы, связанной с именами Гроссетеста и Роджера Бэкона. Среди работ Оккама наиболее значительны — «Распорядок», «Избранное», «Свод всей логики» («Summa totius logicae»). В эпоху Оккама в формировании знания преобладали вербальные псевдообобщения, которые становились тормозом

1 Антология мировой философии: В 2 т. Т. 1. Ч. 2. М., 1969. С. 873.

2 См.: Ахутин А. В. История принципов физического эксперимента. М., 1976. С. 148.

114

развития действительно научного, предметного знания. Целям разрушения такого тормоза служила знаменитая «бритва Оккама». Чаще всего она формулируется словами: «Без необходимости не следует утверждать многое». Реже фигурирует другая формулировка: «То, что можно объяснить посредством меньшего, не следует выражать посредством большего». В последующей традиции оккамизма была выработана еще более краткая формулировка «бритвы Оккама»: «Сущностей не следует умножать без необходимости», что означает, что каждый термин обозначает лишь определенный предмет. Для Оккама реально существуют только единичные вещи и интенция — устремление человеческой души на предмет познания.

Оккам развивает учение о существовании двух разновидностей знания. Первое из них он называет знанием интуитивным (notitio intuitiva). Интуитивное у него означает наглядное и включает в себя как ощущение, так и внутреннее переживание его. Поэтому «с него и начинается основанное на опыте знание»1 (notitia experimentalis). Такая трактовка интуитивного знания приближает его к линии сенсуализма. Основное его назначение — констатировать наличие той или иной вещи.

Вторую разновидность знания Оккам именует абстрагированным знанием (notitia abstractive). С одной стороны, это общее знание можно непосредственно постичь в душе и тогда он называет его тоже интуитивным. Но первый смысл абстрагированного знания в том, что оно относится к множеству единичных вещей, и здесь наиболее очевиден его концептуалистический смысл. В отличие от интуитивного знания абстрагированное может отвлекаться от их существования или несуществования.

Теорию общих понятий Оккама называют терминизмом. Термин — простейший элемент всякого знания, всегда выраженного словом. Будучи единичным, оно становится общим (в уме) в связи с тем или иным значением, которое ему придается. Поэтому универсалии трактуются как знаки. Одни из них естественны и могут быть непосредственно отнесены к соответствующим вещам (дым — к огню, смех — к радости). Другие же искусственны, условны, когда словам придается то или иное значение, относимое не к одной, а ко многим вещам.

Антология мировой философии: В 2 т. Т. 1. Ч. 2. М., 1969. С. 893.

115

В другом контексте Оккам различает две разновидности терминов. Термины первичной интенции — это знаки, относящиеся к внешним вещам, но ничего о них не утверждающие. Знание, связанное с ними, заключает в себе психологическую природу, объясняющую образование самих терминов: «Сократ», «человек», «животное» и т. п. От них отличаются термины вторичной интенции, направленной уже не на вещи, а на термины первичной интенции. Именно здесь и возникают универсалии как термины, значение которых относится ко многим вещам.

Из двух разновидностей терминов вытекают и два рода наук. Одни из них — реальные, трактующие о самом бытии. Другие — рациональные, рассматривающие понятия с точки зрения их отношения не к вещам, а к другим понятиям. Без всякого сомнения, это логика, имеющая дело с термином (знаками знаков). В ней знаки из орудий знания становятся объектом его. Эмпиристическое острие «бритвы Оккама» расчищало поле для естественнонаучных исследований. Однако форма изложения новых идей, особенности доказательства и аргументации оставались у него вполне схоластическими, нередко весьма искусственными. Идеи Оккама были широко распространены в средневековых университетах.

Реализация идей опытной науки Р. Гроссетеста, Р. Бэкона, «калькуляторов» и др. оставалась вопросом будущего. В частности, проведение экспериментов предполагало создание соответствующей экспериментальной техники, устройств, приборов и т. д. Но для развития техники и инженерного искусства требовались огромные материальные ресурсы, которые реально появились лишь в эпоху Возрождения. Создание новой техники, в свою очередь, предполагало гораздо более широкое применение математических расчетов, использование прикладных математических моделей, которое стимулировало развитие математических исследований.

Несмотря на значительное увеличение числа инженеров, строителей и ученых-практиков, идея о том, что законы природы могут быть описаны языком математики, исключительно медленно пробивала себе дорогу на протяжении всей эпохи Возрождения. Ее судьба напрямую зависела от эффективности применения математических расчетов в повседневной жизни и инженерном искусстве, от их вклада в технический прогресс и, наконец, от масштабов

116

применения техники в военном деле, в мореплавании, в строительстве, в мануфактурном производстве и т. д.

Характерно, что, изучая локальное движение, движение равномерное и равноускоренное, западноевропейские математики XIV в. никогда не делали попыток применить полученные математические модели к физическим событиям, скажем, к падающим телам, не пытались подвергнуть их экспериментальным проверкам. Даже для Н. Коперника его собственная кинематическая модель — это лишь вычислительные гипотезы, предполагающие более правдоподобное объяснение движения небесных тел. В эпоху Возрождения интерес христианских теологов к эпистемологическим проблемам, связанным с характерным для таких мыслителей ХIIIXIV вв., как Р. Гроссетест и Р. Бэкон, применением в опытной науке математических доказательств и с экспериментальной проверкой умозрительных «начал», в значительной мере был утрачен1.

Но в это же самое время изменяется и роль человека в мире. Зарождается новый тип мышления, связанный с процессом секуляризации, начинающимся в Европе в XV в. и выражающимся в приобретении самостоятельности, автономности по отношению к церкви и религии социально-политической, экономической, духовной жизни — философии, науки, искусства. Происходит постепенная смена мировоззренческой ориентации: для человека значимым становится посюсторонний мир, автономным, универсальным и самодостаточным становится индивид. В протестантизме происходит разделение знания и веры, ограничение сферы применения человеческого разума миром «земных вещей», под которым понимается практически ориентированное познание природы.

«Предоставив дело спасения души «одной лишь вере», протестантизм тем самым вытолкнул разум на поприще мировой практической деятельности — ремесла, хозяйства, политики. Применение разума в практической сфере тем более поощрялось, что сама эта сфера, с точки зрения реформаторов, приобретает особо важное значение: труд выступает теперь как своего рода мирская аскеза, поскольку монашескую аскезу протестантизм не принимает. Отсюда уважение к любому труду — как крестьянскому, так и ремесленному, как деятельности землекопа, так и деятельности

1 См.: Меркулов И. Л. Эпистемология (когнитивно-эволюционный подход). Т. 1. СПб., 2003. С. 370—371.

117

предпринимателя. Этим объясняется характерное для протестантов признание особой ценности технических и научных изобретений, всевозможных усовершенствований, которые способствуют облегчению труда и стимулированию материального производства»1. В этих условиях и возникает экспериментально-математическое естествознание.

Среди тех, кто подготавливал рождение науки, был Николай Кузанский (1401—1464), идеи которого оказали влияние на Джордано Бруно, Леонардо да Винчи, Н. Коперника, Галилео Галилея, И. Кеплера. В своих философских воззрениях на мир Кузанский вводит методологический принцип совпадения противоположностей — единого и бесконечного, максимума и минимума, из которого следует тезис об относительности любой точки отсчета, тех предпосылок, которые лежат в фундаменте арифметики, геометрии, астрономии и других знаний. Отсюда философ делает заключение о предположительном характере всякого человеческого знания, а не только того, которое мы получаем, опираясь на опыт, как считали в античности. Поэтому он уравнивает в правах и науку, основанную на опыте, и науку, основанную на доказательствах.

Большое внимание Кузанский придает измерительным процедурам, поэтому интерес представляет попытка дать «опытное» обоснование геометрии с помощью взвешивания, которое воспринимается им как универсальный прием. Механические средства измерения уравниваются в правах с математическим доказательством, что уничтожает ранее непреодолимую грань между механикой, понимаемой как искусство, и математикой как наукой. Это те предпосылки, без которых не могло бы возникнуть исчисление бесконечно малых величин и механика как математическая наука. Применяя принцип совпадения противоположностей к астрономии, Кузанский приходит к выводу, что Земля не является центром Вселенной, а такое же небесное тело, как Солнце и Луна, что подготавливало переворот в астрономии, который в дальнейшем совершил Коперник. А примененный к проблеме движения принцип совпадения противоположностей дал Кузанскому возможность высказать идею о тождестве движения и покоя, что в корне противоречило античному и средневековому пониманию,

1 Гайденко П. П. История новоевропейской философии в ее связи с наукой. М., 2000. С. 8.

118

утверждавшему, что покой и движение качественно различные и принципиально несовместимые состояния.

Человек становится творцом, поднимаясь почти на один уровень с Богом, ведь он наделен свободой воли и должен сам решать свою судьбу, способен творить, стать мастером, которому по силам любая задача. Отсюда и характерное для эпохи Возрождения стремление познать принципы функционирования механизмов, приборов, устройств и самого человека. В этой связи особый интерес представляют попытки Леонардо да Винчи (1452—1519) применить в анатомии, которой он занимался на протяжении всей своей жизни, знания из прикладной механики и найти соответствие между функционированием органов человека и животных и функционированием известных ему технических устройств, механизмов.

Как и Р. Бэкон, Леонардо да Винчи считал, что «опыт никогда не ошибается, ошибаются только суждения ваши», и что для получения в науках достоверных выводов следует применять математику, в которую он обычно включал и механику: «...никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой»1 . Следует добавить, что механика мыслилась им еще не как теоретическая наука, какой она станет во времена Галилея и Ньютона, а как чисто прикладное искусство конструирования различных машин и устройств. Леонардо да Винчи подошел к необходимости органического соединения эксперимента и его математического осмысления, которое и составляет суть того, что в дальнейшем назовут современным естествознанием, наукой в собственном смысле слова.

§5. Наука в собственном смысле: главные этапы становления

В соответствии с принятой нами концепцией генезиса науки и периодизации ее истории (гл. II, §1) рассмотрим основные особенности главных этапов становления науки в собственном смысле.

1 Леонардо да Винчи. Избранные естественнонаучные произведения М., 1955. С. 11—12.

119

Последняя исторически первоначально возникла в форме экспериментально-математического естествознания Социально-гуманитарные науки — в силу определенных причин — возникли и формировались несколько позднее (о них речь будет идти в гл. VIII).

Здесь, однако, заметим следующее. Выбор естествознания (и прежде всего физики) для анализа основных этапов становления науки в собственном смысле обусловлен следующим обстоятельством. «В методологических исследованиях строение развитых наук принимается за своего рода эталон, с позиций которого рассматриваются все другие системы теоретического знания»1.

И это вовсе не натурализм или физикализм. Дело в том, что развитое явление (предмет) более полно, глубоко и рельефнее «предъявляет» исследователю свои характеристики, чем явление (предмет) неразвитый, незрелый. «Анатомия человека — ключ к анатомии обезьяны», — говорил Маркс.

История и современное состояние науки показали, что — опять-таки в силу конкретных причин — именно в естествознании общие контуры науки как таковой (науки в собственном смысле), ее структура, динамика и т. п. просматриваются наиболее четко, зримо и выпукло. Но это никоим образом не означает ни игнорирования или недооценки социально-гуманитарных наук в анализе «науки вообще», ни абсолютизации их специфики.

Классическое естествознание и его методология

Хронологически этот период, а значит, становление естествознания как определенной системы знания, начинается примерно в XVIXVII вв. и завершается на рубеже XIXXX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30-х гг. ХIХ в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.).

I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою

1 Степин В.С. Теоретическое знание. М., 2000. С. 98.

120

очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика — в силу необходимости решения названных задач.

Активное деятельностное отношение к миру требовало познания его существенных связей причин и закономерностей, а значит, резкого усиления внимания к проблемам самого познания и его форм, методов, возможностей, механизмов и т. п. Одной из ключевых проблем стала проблема метода. Укрепляется идея о возможности изменения, переделывания природы, на основе познания ее закономерностей, все более осознается практическая ценность научного знания («знание — сила»). Механистическое естествознание начинает развиваться ускоренными темпами.

В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и ньютоновскую, — связанные соответственно с двумя глобальными научными революциями, происходившими в XVIXVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Доньютоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Н. Коперника (1473—1543).

Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывавшей также и религиозную картину мира. Кроме того, он высказал мысль о движении как естественном свойстве материальных объектов, подчиняющихся определенным законам, и указал на ограниченность чувственного познания («Солнце ходит вокруг Земли»). Но Коперник был убежден в конечности мироздания: Вселенная где-то заканчивается твердой сферой, на которой закреплены неподвижные звезды. Нелепость такого взгляда показал датский астроном Тихо Браге, а особенно Д. Бруно. Он отрицал наличие центра Вселенной, отстаивал тезис о ее бесконечности и о бесчисленном количестве миров, подобных Солнечной системе.

Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую ступень развития механистического естествознания. В учении Г. Галилея (1564—1642) уже были заложены достаточно прочные ос-

121

новы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.

Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание. Критикуя непосредственный опыт, Галилей первым показал, что опытные данные в своей первозданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпосылках. Иначе говоря, опыт не может не предваряться определенными теоретическими допущениями, не может не быть «теоретически нагруженным».

Вот почему Галилей, в отличие от «чистого эмпиризма» Ф. Бэкона (при всем сходстве их взглядов), был убежден, что «фактуальные данные» никогда не могут быть даны в их «девственной первозданности». Они всегда так или иначе «пропускаются» через определенное теоретическое «видение» реальности, в свете которого они (факты) получают соответствующую интерпретацию. Таким образом, опыт — это очищенный в мысленных допущениях и идеализациях опыт, а не просто (и не только) простое описание фактов.

Галилей выделял два основных метода экспериментального исследования природы:

1. Аналитический («метод резолюций») — прогнозирование чувственного опыта с использованием средств математики, абстракций и идеализации. С помощью этих средств выделяются элементы реальности (явления, которые «трудно себе представить»), недоступные непосредственному восприятию (например, мгновенная скорость). Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

2.  Синтетически-дедуктивный («метод композиций») — на базе количественных соотношений вырабатываются некоторые теоретические схемы, которые применяются при интерпретации явлений, их объяснении.

122

Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, которая резко отлична от обыденного опыта.

Оценивая методологические идеи Галилея, В. Гейзенберг отмечал, что «Галилей отвернулся от традиционной, опиравшейся на Аристотеля науки своего времени и подхватил философские идеи Платона... Новый метод стремился не к описанию непосредственно наблюдаемых фактов, а скорее, к проектированию экспериментов, к искусственному созданию феноменов, при обычных условиях не наблюдаемых, и к их расчету на базе математической теории»1. Гейзенберг выделяет две характерные черты нового метода Галилея: а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены; б) сопоставление последних с математическими структурами, принимаемыми в качестве законов природы.

Способ мышления Галилея исходил из того, что одни чувства без помощи разума не способны дать нам истинного понимания природы, для достижения которого нужно чувство, сопровождаемое рассуждением. Имея в виду прежде всего галилеевский принцип инерции, А. Эйнштейн и Л. Инфельд писали: «Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, т. е. они иногда ведут по ложному следу»2.

Иоган Кеплер (1571—1630) установил три закона движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном. Вторая научная революция завершилась творчеством Ньютона (1643—1727), научное наследие которого чрезвычайно глубоко и разнообразно, уже хотя бы потому, что, как сказал он сам, «я

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 232.

2 Эйнштейн А., Инфельд Л. Эволюция физики. М., 1964. С  10.

123

стоял на плечах гигантов». Главный труд Ньютона — «Математические начала натуральной философии» (1687) — это, по выражению Дж. Бернала, «библия новой науки», «источник дальнейшего расширения изложенных в ней методов». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.).

Кроме того, Ньютон — независимо от Лейбница — создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был автором многих новых физических представлений — о сочетании корпускулярных и волновых представлений о природе света, об иерархически атомизированной структуре материи, о механической причинности и др. Построенный Ньютоном фундамент, по свидетельству Эйнштейна, оказался исключительно плодотворным и до конца XIX в. считался незыблемым.

Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии. Знаменитое его высказывание «гипотез не измышляю» было лозунгом этого противопоставления.

Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»:

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов, т. е. «прийти к законам, имеющим неограниченную силу во всем космосе» (В. Гейзенберг);

124

6) «использовать силы природы и подчинить их нашим целям в

технике» (В.Гейзенберг).

С помощью этого метода были сделаны многие важные открытия в науках. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный «арсенал» самых различных методов. Это прежде всего наблюдение, эксперимент, индукция, дедукция, анализ, синтез, математические методы, идеализация и др. Все чаще говорили о необходимости сочетания различных методов.

Сам Ньютон с помощью своего метода решил три кардинальные задачи. Во-первых, четко отделил науку от умозрительной натурфилософии и дал критику последней. («Физика, берегись метафизики!») Под натурфилософией Ньютон понимал «точную науку о природе», теоретико-математическое учение о ней. Во-вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще, сохранив свое значение до настоящего времени. В-третьих, Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира. При этом он считал, что «было бы желательно вывести из начал механики и остальные явления природы».

Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам.

1. Весь мир, вся Вселенная (от атомов до человека), понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия).

2. Согласно этому принципу любые события жестко предопределены законами классической механики, так что если бы существовал, по выражению Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять.

3. В механической картине мира последний был представлен состоящим из вещества, где элементарным объектом выступал атом, а все тела — как построенные из абсолютно твердых,

125

однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула».

4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движущихся тел, свойства которых неизменны и независимы от самих тел, составляла основу механической картины мира.

5. Природа понималась как простая машина, части которой подчинялись жесткой детерминации, которая была характерной особенностью этой картины.

6. Важная особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы — синтез естественнонаучного знания на основе редукции (сведения) разного рода процессов и явлений к механическим.

Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений.

Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограниченностей. Механистичность, метафизичность мышления Ньютона проявляется, в частности, в его утверждении о том, что материя — инертная субстанция, обреченная на извечное повторение хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время — чистая длительность, а пространство — пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая недостаточность своей картины мира, Ньютон вынужден был апеллировать к идеям творения, отдавать дань религиозно-идеалистическим представлениям.

Несмотря на свою ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике,

126

но потом — в других областях знаний. Освоение новых областей потребовало развития математического формализма ньютоновской теории и углубленной разработки ее концептуального аппарата.

Развитие многих областей научного познания в этот период определялось непосредственным воздействием на них идей механической картины мира. Так, в эпоху господства алхимии Р. Бойль выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике. Бойль предлагал объяснить все химические явления исходя из представлений о движении «малых частиц материи» (корпускул).

Механическая картина мира оказывала сильное влияние и на развитие биологии. Так, Ламарк, пытаясь найти естественные причины развития организмов, опирался на вариант механической картины мира, включавший идею «невесомых». Он полагал, что именно последние являются источником органических движений и изменения в живых существах. Развитие жизни, по его мнению, выступает как «нарастающее движение флюидов», которое и было причиной усложнения организмов и их изменения. Довольно сильным влияние механической картины мира было и на знание о человеке и обществе (см. об этом гл. VIII).

Однако по мере экспансии механической картины мира на новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. Она теряла свой универсальный характер, расщепляясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила статус общенаучной.

Говоря о механической картине мира, необходимо отличать это понятие от понятия «механицизм». Если первое понятие обозначает концептуальный образ природы, созданный естествознанием определенного периода, то второе — методологическую установку. А именно — односторонний методологический подход, основанный на абсолютизации и универсализации данной картины, признании законов механики как единственных законов мироздания, а механической формы движения материи — как единственно возможной.

127

Успехи механической теории в объяснении явлений природы, а также их большое значение для развития практики — для техники, для конструирования машин, для строительства, мореплавания, военного дела и т. п. и привели к абсолютизации механической картины мира, которая стала рассматриваться в качестве универсальной.

Таким образом, естествознание рассматриваемого этапа было механистическим, поскольку ко всем процессам природы прилагался исключительно масштаб механики. Стремление расчленить природу на отдельные «участки» и подвергать их анализу каждый по отдельности постепенно превращалось в привычку представлять природу состоящей из неизменных вещей, лишенных развития и взаимной связи. Так сложился метафизический способ мышления, одним из выражений которого и был механицизм как своеобразная методологическая доктрина.

Механицизм есть крайняя форма редукционизма. Редукционизм (лат. reductio — отодвигание назад, возвращение к прежнему состоянию) — методологический принцип, согласно которому высшие формы могут быть полностью объяснены на основе закономерностей, свойственных низшим формам, т. е. сведены к последним (например, биологические явления — с помощью физических и динамических законов).

Само по себе сведение сложного к более простому в ряде случаев оказывается плодотворным — например, применение методов физики и химии в биологии. Однако абсолютизация принципа редукции, игнорирование специфики уровней (т. е. того нового, что вносит переход на более высокий уровень организации) неизбежно ведут к заблуждениям в познании.

Таким образом, небывалые успехи механики породили представление о принципиальной сводимости всех процессов в мире к механическим. «Поэтому в XIX в. механика прямо отождествлялась с точным естествознанием. Ее задачи и сфера ее применяемости казались безграничными. Еще Больцман утверждал, что мы можем понять физический процесс лишь в том случае, если объясним его механически.

Первую брешь в мире подобных представлений пробила максвелловская теория электромагнитных явлений, дававшая математическое описание процессов, не сводя их к механике»1.

1 Гейзенберг В. Шага за горизонт. М., 1987. С. 179.

128

II. Этап зарождения и формирования эволюционных идей — с начала 30-х гг. XIX в. до конца XIX — начала XX в. Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпирический материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

Первая линия «подрыва» была связана с активизацией исследований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879). Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления.

Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею об электромагнитной природе света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле. Как писал А. Эйнштейн, «первый удар по учению Ньютона о движении как программе для всей теоретической физики нанесла максвелловская теория электричества...; наряду с материальной точкой и ее движением появилась нового рода физическая реальность, а именно «поле»1.

Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явлений и более глубоко выражала единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био—Савара—Лапласа и др.). Поскольку электромагнитные процессы не редуцировались к механическим, то стало формироваться убеждение в том, что основные законы мироздания — не законы механики, а законы электродинамики. Механистический подход к таким явлениям, как свет, электричество, магнетизм, не увенчался успехом, и электродинамика все чаще заменяла механику.

1 Эйнштейн А Физика и реальность М., 1965. С. 17.

129

Таким образом, работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. С тех пор механистические представления о мире были существенно поколеблены и — будучи не в силах объяснить новые явления — механическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности.

Что касается второго направления «подрыва» механической картины мира, то его начало связано с именами английского геолога Ч. Лайеля (1797—1875) и французскими биологами Ж. Б. Ламарком (1744—1829) и Ж. Кювье (1769—1832).

Ч. Лайель в своем главном труде «Основы геологии» в трех томах (1830—1833) разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов. Он перенес нормативные принципы биологии в геологию, построив здесь теоретическую концепцию, которая впоследствии оказала влияние на биологию. Иначе говоря, принципы высшей формы он перенес (редуцировал) на познание низших форм. Ч. Лайель — один из основоположников актуалистического метода в естествознании, суть которого в том, что на основе знания о настоящем делаются выводы о прошлом (т. е. настоящее — ключ к прошлому). Однако Земля для Лайеля не развивается в определенном направлении, она просто изменяется случайным, бессвязным образом. Причем изменение — это у него лишь постепенные количественные изменения, без скачка, без перерывов постепенности, без качественных изменений. А это метафизический, «плоскоэволюционный» подход.

Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.

В отличие от Ламарка Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теорией катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, Что каждый период в истории Земли завершается мировой катастрофой — поднятием н опусканием материков,

130

наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях появились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял.

Итак, уже в первые десятилетия XIX в. было фактически подготовлено «свержение» метафизического в целом способа мышления, господствовавшего в естествознании. Особенно этому способствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвиным эволюционной теории.

Теория клетки была создана немецкими учеными М. Шлейденом и Т. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития растений и животных.

Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Ленц) показало, что признававшиеся ранее изолированными так называемые «силы» — теплота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.

Теория Ч. Дарвина окончательно была оформлена в его главном труде «Происхождение видов путем естественного отбора» (1859). Эта теория показала, что растительные и животные организмы (включая человека) — не богом созданы, а являются результатом длительного естественного развития (эволюции) органического мира, ведут свое начало от немногих простейших существ, которые в свою очередь произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции — наследственность и изменчивость — и движущие факторы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений.

Впоследствии теорию Дарвина подтвердила генетика, показав механизм изменений, на основе которых и способна работать

131

теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком и Дж. Уотсоном структуры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и достижения генетики.

Революция в естествознании конца XIX — начала XX в. и становление идей и методов неклассической науки

Как было выше сказано, классическое естествознание XVIIXVIII вв. стремилось объяснить причины всех явлений (включая социальные) на основе законов механики Ньютона. В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль претендовали законы электромагнитных явлений. Была создана (Фа-радей, Максвелл и др.) электромагнитная картина мира. Однако в результате новых экспериментальных открытий в области строения вещества в конце ХIХ — начале XX в. обнаруживалось множество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил «каскад» научных открытий.

В 1895—1896 гг. были открыты лучи Рентгена, радиоактивность (Беккерель), радий (М. и П. Кюри) и др. В 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу — электрон и понял, что электроны являются составными частями атомов всех веществ. Он предложил новую (электромагнитную) модель атомов, но она просуществовала недолго.

В 1911 г. английский физик Э. Резерфорд в экспериментах обнаружил, что в атомах существуют ядра, положительно заряженные частицы, размер которых очень мал по сравнению с размерами атомов, но в которых сосредоточена почти вся масса атома. Он предложил планетарную модель атома: вокруг тяжелого положительно заряженного ядра вращаются электроны. Резерфорд открыл α- и β-лучи, предсказал существование нейтрона. Но планетарная модель оказалась несовместимой с электродинамикой Максвелла.

Немецкий физик М. Планк в 1900 г. ввел квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излучения,

132

названный его именем. Было установлено, что испускание и поглощение электромагнитного излучения происходит дискретно, определенными конечными порциями (квантами). Квантовая теория планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц. Названные открытия опровергли представления об атоме, как последнем, неделимом «первичном кирпичике» мироздания («материя исчезла»).

«Беспокойство и смятение», возникшие в связи с этим в физике, «усугубил» Н. Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома (1913). Он предполагал, что электроны, вращающиеся вокруг ядра по нескольким стационарным орбитам, вопреки законам электродинамики не излучают энергии. Электрон излучает ее порциями лишь при перескакивании с одной орбиты на другую. Причем при переходе электрона на более далекую от ядра орбиту происходит увеличение энергии атома, и наоборот. Будучи исправлением и дополнением модели Резерфорда, модель Н. Бора вошла в историю атомной физики как квантовая модель атома Резерфорда—Бора.

Весьма ощутимый «подрыв» классического естествознания был осуществлен А. Эйнштейном, создавшим сначала специальную (1905), а затем и общую (1916) теорию относительности. В целом его теория основывалась на том, что в отличие от механики Ньютона, пространство и время не абсолютны. Они органически связаны с материей, движением и между собой. Сам Эйнштейн суть теории относительности в популярной форме выразил так: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время сохранились бы, теория относительности утверждает, что вместе с материей исчезли бы пространство и время». При этом четырехмерное пространство-время, в котором отсутствуют силы тяготения, подчиняется соотношениям неэвклидовой геометрии.

Таким образом, теория относительности показала неразрывную связь между пространством и временем (она выражена в едином понятии пространственно-временного интервала), а также между материальным движением, с одной стороны, и его пространственно-временными формами существования — с другой. Определение пространственно-временных свойств в зависимости

133

от особенностей материального движения («замедление» времени, «искривление» пространства) выявило ограниченность представлений классической физики об «абсолютном» пространстве и времени, неправомерность их обособления от движущейся материи. Как писал сам Эйнштейн, нет более банального утверждения, что окружающий нас мир представляет собой четырехмерный пространственно-временной континуум.

В связи со своим фундаментальным открытием Эйнштейн произнес знаменитые слова: «Прости меня, Ньютон, — понятия, созданные тобой, и сейчас остаются ведущими в нашем физическом мышлении, хотя мы теперь знаем, что если мы будем стремиться к более глубокому пониманию взаимосвязей, то мы должны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта»1.

В 1924 г. было сделано еще одно крупное научное открытие. Французский физик Луи де Бройль высказал гипотезу о том, что частице материи присуще и свойства волны (непрерывность), и дискретность (квантовость). Тогда, отмечал автор гипотезы, становилась понятной теория Бора. Вскоре, уже в 1925—1930 гг. эта гипотеза была подтверждена экспериментально в работах Шредингера, Гейзенберга, Борна и других физиков. Это означало превращение гипотезы де Бройля в фундаментальную физическую теорию — квантовую механику. Таким образом, был открыт важнейший закон природы, согласно которому все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами.

Один из создателей квантовой механики, немецкий физик В. Гейзенберг сформулировал соотношение неопределенностей (1927). Этот принцип устанавливает невозможность — вследствие противоречивой, корпускулярно-волновой природы микрообъектов — одновременно точного определения их координаты и импульса (количества движения). Принцип неопределенности стал одним из фундаментальных принципов квантовой механики. В философско-методологическом отношении данный принцип есть объективная характеристика статистических (а не динамических) закономерностей движения микрочастиц, связанная с их корпускулярно-волновой

1Эйнштейн А. Физика и реальность. М., 1963. С. 143.

134

природой. Принцип неопределенностей не «отменяет» причинность (она никуда не «исчезает»), а выражает ее в специфической форме — в форме статистических закономерностей и вероятностных зависимостей.

Все вышеназванные научные открытия кардинально изменили представление о мире и его законах, показали ограниченность классической механики. Последняя, разумеется, не исчезла, но обрела четкую сферу применения своих принципов — для характеристики медленных движений и больших масс объектов мира.

В нашу задачу не входит подробный анализ величайших достижений естествознания неклассического периода Укажем лишь некоторые важнейшие философско-методологические выводы из них.

1. Возрастание роли философии в развитии естествознания и других наук.

Это обстоятельство всегда подчеркивали настоящие творцы науки. Так, М. Борн говорил, что философская сторона науки интересовала его больше, чем специальные результаты. И это не случайно, ибо работа физика-теоретика «...теснейшим образом переплетается с философией и что без серьезного знания философской литературы его работа будет впустую»1. Весь вопрос, однако, в том, какой именно философии ученый отдает предпочтение.

В. Гейзенберг говорил, что физики-теоретики, хотят они этого или нет, но все равно руководствуются философией, «сознательно или неосознанно». Весь вопрос в том, каковы ее качество и содержание, ибо «дурная философия исподволь губит хорошую физику». Чтобы этого не происходило — ни в физике, ни в других науках — исследователи должны руководствоваться «хорошей» — строго научной философией. Однако — и на это обстоятельство справедливо обращал внимание создатель квантовой механики — «...ученый никогда не должен полагаться на какое-то единственное учение, никогда не должен ограничивать методы своего мышления одной-единственной философией»2, даже если она диалектико-материалистическая. Абсолютизация последней, канонизация ее — такое же заблуждение, как и ее полное игнорирование.

1 Борн М. Физика в жизни моего поколения. М., 1963. С. 44.

2 Гейзенберг В. Физика и философия Часть и целое. М., 1989. С. 85.

135

2. Сближение объекта и субъекта познания, зависимость знания от применяемых субъектом методов и средств его получения.

Идея научного познания действительности в XVIIIXIX вв. было полное устранение познающего субъекта из научной картины мира, изображение мира «самого по себе», независимо от средств и способов, которые применялись при получении необходимых для его описания сведений. Естествознание XX века показало неотрывность субъекта, исследователя от объекта, зависимость знания от методов и средств его получения. Иначе говоря, картина объективного мира определяется не только свойствами самого мира, но и характеристиками субъекта познания, его концептуальными, методологическими и иными элементами, его активностью (которая тем больше, чем сложнее объект).

В. Гейзенберг был первым, кто произнес фразу о том, что в общем случае разделение субъекта и объекта его наблюдения невозможно. Формирование отчетливой философской позиции современного рационализма началось именно с квантовой механики, давшей первые наглядные и неопровержимые доказательства включенности человека в качестве активного элемента в единый мировой эволюционный процесс.

После работ Вернадского создавалась реальная возможность нарисовать всю грандиозную картину мироздания как единого процесса самоорганизации от микромира до человека и Вселенной. И она нам представляется совсем по-новому и совсем не так, как она рисовалась классическим рационализмом. Вселенная — это не механизм, однажды заведенный Внешним Разумом, судьба которого определена раз и навсегда, а непрерывно развивающаяся и самоорганизующаяся система. А человек не просто активный внутренний наблюдатель, а действующий элемент системы.

Развитие науки показало, что исключить субъективное вообще из познания полностью невозможно, даже там, где «Я», субъект играет крайне незначительную роль. С появлением квантовой механики возникла «философская проблема, трудность которой состоит в том, что нужно говорить о состоянии объективного мира, при условии, что это состояние зависит от того, что делает наблюдатель»1 . В результате существовавшее долгое время представление

1 Борн М. Физика в жизни моего поколения. М., 1963. С. 81.

136

о материальном мире как о некоем «сугубо объективном», независимом ни от какого наблюдения, оказалось сильно упрощенным. На деле практически невозможно при построении теории полностью отвлечься от человека и его вмешательства в природу, тем более в общественные процессы.

Поэтому, строго говоря, любые явления нельзя рассматривать «сами по себе» в том смысле, что их познание предполагает присутствие субъекта, человека. Стало быть, не только в гуманитарных науках, но «и в естествознании предметом исследования является не природа сама по себе, а природа, поскольку она подлежит человеческому вопрошанию, поэтому и здесь человек опять-таки встречает самого себя»1. Без активной деятельности субъекта получение истинного образа предмета невозможно. Более того, мера объективности познания прямо пропорциональна мере исторической активности субъекта. Однако последнюю нельзя абсолютизировать, так же как и пытаться «устранить» из познания субъективный момент якобы «в угоду» объективному. Недооценка, а тем более полное игнорирование творческой активности субъекта в познании, стремление «изгнать» из процесса познания эту активность закрывают дорогу к истине, к объективному отражению реальности.

Воспроизводя объект так, как он есть «в себе», в формах своей деятельности, субъект всегда выражает так или иначе свое отношение к нему, свой интерес и оценку. Так, несмотря на самые строгие и точные методы исследования, в физику, по словам М. Борна, проникает «неустранимая примесь субъективности». Анализ квантово-механических процессов невозможен без активного вмешательства в них субъекта-наблюдателя. Поскольку субъективное пронизывает здесь весь процесс исследования и в определенной форме включается в его результат, это дает «основание» говорить о неприменимости в этой области знания принципа объективности.

Действительно, поведение атомных объектов «самих по себе» невозможно резко отграничить от их взаимодействий с измерительными приборами, со средствами наблюдения, которые определяют условия возникновения явлений. Однако развитие науки

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 301

137

показало, что «исследование того, в какой мере описание физических явлений зависит от точки зрения наблюдателя, не только не внесло никакой путаницы или усложнения, но, наоборот, оказалось неоценимой путеводной нитью при разыскании основных физических законов, общих для всех наблюдений»1.

3. Укрепление и расширение идеи единства природы, повышение роли целостного и субстанциального подходов. Стремление выйти из тех или иных односторонностей, выявить новые пути понимания целостной структуры мира — важная особенность научного знания. Так, сложная организация биологических или социальных систем немыслима без взаимодействия ее частей и структур — без целостности. Последняя имеет качественное своеобразие на каждом из структурных уровней развития материи. При этом к «целостной реальности» относится не только то, что видно невооруженным глазом — живые системы (особи, популяции, виды) и социальные объекты разных уровней организации. Как писал выдающийся математик Г. Вейль, «...целостность не является отличительной чертой только органического мира. Каждый атом уже представляет собой вполне определенную структуру; ее организация служит основой возможных организаций и структур самой высокой сложности»2.

Развитие атомной физики показало, в частности, что объекты, называвшиеся раньше элементарными частицами, должны сегодня рассматриваться как сложные многоэлементные системы. При этом «набор» элементарных частиц отнюдь не ограничивается теми частицами, существование которых доказано на опыте.

Субстанциальный подход, т. е. стремление свести все изменчивое многообразие явлений к единому основанию, найти их «первосубстанцию», — важная особенность науки. Попытки достигнуть единого понимания, исходящего из единого основания, намерение охватить единым взором крайне разнородные явления и дать им единообразное объяснение не беспочвенны и не умозрительны. Так, физика исходит из того, что «...в конечном счете природа устроена единообразно и что все явления подчиняются единообразным законам. А это означает, что должна существовать

1 Бор Н. Атомная физика и человеческое познание. М., 1961. С. 98.

2 Вейль Г. Математическое мышление. М., 1989, С. 71.

138

возможность найти в конце концов единую структуру, лежащую в основе разных физических областей»1.

Это стремление к всеохватывающему объединению, попытки истолковать все физические и другие явления с единой точки зрения, понять природу в целом пронизывают всю историю науки. Все ученые, исследующие объективную действительность, хотят постигнуть ее как целостное, развивающееся единство, понять ее «единый строй», «внутреннюю гармонию». Для творцов теории относительности и квантовой физики было характерно «стремление выйти из привычной роли мысли и вступить на новые пути понимания целостной структуры мира..., стремление к цельному пониманию мира, к единству, вмещающему в себя напряжение противоположностей»2. Последнее обстоятельство наиболее четко было выражено в принципе дополнительности Н. Бора.

История естествознания — это история попыток объяснить разнородные явления из единого основания. Сейчас стремление к единству стало главной тенденцией современной теоретической физики, где фундаментальной задачей является построение единой теории всех взаимодействий, известных сегодня: электромагнитного, слабого, сильного и гравитационного. Общепризнанной теории Великого объединения пока нет. Однако «Теория Всего» в широком смысле не может быть ограничена лишь физическими явлениями. И это хорошо понимают широко мыслящие физики.

4. Формирование нового образа детерминизма и его «ядра» —

причинности.

История познания показала, что детерминизм есть целостное формообразование и его нельзя сводить к какой-либо одной из его форм или видов. Классическая физика, как известно, основывалась на механическом понимании причинности («лапласовский детерминизм») Становление квантовой механики выявило неприменимость здесь причинности в ее механической форме. Это было связано с признанием фундаментальной значимости нового класса теорий — статистических, основанных на вероятностых представлениях. Тот факт, что статистические теории включают в себя неоднозначность и неопределенность, некоторыми философами и учеными был истолкован как крах детерминизма вообще, «исчезновение причинности».

1  Гейзенберг В Шаги за горизонт М , 1987 С 252

2 Там же  С  287

 139

В основе данного истолкования лежал софистический прием: отождествление одной из форм причинности — механистического детерминизма — с детерминизмом и причинностью вообще. При этом причина понималась как чисто внешняя сила, воздействующая на пассивный объект, абсолютизировалась ее низшая — механическая — форма, причинность как таковая смешивалась с «непререкаемой предсказуемостью». «Так смысл тезиса о причинности постепенно сузился, пока наконец не отождествился с презумпцией однозначной детерминированности событий в природе, а это в свою очередь означало, что точного знания природы или определенной ее области было бы — по меньшей мере в принципе — достаточно для предсказания будущего»1. Такое понимание оказалось достаточным только в ньютоновской, но не в атомной физике, которая с самого начала выработала представления, по сути дела не соответствующие узкоинтерпретированному понятию причинности.

Как доказывает современная физика, формой выражения причинности в области атомных объектов является вероятность, поскольку вследствие сложности протекающих здесь процессов (двойственный, корпускулярно-волновой характер частиц, влияние на них приборов и т. д.) возможно определить лишь движение большой совокупности частиц, дать их усредненную характеристику, а о движении отдельной частицы можно говорить лишь в плане большей или меньшей вероятности.

Поведение микрообъектов подчиняется не механико-динамическим, а статистическим закономерностям, но это не значит, что принцип причинности здесь не действует. В квантовой физике «исчезает» не причинность как таковая, а лишь традиционная ее интерпретация, отождествляющая ее с механическим детерминизмом как однозначной предсказуемостью единичных явлений. По этому поводу М. Борн писал: «Часто повторяемое многими утверждение, что новейшая физика отбросила причинность, целиком необоснованно. Действительно, новая физика отбросила или видоизменила многие традиционные идеи; но она перестала бы быть наукой, если бы прекратила поиски причин явлений»2.

Этот вывод поддерживали многие крупные творцы науки и философии. Так, выдающийся математик и философ А. Пуанкаре

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 252

2 Борн М. Физика в жизни моего поколения М., 1963. С. 144.

140

совершенно четко заявлял о том, что «наука явно детерминистична, она такова по определению. Недетерминистической науки не может существовать, а мир, в котором не царит детерминизм, был бы закрыт для ученых»1. Крупный современный философ и логик Г. X. фон Вригт считает несомненным фактом, что каузальное мышление как таковое «не изгоняется из науки подобно злому духу». Поэтому философские проблемы причинности всегда будут центральными и в философии, и в науке — особенно в теории научного объяснения.

Однако в последнее время — особенно в связи с успешным развитием синергетики — появились утверждения о том, что «современная наука перестала быть детерминистической» и что «нестабильность в некотором отношении заменяет детерминизм» (И. Пригожин). Думается, это слишком категорические и «сильные» утверждения.

5. Глубокое внедрение в естествознание противоречия и как существенной характеристики его объектов, и как принципа их познания.

Исследование физических явлений показало, что частица-волна — две дополнительные стороны единой сущности. Квантовая механика синтезирует эти понятия, поскольку она позволяет предсказать исход любого опыта, в котором проявляются как корпускулярные, так и волновые свойства частиц. Притом проблема выбора в данных условиях между этими противоположностями постоянно воспроизводится в более глубокой и сложной форме. Таким образом, в квантовой механике все особенности микрообъекта можно понять только исходя из его корпускулярно-волновой природы.

Природа микрочастицы внутренне противоречива (есть диалектическое противоречие), и соответствующее понятие должно выражать это объективное противоречие. Иначе оно не будет адекватно отражать свой объект, так как он есть в себе, а стало быть, будет выражать лишь часть истины, а не всю ее в целом. С достаточной определенностью проблему синтеза противоположных представлений, внутреннего единства противоположностей (волновых и квантовых свойств света) поставил А. Эйнштейн. Оправдалось глубокое научное предвидение творца теории относительности, который

1 Пуанкаре А. О науке. М., 1983. С. 489.

141

предсказывал, что внутреннее противоречие теории должно быть разрешено в ходе дальнейшего развития физического знания. Зафиксированная Эйнштейном полярность волновых и корпускулярных характеристик света привела его к выводу о необходимости синтеза данных противоположностей: «Следующая фаза развития теоретической физики даст нам теорию света, которая будет в каком-то смысле слиянием волновой теории света с теорией истечения»1. Такой фазой и стала квантовая механика.

В ходе дальнейшего развития квантовых представлений было обнаружено, что в процессе объяснения загадок атомных явлений противоречия не исчезают, не «устраняются» из теории. Наоборот, происходит их нарастание и обострение. Это свидетельствовало не о слабости, а о силе новых теоретических представлений, которые предстали не как «логические» противоречия (путаница мысли), а как такие, которые имеют объективный характер, отражают реальные противоречия, присущие самим атомным явлениям. «Удивительнейшим событием тех лет был тот факт, что по мере этого разъяснения парадоксы квантовой теории не исчезали, а наоборот, выступали во все более явной форме и приобретали все большую остроту... В это время многие физики были уже убеждены в том, что эти явные противоречия принадлежат к внутренней природе атомной физики»2.

Попытки осознать причину появления противоречивых образов, связанных с объектами микромира, привели Н. Бора к формулированию принципа дополнительности. Согласно этому принципу, для полного описания квантово-механическйх явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий (например, частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как целостных образованиях. Изучение взаимодополнительных явлений требует взаимоисключающих экспериментальных установок.

Оценивая великое методологическое открытие Бора, М. Борн писал: «Принцип дополнительности представляет собой совершенно новый метод мышления. Открытый Бором, он применим не только в физике. Метод этот приводит к дальнейшему освобождению

1 Эйнштейн А. Собр. науч. трудов: В 4 т. Т 3. М., 1968. С. 181.

2 Гейзенберг В. Философия. Часть и целое М., 1989. С. 13—14.

142

от традиционных методологических ограничений мышления, обобщая важные результаты»1. В связи с этим Борн отмечал, что атомная физика учит нас не только тайнам материального мира, но и новому методу мышления.

6. Определяющее значение статистических закономерностей по

отношению к динамическим.

В законах динамического типа предсказания имеют точно определенный, однозначный характер. Это было присуще классической физике, где «если мы знаем координаты и скорость материальной точки в известный момент времени и действующие на нее силы, мы можем предсказать ее будущую траекторию»2.

Законы же квантовой физики — это законы статистического характера, предсказания на их основе носят не достоверный, а лишь вероятностный характер. «Квантовая физика отказывается от индивидуальных законов элементарных частиц и устанавливает непосредственно статистические законы, управляющие совокупностями. На базе квантовой физики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь, как это было в классической физике. Квантовая физика имеет дело только с совокупностями»3.

Законы статистического характера являются основной характеристикой современной квантовой физики. Поэтому метод, применяемый для рассмотрения движения планет, здесь практически бесполезен и должен уступить место статистическому методу, законам, управляющим изменениями вероятности во времени.

В. Гейзенберг подчеркивал, что «законы квантовой механики по необходимости имеют статистический характер... Парадоксальность того обстоятельства, что различные эксперименты выявляют то волновую, то корпускулярную природу атомной материи, заставляют формулировать статистические закономерности»4. Решающая роль последних в квантовой механики обусловлена как корпускулярно-волновым дуализмом, так и открытым Гейзенбергом соотношением неопределенностей. В свою очередь последнее он считал специфическим случаем более общей ситуации дополнительности.

1 Борн М. Моя жизнь и взгляды. М., 1973.  С. 127—128.

2 Эйнштейн А., Инфельд Л. Эволюция физики М , 1965. С. 230.

3 Там же. С. 233.

4 Гейзенберг В. Шаги за горизонт М., 1987 С. 128

143

Развитие квантовой механики показало:

а) Предсказания квантовой механики неоднозначны, они дают лишь вероятность того или иного результата.

б) Причинность в лапласовском смысле нарушена, но в более точном квантово-механическом смысле она соблюдается.

в) Причина вероятностного характера предсказаний в том, что свойства микроскопических объектов нельзя изучать, отвлекаясь от способа наблюдения, В зависимости от него электрон проявляет себя либо как волна, либо как частица, либо как нечто промежуточное («и—и», а не только «или—или»). Мы неизбежно пользуемся субъективными инструментами для описания объективного.

Таким образом, огромный прогресс наших знаний о строении и эволюции материи, достигнутый естествознанием, начиная со второй половины XIX в., во многом и решающем обусловлен методами исследований, опирающимися на теорию вероятностей. Поэтому везде, где наука сталкивается со сложностью, с анализом сложно-организованных систем, вероятность приобретает важнейшее значение.

7. Кардинальное изменение способа (стиля, структуры) мышления, вытеснение метафизики диалектикой в науке.

Эту сторону, особенность неклассического естествознания подчеркивали выдающиеся его представители. Так, Гейзенберг неоднократно говорил о границах механического типа мышления, о недостаточности ньютоновского способа образования понятий, о радикальных изменениях в основах естественнонаучного мышления, указывал на важность требований об изменении структуры мышления.

Он отмечал, что, во-первых, введению нового, диалектического в своей сущности, мышления «нас вынуждает предмет, что сами явления, сама природа, а не какие-либо человеческие авторитеты заставляют нас изменить структуру мышления»1. Новая структура мышления позволяет добиться в науке большего, чем старая, т. е. новое оказывается более плодотворным. В-третьих, «фундаментальные сдвиги» в структуре мышления могут занять годы и даже десятилетия — что, кстати говоря, и происходит.

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 198.

144

Гейзенберг ставил вопрос о том, что наряду с обычной аристотелевской логикой, т. е. логикой повседневной жизни, существует неаристотелевская логика, которую он назвал квантовой. По аналогии с тем, что классическая физика содержится в квантовой в качестве предельного случая, «классическая, аристотелевская логика содержалась бы в квантовой в качестве предельного случая и во множестве рассуждений принципиально допускалось бы использование классической логики»1.

Выдающийся ученый сетовал на то, что «физики до сих пор не применяют квантовую логику систематически», и был твердо уверен в том, что квантовая логика представляет собой более общую логическую схему, чем аристотелевская.

Гейзенбергу в этом вопросе вторит французский философ и методолог науки Г. Башляр, который также ратует за введение в науку новой, неаристотелевской логики. Последнюю он рассматривает как логику, «вобравшую в себя движение», ставшую «живой» и развивающейся, в отличие от статичной аристотелевской логики. Процесс изменения в логике он связывает с изменениями в науке: статичный объект классической науки требовал статичной логики. Нестатичный (изменяющийся, развивающийся) объект неклассической науки приводит к необходимости введения движения в логику — как на уровне понятийного аппарата, так и логических связей.

8. Изменение представлений о механизме возникновения научной теории. (Об этой особенности см. гл. Ш, §4.) Что касается постнеклассической науки, то ей далее будет специально посвящена гл. VII.

§6. Формирование науки как профессиональной деятельности. Возникновение дисциплинарно организованной науки

Те великие открытия и идеи, характеризующие поступательное развитие науки, о которых говорилось в предшествующих параграфах, принадлежат, так сказать, ее переднему краю. Существует

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 220.

145

определенная разница между ним и способами трансляции научного знания в культуру. Передний край науки организован проблемно: множество разных исследовательских групп предлагают свои методы и методики решения научной проблемы, в научных спорах и дискуссиях рождается истина. В то время как передача полученного знания последующим поколениям осуществляется в рамках дисциплинарно организованной науки.

Научная дисциплина понимается как определенная форма систематизации научного знания, связанная с его институализацией, с осознанием общих норм и идеалов научного исследования, с формированием научного сообщества, специфического типа научной литературы (обзоров и учебников), с определенными формами коммуникации между учеными, с созданием функционально автономных организаций, ответственных за образование и подготовку кадров1. Дисциплинарная организация науки оказывается тем каналом, который обеспечивает социализацию достигнутых результатов, превращая их в научные и культурные образцы, в соответствии с которыми строятся учебники, излагается и передается знание в системе образования.

Среди различных способов систематизации научных знаний дисциплинарная организация науки занимает особое место. На разных этапах развития культуры она получала различные обоснования: онтологическое, гносеологическое, методологическое и, наконец, организационное, при котором развитие научной дисциплины ставилось в связь с социально-организационными структурами (институтами, университетами, факультетами и т. д.).

То, что можно назвать дисциплинарным образом науки, начинает формироваться в древнеримской культуре. Цели образования этого периода — практически житейские. И знание начинает рассматриваться с позиций «учитель — ученик» и пониматься не как теория, а как дисциплина. Дисциплинарно организованное знание возникает именно в том случае, когда все накопленное знание рассматривается под углом зрения трансляции его последующим поколениям. Для обучающегося знание предстает как дисциплина, а для обучающего — как доктрина. И поэтому с позиции лиц, осуществляющих обучение, все наличное знание оказывается совокупностью доктрин.

1 Огурцов А. П. Дисциплинарная структура науки. М., 1988. С. 244.

146

Для дисциплинарного образа науки характерно: трактовка знания как объективно-мыслительной структуры, ориентация преподавания на унифицированное расчленение и упорядочивание всего знания и изложение его в различных компендиумах, энциклопедиях и учебниках. Для римской культуры показательно стремление все организовывать, систематизировать, приводить в порядок, принимать дисциплину как главную ценность и норму, а отсюда и структуру знания определять через призму дисциплинирующей субординации. Исходя из этого, все знание трактуется как дисциплина и различать можно разве что научную и учебную дисциплину.

Величайшим достижением культуры Средних веков явилось создание университетов, выполнявших две функции: учебного заведения и лаборатории научного (в средневековом смысле слова) исследования Университеты были созданы во всех европейских столицах и ряде крупных городов: Болонье (1158), Оксфорде (1168), Париже (1200), Кембридже (1209), Падуе (1222), Тулузе (1229) и др. К 1500 г их было 79, 50 из них были созданы папами на основе церковных школ.

Тесно взаимосвязанной с дисциплинарной структурой знания была и дисциплинарная организация учебного процесса, основанного на палочной дисциплине. Все было подчинено усилению регламентации процесса обучения, желанию подчинить сознание учащихся общеобязательным нормам, призванным обуздать их нрав, дисциплинировать. Уставы, принимаемые университетами, определяли порядок чтения книг Библии, исполнительные функции как преподавателей различных дисциплин, так и других административных лиц, предписывали нормы поведения обучающимся и т. д.

Регламентация всех видов деятельности особенно усилилась с середины XIII в. когда в университетах была введена система оплаты труда преподавателей при помощи церковных бенефициев или жалования, выдаваемого светской властью. Регламентировалось все и вся. Так, например, в Оксфордском университете устанавливался не только порядок чтения лекций (допустим, по римскому праву), но и предписывалось каждому обучающемуся уметь воспроизводить краткое содержание каждой главы, отчетливо излагать каждый закон, записывать текст и давать к нему комментарии и т. д. А постановлением Парижского церковного

147

собора в 1210 г. было запрещено читать книги Аристотеля по естественнонаучным вопросам под угрозой отлучения от церкви. В 1215 г. студентам Парижского университета, не достигшим 21 года, запрещалось читать лекции по свободным искусствам.

Формами обучения в это время были лекции и диспуты. На лекциях читали вслух и комментировали какой-либо канонический текст. А основным средством закрепления знаний был диспут. Диспут — это ритуализированная форма общения, осуществляемая по строгим правилам и нормам. Средневековой диспут — это спор сознаний, по-разному интерпретирующих канонические тексты, причем каждый из спорящих претендует на подлинность и достоверность своей интерпретации. В глубине этого «диспутирующего» сознания скрыто убеждение в существовании одной-единственной истины, которая открывается, когда будет элиминирована неадекватность интерпретаций, вызванная неадекватностью человеческого восприятия Священного писания, заключающего истину. В этом вроде бы диалоге коренится скрытая монологичность средневекового сознания. Она обнаруживается и в том, что в это время отсутствует авторство, и в специфическом типе работы, при котором ученый ориентирован на собирание ранее высказанных мыслей, на свод цитат, где границы между своей и чужой мыслью зыбки, извилисты, запутаны1.

Так как в Средние века преподавание и научная работа неразрывно связаны друг с другом, то диспут к ХII в. становится ведущей формой организации не только учебного процесса, но и научной работы. Диспуты существовали в двух формах: ординарные и публичные. Ординарные — имели непосредственное отношение к изучаемому предмету и служили цели более глубокого постижения его. Но постепенно диспут стал вырождаться, превращаясь в бесплодные споры, а из средств достижения истины становился лишь риторическим и схоластическим упражнением.

Но диспуты оказали большое влияние на научные изыскания. Так, в дискуссиях между последователями Сигера Брабанского и Фомы Аквинского обсуждались такие проблемы природознания, как вечность мира, вечность вида земных существ, соотношение необходимости и случайности в природном мире, а в

См. Огурцов А. П Дисциплинарная структура науки М, 1988 С  158

148

дискуссии атомистов-финитистов и континуалистов выкристаллизовывались идеи атомизма.

По мере же развития рационально-научного знания католическая церковь начинает прибегать к запрещению дискуссий. Весной 1586 г. должен был состояться диспут, к которому Д. Бруно написал 120 тезисов против физики Аристотеля, где защищал позиции атомизма. Хотя диспут и состоялся, но после него Д. Бруно вынужден был покинуть Париж.

В Средние века существовали многообразные варианты дисциплинарного расчленения наук. В основе одной из них лежит христианский миф о творении мира. И все существовавшие в то время науки классифицировались по дням творений. Такой образ науки был наивно догматичен и представлял собой своего рода комментарий к книге «Бытие» Библии на основе существовавших в то время сведений по тем или иным вопросам.

Наряду с этим существовал и другой дисциплинарный образ науки, основанный на принципах, предполагавших расчленение наук по уровню абстрактности и отдаленности от чувственного бытия, по целям, задачам, средствам различных наук и т. д. Одна из первых попыток такого рода — классификация Августина в «Христианской доктрине». Она строилась на основе восхождения от чувственного знания к абстрактному, что соответствовало задачам образования того времени. В основе этой классификации лежала история, от нее через географию осуществлялось восхождение к астрономии, а потом к арифметике, риторики и диалектике.

Наиболее известной и признанной была система 7 «свободных» искусств, предложенная Марцианом Капеллой и усовершенствованная Боэцием и Кассиодором. В этой системе в качестве спутниц высшей мудрости — Филологии — выступают на начальном этапе познания грамматика, риторика, диалектика (тривиум), а на последующем — арифметика, геометрия, астрономия и музыка (квадривиум). Эти свободные искусства были положены в основу средневекового образования и рассматривались как канон обучения и совокупность всего «мирского» знания. А после реформы образования Карлом Великим эта система стала эталоном всего европейского образования.

Боэций вместо филологии усмотрел в философии универсальную науку. Кассиодор виды знания, принадлежащие тривиуму, называет свободными искусствами, а принадлежащие квадривиуму

149

— дисциплинами. Научная дисциплина для него — это аподиктическое знание, следующее непреложным правилам. Но уже и в это время намечаются попытки расширить состав квадривиума, включив в него такие дисциплины, как астрология, медицина, механика и т. д.

И если дисциплинарная структура наук строилась в Средние века сначала на основе принципов классификации форм знания античности, то в XI—ХII вв. добавляется новый источник — арабская культура, благодаря которой европейцы познакомились с многими работами древнегреческих мыслителей, в частности, Аристотеля, Диофанта, Птолемея, а также и с самобытными идеями самих арабов.

Оригинальную классификацию научных дисциплин, оказавшую большое влияние на европейскую культуру, создал на основе учений Аристотеля и собственных изысканий выдающийся арабский мыслитель Ибн Сина. Он разделил все знание на теоретическое и практическое. К теоретическому отнес физику, математику и метафизику, причем математика заняла промежуточное место между высшей и низшей науками (метафизикой и физикой). Теоретическая физика исследует такие проблемы, как материя, форма, движение и перводвигатель, возникновение и уничтожение, влияние небесных тел на земную жизнь, минералы, растения, животная и человеческая душа. Теоретической физике подчинены практические физические дисциплины, такие как медицина, астрология, физиогномия, толкование снов, толкование символов, магия и алхимия. Математика, изучающая количество, также распадается на две группы наук: теоретическую и практическую. С теоретической арифметикой связано практическое искусство исчисления и алгебра. С теоретической геометрией — практическая геодезия, механика, наука о весах и различных инструментах. С теоретической астрономией — практические: астрология и науки о составлении астрологических атласов и календарей. С теорией музыки — искусство изготовления музыкальных инструментов.

На рубеже XIVXV вв. (эпоха Возрождения) происходит существенный культурно-исторический сдвиг в отношении человека к природе и вслед за этим и к природознанию. Возникает новый дух — дух исканий. Свидетельство тому — географические открытия Колумба, Васко де Гама, Магеллана и др. Изобретенное

150

Гуттенбергом в середине XV в. книгопечатание быстро распространяется по всей Европе, делая духовное общение людей более интенсивным. Все это подрывает идеалы и нормы средневековой учености. Научные изыскания начинают развертываться вне традиционных центров культурной жизни (университетов и монастырей). Они перемещаются в кружки интеллектуалов, любителей философии, истории, литературы и т д. А в XVI в. в Италии возникают такие новые формы организации интеллектуальной жизни, как академии.

Гуманисты Возрождения выступают против принудительного характера преподавания, культивируемого в средние века, требуют от воспитания не только умственного, но и физического развития, радикально меняют содержание изучаемых дисциплин и сам характер образования. Они выдвигают новый идеал — образование как формирование и развитие личности в целостности ее способностей. Мыслители Возрождения решительно выступают против внешней и внутренней дисциплины не только в обучении, но и в изложении своих взглядов. Так, например, Леонардо да Винчи записывал свои мысли по архитектуре, технике в том порядке, в каком они приходили ему на ум, и никогда не пытался каким-либо образом их классифицировать или систематизировать. М. Монтень пишет свои «Опыты» как не связанные друг с другом эссе по различным вопросам.

Культ свободы, пронизывающий эту эпоху, связан и со свободой выбора литературных форм, и с отказом от следования традиционным схемам и образцам последовательного систематического развертывания своих мыслей. Излюбленной литературной формой становится диалог — подвижный, переливающийся, искрящийся остроумием (в отличие от диалога «вопрос — ответ», или схоластических диспутов эпохи средневековья).

В это время начинает складываться прослойка, состоящая из учителей, врачей, странствующих студентов, магистров и т. д., которые находятся в оппозиции к существующим культурным ценностям и вне официальных организационных структур. И если для средневековья было характерно стремление подчинить индивида внешним дисциплинарным уставам, правилам и нормам, а структуру наук интерпретировать как совокупность дисциплинарных структур, то у представителей этой интеллигентской прослойки торжествует культ произвола, фантазий, неприятия всех норм,

151

обязательных правил, стремление освободиться от жестких видов деятельности, поиск новых форм общения, обращение к переписке, дружескому общению, диалогу.

Оценивая значение Возрождения для развития научного знания, можно отметить: не произошло существенного расширения ни дисциплинарной структуры науки, ни системы образования. На первых порах гуманисты возродили идеал универсально энциклопедического знания. В противовес дисциплинарной иерархии средневековья систему образования они видят как схему круга, где каждая из наук может стать началом и все науки взаимосвязаны друг с другом.

Но этот способ организации знания в эпоху Возрождения все же не привился. И к середине XVI в. идея систематически энциклопедического изложения всего массива знаний начинает исчезать. Это связано как с бурным ростом знания, происходящим в это столетие, так и с новыми формами организации науки. В эту эпоху возникают первые формы специализации исследовательской деятельности, такие как формирование научной астрономии (Н. Коперник), механики (Леонардо да Винчи) и т. д.

Наука же как профессиональная деятельность начинает формироваться в крупнейших странах Европы и относится к эпохе, когда наука, в особенности естествознание, начинают переживать бурный подъем. Несмотря на большое значение великих прозрений античности, влияние науки арабов средневекового Востока, гениальных идей эпохи Возрождения, естествознание до XVII в. находилось в зачаточном состоянии. Представления о Вселенной ничем не отличались от тех, что были изложены еще в сочинениях Птолемея. А предложенная Коперником система мира была достоянием узкого круга лиц и воспринималась ими в большей степени как математическая гипотеза. Еще ничего не знали о законах движения тел, а в представлении о воздухе не продвинулись дальше Аристотеля, а мир недоступных глазу микроорганизмов вообще был скрыт от человека.

Пришло время «века гениев». И хотя в 1600 г. в Риме на костре сжигают Джордано Бруно, но в Англии выходит книга Уильяма Гильберта, впервые вводящая понятие магнита, магнитного силового поля, а в Пражскую королевскую обсерваторию поступает на службу Иоганн Кеплер. Создает свой телескоп Галилео

152

Галилей, с помощью которого делает поразительные открытия, подтверждающие правильность его гелиоцентрической системы.

У истоков науки как профессиональной деятельности стоит Френсис Бэкон, утверждавший, что достижения науки ничтожны и что она нуждается в великом обновлении. И чтобы создать новое естествознание, необходимы: правильный метод (индуктивно-экспериментальный), мудрое управление наукой (это задача правителей, которые должны создавать ученые учреждения, библиотеки, приобретать орудия и инструменты, обеспечивать людей науки вознаграждением, освобождающим их от забот и создающим свободное время для творчества) и общее согласие в работе, восполняющее недостаток сил одного человека.

Идеально организованный коллектив ученых (ученая коллегия или общество, названное «Домом Соломона») описал Бэкон в «Новой Атлантиде». Среди членов этого сообщества существует разделение труда: одни собирают сведения о различных опытах из книг, другие делают опыты, третьи обрабатывают данные опытов и составляют таблицы, а «истолкователи природы» из наблюдений и опытов выводят общие законы и причины. В «Доме Соломона» проводятся общие собрания всех его членов, обсуждаются рефераты, работы, выведенные законы и принципы, решается, какие открытия и опыты должны быть опубликованы. Для осуществления преемственности в «Доме» обязательно должны быть и молодые ученые Посещая разные города, государства, ученые должны на основе изучения природы предсказывать неурожаи, бури, эпидемии, землетрясения и давать советы гражданам, как, по возможности, избежать этих бедствий. Идея организованной, коллективной, государственной науки имела большое значение для становления науки не только для эпохи Ф. Бэкона, но и для последующих поколений ученых.

Идеи Ф. Бэкона воплотились в создании первых естественнонаучных обществ (или первых академий) в Европе. Уже, начиная с эпохи Возрождения, академии по типу платоновских возникали в разных городах Италии. Но чаще всего это были небольшие и недолговечные кружки любителей философии, теологии, литературы, искусства. В 1603 г. князь Федерико Чези с тремя друзьями преобразовывает свой кружок в академию, они пишут ее устав и называют Академией деи Линчеи, т. е. «рысьеглазых». Чези создал для Академии ботанический сад, кабинет натуралий и библиотеку.

153

В состав Академии вошел и Галилео Галилей, вместе с которым члены академии наблюдали в телескоп спутники Юпитера, а в 1615 г. пытались защищать Галилея перед судом цензоров инквизиции.

К середине XVH в. идеи научного общества получают широкое распространение. 28 ноября 1660 г. 12 ученых на своем собрании составили «Меморандум», в котором записали о желании создать «Коллегию» для развития физико-математического экспериментального знания. Позднее она будет названа Лондонским королевским обществом. Научная программа общества предполагала развивать естествознания посредством опытов, полезные искусства, практическую механику, машины, не вмешиваясь в богословие, метафизику, мораль, политику, грамматику, риторику и логику. Предусматривалось возрождать забытые открытия, проверять все созданные ранее естественнонаучные, математические теории и гипотезы, механические системы, ничего не принимая на веру. А среди первоочередных задач стояла задача — собрать все наблюдения, магнитные и астрономические, которые могут быть полезны для определения долготы мест на земле и местонахождения корабля в море. Хотя ученые вслед за Ф. Бэконом не предполагают немедленной отдачи от научных исследований, но они полны надежды, что наука способна преобразить жизнь людей.

Вслед за Лондонским королевским обществом (1660) были созданы Парижская академия наук (1666), Берлинская академия наук (1700), Петербургская академия (1724) и др. В науке XVII столетия главной формой закрепления и трансляции знаний была книга, в которой должны были излагаться основополагающие принципы и начала «природы вещей». Она выступала базисом обучения, дополняя традиционную систему непосредственных коммуникаций «учитель — ученик», обеспечивающих передачу знаний и навыков исследовательской работы от учителя его ученикам. Одновременно она выступала и главным средством фиксации новых результатов исследования природы.

Перед ученым XVII столетия стояла весьма сложная задача. Ему недостаточно было получить какой-либо конкретный результат, решить частную задачу. В его обязанности входило построение целостной картины мироздания, которая должна найти свое выражение в достаточно объемном фолианте. Ученый обязан был

154

не просто ставить отдельные опыты, но заниматься натурфилософией, соотносить свои знания с существующей картиной мира, внося в нее соответствующие изменения. Так работали все выдающиеся мыслители этого времени — Галилей, Ньютон, Лейбниц, Декарт и др. В то время считалось, что без обращения к фундаментальным основаниям нельзя дать полного объяснения даже частным физическим явлениям.

Но по мере развития науки и расширения исследований формируется потребность в такой коммуникации ученых, которая могла бы обеспечить их совместное обсуждение не только конечных, но и промежуточных результатов научных изысканий. В XVII в. возникает особая форма закрепления и передачи знаний — переписка между учеными. Письма служили не только дружескому общению, но и включали в себя результаты проводимых ими исследований и описание того пути, которым они были получены. Тем самым письма становятся средством коммуникации. Систематическая переписка велась на латыни, что позволяло сообщать свои результаты, идеи и размышления ученым, живущим в самых разных странах Европы.

Так возникает особый тип сообщества, которое избрало письмо в качестве средства научного общения и объединило исследователей Европы в так называемую Республику ученых. Переписка между учеными выступала не только формой трансляции знания, но служила и основанием выработки новых средств исследования, обеспечивая успешное развитие наук этой исторической эпохи. Но по мере накопления объема научной информации потребовалось изменение форм ее представления.

Уже во второй половине XVII столетия постепенно началось углубление специализации научной деятельности. В различных странах образуются сообщества исследователей-специалистов, часто поддерживаемые государством, в частности, сообщество немецких химиков. Коммуникация между исследователями начинает осуществляться на национальном языке, а не на латыни. Появляются научные журналы, через которые происходит обмен информацией. Первоначально они выполняли особую функцию объединения исследователей, стремясь показать, что и кем делается, но затем наряду с обзорами начали публиковать сведения о новом знании, и это постепенно стало их главной функцией.

155

В конце XVIII — первой половине XIX в. в связи с увеличением объема научной информации, наряду с академическими учреждениями, такими как академии, начинают возникать общества, объединяющие исследователей, работающих в различных областях знания (физики, биологии, химии и т.д.).

Новые формы организации науки порождали и новые формы научных коммуникаций. Ситуация, связанная с ростом объема научной информации, существенным образом трансформировала способы трансляции знания и поставила проблему воспроизводства субъекта науки. Возникла необходимость в специальной подготовке ученых, чему способствовали университеты, в которых образование начинает строиться как преподавание групп отдельных научных дисциплин, обретая ярко выраженные черты дисциплинарно организованного обучения. В свою очередь это оказало обратное влияние на развитие науки и, в частности, на ее дифференциацию и становление конкретных научных дисциплин. Наука постепенно утверждалась в своих правах как прочно установленная профессия, требующая специфического образования, имеющая свою структуру и организацию.

В конце XVIII — начале XIX в. дисциплинарно организованная наука, включающая в себя четыре основных блока научных дисциплин: математику, естествознание, технические и социально-гуманитарные науки — завершила долгий путь формирования науки в собственном смысле слова1.

На сегодняшний день научное знание представляет сложноорганизованную систему научных дисциплин. Структура научной дисциплины может быть представлена следующим образом. Все те исследования, которые проводятся в настоящее время представителями данной научной дисциплины, можно назвать передним краем исследования. Для него характерна определенная последовательность научных публикаций. Сначала идут статьи. Этот жанр возник для обеспечения наиболее оперативной научной коммуникации между представителями данного научного сообщества. Поскольку на прохождение статьи требуется значительное время, то для обеспечения более оперативной информации используется форма научных сообщений в материалах конференций, симпозиумов, конгрессов, съездов, препринты и т. п. Следующий уровень составляют обзоры и рефераты, в которых подводятся определенные

1 См.: Степин В. С. Теоретическое знание. М., 2000. С. 93—95.

156

обобщения проводимых на переднем крае исследований. Завершающий уровень — создание обобщающей монографии. Устоявшиеся данные научной дисциплины излагаются в учебниках и транслируются последующим поколениям.

§7. Технологическое применение науки. Формирование технических наук

Возникновение технических наук имело социокультурные предпосылки. Оно происходило в эпоху вступления техногенной цивилизации в стадию индустриализма и знаменовало обретение наукой новых функций — быть производительной и социальной силой. К концу XVIII — началу XIX столетия наука окончательно становится бесспорной ценностью цивилизации. Она претендует на достижение объективно истинного знания о мире, но вместе с этим все отчетливее обнаруживает прагматическую ценность, возможность постоянного и систематического внедрения в производство своих результатов, которые реализуются в виде новой техники и технологии. Хотя примеры использования научных знаний в практике можно обнаружить и в предшествующие исторические периоды, все же использование результатов науки в производстве в доиндустриальные эпохи носило скорее эпизодический, чем систематический характер.

В конце XVIII — первой половине XIX в. ситуация радикально меняется. Индустриальное развитие поставило достаточно сложную и многоплановую проблему: не просто спорадически использовать отдельные результаты научных исследований в практике, а обеспечить научную основу технологических инноваций, систематически включая их в систему производства. Именно в этот исторический период начинается процесс интенсивного взаимодействия науки и техники и возникает особый тип социального развития, который принято именовать научно-техническим прогрессом.

Расширяющееся применение научных знаний в производстве сформировало общественную потребность в необходимости таких исследований, которые бы систематически обеспечивали приложение фундаментальных естественнонаучных теорий к области техники и технологии. Как выражение этой потребности между

157

естественнонаучными дисциплинами и производством возникает своеобразный посредник — научно-теоретические исследования технических наук.

Их становление в культуре было обусловлено двумя группами факторов. С одной стороны, они утверждались на базе экспериментальной науки, когда для формирования технической теории оказывалось необходимым наличие своей «базовой» естественнонаучной теории (во временном отношении это был период XVIIIXIX вв.). С другой же — потребность в научно-теоретическом техническом знании была инициирована практической необходимостью, когда при решении конкретных задач инженеры уже не могли опираться только на приобретенный опыт, а нуждались в научно-теоретическом обосновании создания искусственных объектов, которое невозможно осуществить, не имея соответствующей технической теории, разрабатываемой в рамках технических наук. Последние не являются простым продолжением естествознания, прикладными исследованиями, реализующими концептуальные разработки фундаментальных естественных наук. В развитой системе технических наук имеется свой слой как фундаментальных, так и прикладных знаний, и эта система требует специфического предмета исследований. Таким предметом выступают техника и технология как особая сфера искусственного, создаваемого человеком и существующего только благодаря его деятельности1.

Важной особенностью функционирования технического знания, в которой отражается его связь с практикой, является то, что оно обслуживает проектирование технических и социальных систем. Проектирование существенно отличается от исследования. Знания, используемые при проектировании, имеют свои особенности, определяемые их употреблением, ориентацией на специфические задачи. Поэтому технические науки необходимо рассматривать как специфическую сферу знания, возникающую на границе проектирования и исследования и синтезирующую в себе элементы того и другого.

В техническом знании особенности технических наук отражаются различным образом. Прежде всего в нем находят отражение социально-технические характеристики объектов. Далее, будучи конечным продуктом познавательной деятельности, техническое

См.: Степин В. С. Теоретическое знание. М., 2000. С. 78—80.

158

знание определяет характер познавательного процесса, выступая в качестве средства социально-технического проектирования. Оно в известной степени определяет как характер деятельности по созданию новых объектов, так и структурно-функциональные характеристики самих объектов.

Рассмотрение особенностей этих объектов показывает их двойственную природу. Двойственность заключается в том, что технические объекты представляют собой синтез «естественного» и «искусственного». Искусственность их выражается в том, что они, будучи продуктами созидательной человеческой деятельности, приспособлены к целям деятельности, выполняют в ней определенные функции. Для осуществления своих целей человек преобразовывает тела природы, придает им форму и свойства, соответствующие заданной функции. Границы «искусственного» всегда определяются «естественным», т. е. свойствами тел, поставленных субъектом в те или иные взаимоотношения и взаимодействия. Кроме того, сама сфера «естественного», вовлеченного в человеческую практику, всегда исторически ограничена. Ограниченность объема «естественного», освоенного субъектом и ставшего частью его среды, накладывает отпечаток на процесс создания искусственных объектов.

Исходя из двойственной природы технического объекта, можно выявить следующие его характеристики. Он может быть рассмотрен как естественное явление, как частный случай проявления закона природы, устанавливаемого естественными науками. Технический объект обнаруживает специфические характеристики, присущие ему как средству целесообразной деятельности. Эти характеристики функциональны по своей природе, они отражают внешнее действие объекта, его функционирование. Подобные свойства могут быть названы техническими в отличие от естественных свойств, характеризующих технический объект как форму «естественного».

Знания о технических свойствах объекта не могут возникнуть в сфере одних только естественных наук потому, что они отражают функционирование объекта в актах предметной деятельности, непосредственно фиксируют его связь с содержанием и целью практической деятельности.

Исходя из характеристик технического объекта, можно сделать вывод, что технические науки должны исследовать соотношение

159

между «естественным» и «искусственным» в форме изучения соотношения между естественными и техническими свойствами объекта. Научно-техническое знание должно синтезировать данные, получаемые в результате инженерно-практического опыта и естественнонаучного исследования. Поскольку через технические характеристики обнаруживают себя отличительные особенности функционирования технических объектов, то без фиксации этих свойств и их описания техническое знание немыслимо. В то же время техническое функционирование выступает как проявление естественных характеристик объекта, естественных природных сил. В результате соотношение двух типов характеристик представляет специфическое содержание, выходящее за границы естествознания, и исследование его позволяет, образно говоря, проложить мост от естественнонаучных знаний и открытий к их техническому применению, к изобретениям.

Первоначально же в техническом знании стояла другая задача: вскрыть связь между особенностями функционирования и строения объекта. Соединение представлений о естественных и технических характеристиках осуществляется в ходе решения указанной традиционной задачи технического знания и представляет собой своеобразный способ ее решения, возникающий на уровне теоретического знания.

Для технических средств деятельности, в особенности для простых орудий труда, связь строения и функционирования обнаруживает себя особенно определенно. Действие инструмента (долота, сверла, рашпиля и пр.) зависит от ряда морфологических признаков, прежде всего от формы и характера материала. Какими понятиями ни пользовалось бы техническое знание донаучного периода, оно фиксировало главным образом связь функциональных и морфологических особенностей своих объектов. При этом устройства разного рода различались прежде всего по морфологическим признакам. Функциональные особенности технических средств фиксировались через осознание их целевого технологического назначения и способа применения. На указанном уровне рассмотрения еще нет места для различения «естественного» и «искусственного».

Постепенно техника начинает совершенствоваться. Человек обращается в процессе технического творчества непосредственно уже к целесообразным предметным структурам, связь же технической

160

структуры с целью не утрачивается. Она присутствует в явном или неявном осознании функции, определяющей строение предметной целесообразной структуры в решении технических задач. Данная тенденция развития техники, включающая в себя, в частности, трансформацию цели в задачу и функцию, берет начало в технике каменного века и прогрессирует до настоящего времени.

При осуществлении периодизации технического знания нужно принимать во внимание как относительную самостоятельность развития технического знания, так и его обусловленность прогрессом естествознания и техники. На основании этого Б. И. Ивановым и В. В. Чешевым выделяются четыре основных этапа (периода) в развитии технических знаний.

Первый этап — донаучный, когда последние существовали как эмпирическое описание предмета, средств трудовой деятельности человека и способов их применения. Он охватывает длительный промежуток времени, начиная с первобытнообщинного строя и кончая эпохой Возрождения. Технические знания развивались и усложнялись одновременно с прогрессом техники, чему свидетельство эволюция этого знания: от практико-методического к технологическому и от него к конструктивно-техническому. В этот период естественнонаучные и технические знания развивались параллельно, взаимодействуя лишь спорадически, без непосредственной и постоянной связи между ними. В технике этот период соответствует этапу орудийной техники.

Второй этап в развитии технического знания — зарождение технических наук — охватывает промежуток времени, начиная со второй половины XV в. до 70-х гг. XIX в. Для этого этапа характерно то, что для решения практических задач начинает привлекаться научное знание. На стыке производства и естествознания возникает научное техническое знание, призванное непосредственно обслуживать производство. Формируются принципы и методы получения и построения научного технического знания. Одновременно продолжается становление естествознания, которое связано с производством опосредованно, через технические науки и технику. В естествознании в это время складываются все те особенности, которые определили в дальнейшем лицо классической науки. В технике — это период возникновения машинной техники, связанный со становлением капиталистического способа производства.

161

Второй этап в развитии технического знания расчленяется на два подэтапа. Первый подэтап (вторая половина XV в. — начало XVII в.) — это становление экспериментального метода на основе соединения науки и практики. Наука проникает в прикладную сферу, но техническое знание еще не приобретает статуса научной теории, поскольку еще не сформировались окончательно теоретические построения естественных наук, основанные на эксперименте. Второй подэтап (с начала XVIII в. до 70-х гг. XIX в.) — характеризуется тем, что появление новых научных теорий в естествознании (во всяком случае в механике) создало необходимые предпосылки для появления технической теории. Поэтому в этот период технические знания также начинают приобретать теоретический характер.

Третий этап в истории технических наук, который может быть назван «классическим», по времени охватывает 70-е гг. XIX в. и продолжается вплоть до середины XX в. Технические науки выглядят сформировавшейся и развитой областью научных знаний со своим предметом, средствами и методами и ясно очерченной объектной областью исследования. В этот период сложились довольно устойчивые, четкие формы взаимосвязи естествознания и технических наук.

Четвертый этап продолжается и в настоящее время, и среди его характерных особенностей можно выделить интеграцию естественнонаучного и технического знания как проявление общего процесса интеграции науки1.

На начальных этапах развития человеческого общества процесс производства был примитивным. Объекты, становившиеся средствами труда, могли быть найдены непосредственно в природных условиях, и субъект имел возможность овладевать средствами труда простым их присвоением.

Известно также и то, что производственный процесс осуществляется посредством трудовых операций. В условиях, когда применялись простые универсальные орудия, различные продукты деятельности производились за счет увеличения многообразия трудовых операций. От искусного использования естественных органов, снабженных орудиями труда, зависел успех производственной деятельности. Поэтому в центре эволюции производственного

1 См.: Иванов Б. И., Чешев В. В. Становление и развитие технических наук. Л., 1977. С. 11—114.

162

процесса стояли трудовые действия субъекта, направленные на получение того или иного продукта.

Освоенный людьми производственный процесс общественно закреплялся и передавался из поколения в поколение с помощью первой простейшей формы знаний, в которой центральное место занимали знания о действиях субъекта в процессе производства продукта. Эту форму знаний называют практико-методическими знаниями, не имеющими письменной формы их фиксации. Они содержались в человеческом опыте и передавались в процессе обучения. Но обогащение производственного опыта, накопление большого многообразия трудовых действий привело к тому, что производственный процесс начал расчленяться на специализированные операции, в ходе осуществления которых происходила дифференциация форм и функции используемых орудий. Определенному типу действий ставился в соответствие специализированный инструмент. Таким инструментом и соответствующими специальными движениями естественных органов осуществлялась конкретная технологическая операция — частица совокупного технологического процесса.

Уже в первобытнообщинном строе, особенно на последних этапах его развития, накапливалось множество простых специализированных орудий труда: скребки, долота, шилья, резцы и т. д. Наличие этих инструментов говорит о том, что в производственном процессе произошло выделение целого ряда специализированных технологических операций, применявшихся при изготовлении тех или иных продуктов. Знание, получаемое в этом опыте, называют технологическим. Некоторые авторы, анализируя формы донаучного технического знания, не склонны различать практико-методическую и технологическую его формы. «Технологические знания зарождаются с первыми каменными орудиями, и рассматривать их как развитие, усложнение практико-методических знаний неверно. Технические знания донаучного этапа — это, по сути, эмпирические знания практической деятельности. Представляя собой сплав невежества и практических навыков, они накапливаются методом проб и ошибок веками»1.

В ходе производственной деятельности начинают использоваться вспомогательные инструменты, заменяющие движения рук

1 Ильин В. В., КалинкинА. Т. Природа науки. М., 1985. С. 154

163

или ног человека механическими движениями. Появляются так называемые конструктивно-технические элементы, которые выполняют функции, принципиально отличающиеся от функций технологических инструментов. Они не воздействуют непосредственно на объект преобразования (это делает рабочий инструмент), а только обеспечивают взаимодействие инструмента и объекта преобразования в рамках определенной технологии.

Накопление и применение различных конструктивно-технических элементов закрепляется производственным опытом, возникает новая составляющая технических знаний. Такое знание можно назвать конструктивно-техническим. В содержание его входят сведения о структуре и действии того или иного элемента в их взаимосвязи, а также типовые способы использования конструктивно-технических элементов. Но это все еще практическое эмпирическое знание, направленное на удовлетворение практических интересов человека, характерное для докапиталистического способа производства.

Уже в античности были ученые, обладавшие техническим знанием, которое опережало свое время. В частности, Архимед применял свои теоретические знания для решения различных технических задач в строительстве и военном деле. В трудах по механике он не только дал научный анализ работы простых машин, но заложил основы статики и гидростатики. Примером технического подхода к изучению простых машин (ворота, рычага, блоков и т. д.) могут служить сочинения Герона Александрийского (около I в. н. э.).

Но в античные времена производственная практика использовала теоретические достижения Архимеда и его современников в ограниченном объеме. Только в эпоху Возрождения, когда особенно интенсивно стали развиваться мастерство, точные расчеты, работы Архимеда были оценены должным образом.

Развитие эмпирического теоретического знания ведет к созданию машин и машинного производства, что характерно уже для мануфактурного производства, и происходит это не без участия механики и математики, отчасти физики и химии. Возникновению экспериментальной науки больше всего способствовали знания о действии устройств (прежде всего механических), а также сведения из области технологии. Между субъектом и предметом труда помещались все более сложные механические устройства

164

Понятно, почему и в знаниях о них важнейшая роль принадлежала механике, которая раньше других отраслей знания сложилась в естественную науку и имела значительные теоретические и практические достижения в механизмах для ирригации, переноса тяжестей, судостроения, а также для создания и совершенствования военных устройств.

Из всех наук механика была наиболее тесно связана с техникой : она раньше других наук разделилась на теоретическую и прикладную механику. В целом, в эпоху феодализма не стимулировалось систематическое изучение природы и применение естественнонаучных знаний в технике и технологии производства. Но тем не менее появляются новые конструктивно-технические элементы, технологические приемы и соответствующие им технические знания, применяемые в производстве. Достоянием многих стран становятся такие крупнейшие открытия и изобретения, как порох, бумага, книгопечатание, компас. В исследовании различных свойств вещества и энергии нуждались, в частности, текстильная, керамическая, стеклодувная и металлообрабатывающая промышленности. Все это создало материальную основу для становления и развития подлинной экспериментальной науки.

Выдвижение в этот период именно механики на первый план находилось в соответствии с особенностями процесса познания, поскольку механика изучает простейшую форму движения материи — перемещение. Коренные преобразования в мануфактурном производстве в условиях зарождавшегося капитализма привели к возникновению современного естествознания.

Главной особенностью этапа зарождения технических наук является превращение технических знаний в научные, что исторически связано с переходом к машинному производству. Если машинное производство стало первым фактором, породившим необходимость научного технического знания, то возможность возникновения последнего была обусловлена вторым фактором, а именно достижениями теоретического естествознания, опирающегося на эксперимент, «Рождение технических наук, необходимых для разработки технических средств, было обусловлено двумя встречными процессами: с одной стороны, использованием естественнонаучных законов, теорий и отдельных данных при изучении технических объектов и происходящих в них процессов, а также применением методов научного познания, с другой —

165

обобщением отдельных наблюдений и фактов технико-производственного характера и прежде всего опыта создания технических средств»1.

Фундаментальное значение естественных наук в становлении научного технического знания определялось тем, что они раскрывали сущность, описывали явления и процессы, применявшиеся в производственной технике, и брали на вооружение формальный математический аппарат для количественного расчета структурных элементов технических устройств, происходящих в них явлений и процессов.

Естественные науки давали возможность оказать решающее влияние на конструирование, так как позволяли по-новому рассматривать технические устройства. Всякий механизм, любую совокупность определенным образом сочлененных конструктивно-технических элементов можно было понять теперь как реализацию естественного процесса, что явно обнаружило себя в процессе изобретения парового двигателя. Технические средства отныне могли быть исследованы и созданы как особая форма «естественного», как форма овеществления процессов природы. Естественные процессы были положены в основу построения технических средств производственной деятельности. Со временем эта тенденция становится нормой конструирования технического объекта2. На основе знаний, полученных в естественных науках, можно было представить идеальную модель процесса, реализуемого в техническом устройстве, что становилось отправным пунктом конструирования технических объектов. Конструирование становится разновидностью научной деятельности. В результате синтеза технического опыта с научным знанием возникает научное техническое знание.

Решающая стадия в становлении технических наук приходится на рубеж XVIIIXIX вв. Но процесс этот был очень сложным и неравномерным, что обусловлено неравномерным развитием наук. В это время возникают новые научные теории в естествознании, что создало необходимые предпосылки для появления

1  Уварова Л. И. О возникновении технических наук, используемых при разработке технических средств // Наука и техника (вопросы история и теории). Вып. VII. Ч. 1. Л., 1972. С. 122.

2 См.: Иванов Б. И., Чешев В. В. Становление и развитие технических наук. Л., 1977. С. 127-128.

166

технической теории, технические знания также приобретают теоретический характер, т. е. происходит окончательная достройка научного технического знания, имеющего свой предмет, средства исследования, методы. Начинает зарождаться научная деятельность в технических науках. Начиная с 70-х гг. XIX в. наступает «классический» этап развития технических наук. Одной из характеристик зрелости технических наук является применение научного знания при создании новой техники. Так, например, в области электротехники (одна из технических дисциплин, становление которой пришлось на этот период) эта тенденция проявила себя в ходе развития конструкций электродвигателей, электромашинных генераторов, электрического телеграфа, электрического освещения, электроавтоматики и т. д. Случались в развитии электротехнической теории и отставания, вызванные особенностями практического использования электрического тока. Отсутствие разработок по теории переменного тока привело к отставанию электротехники от объективных практических потребностей ее развития. Становление электротехники как самостоятельной технической науки (а продолжалось оно до начала XX в.) характеризуется тем, что она обрела свои объекты исследования, свои цели и собственные методы.

На рубеже ХГХ и XX вв. наука перешла от познания явлений макроскопического масштаба к познанию микропроцессов. Новый импульс развития теоретической физике дает М. Планк, который впервые (1900) выдвинул гипотезу квантов энергии. Путь, по которому пошло развитие квантовой физики, привел к тому, что она далеко обогнала весьма скромные потребности техники конца XIX — начала XX в. и в дальнейшем обусловила создание новых ее областей: электроники, радиотехники, рентгенотехники и т. п.

Начиная с этого периода, наука не только стала обеспечивать потребности развивающейся техники, но и опережать ее развитие, формируя схемы возможных будущих технологий и технических систем. Необходимо отметить, что в это время технические науки представляют собой сформировавшуюся область научного знания со своим предметом, особыми теоретическими принципами, специфическими идеальными объектами. Ряд дисциплин был уже обеспечен эффективным математическим аппаратом. Система технических наук приобретает устойчивые формы

167

взаимоотношений с естественными науками. Важным механизмом возникновения новых научно-технических дисциплин становится отделение одних технических наук от других, т.е. происходит дифференциация технического знания. Ускоряются темпы математизации технических дисциплин.

Период от начала XX в. и до середины 50-х гг. XX в. является переходным от «классического» к «неклассическому» этапу развития естествознания. В то же время технические науки продолжали преимущественно находиться на этапе «классического» периода своего развития. Но именно в этот период развитие естествознания и автоматизации производства подготовили переход технических наук к современному состоянию своего развития, что проявилось в зарождении таких наук, как электроника, радиоэлектроника и др. На этом этапе все более нарастает поток, идущий от науки к технике, производству, сравниваясь с потоком, идущим в противоположном направлении; начался процесс единения науки и производства. С середины XX в. начинается «неклассический» этап развития.

На этом этапе в результате усложнения объектов инженерной деятельности, точнее усложнения проектирования такого рода объектов, формируются комплексные научно-технические дисциплины (технические науки неклассического типа) — эргономика, системотехника, дизайн систем, теоретическая геотехнология и т. д.

Сложившиеся в науке внутридисциплинарные и междисциплинарные механизмы порождения знаний, как замечает В. В. Сте-пин, обеспечили ее систематические прорывы в новые предметные миры. В свою очередь эти прорывы открывают новые возможности для технико-технологических инноваций в самых различных сферах человеческой жизнедеятельности1.

1 См.: Степин В. С. Теоретическое знание. М., 2000. С. 95.

Глава III

Структура научного познания

§1. Эмпиризм и схоластическое теоретизирование

В истории познания сложились две крайние позиции по вопросу о соотношении эмпирического и теоретического уровней научного познания: эмпиризм и схоластическое теоретизирование. Сторонники эмпиризма сводят научное знание как целое к эмпирическому его уровню, принижая или вовсе отвергая теоретическое познание. Эмпиризм абсолютизирует роль фактов и недооценивает роль мышления, абстракций, принципов в их обобщении, что делает невозможным выявление объективных законов. К тому же результату приходят и тогда, когда признают недостаточность «голых фактов» и необходимость их теоретического осмысления, но не умеют «оперировать понятиями» и принципами или делают это некритически и неосознанно.

Эмпиризм (от греч. impeiria — опыт) отрицает активную роль и относительную самостоятельность мышления. Единственным источником познания считается опыт, чувственное познание (живое созерцание), вследствие чего эмпиризм всегда был связан с сенсуализмом (от лат. sensus — чувство), но это не тождественные понятия. При этом содержание знания сводится к описанию этого опыта, а рациональная, мыслительная деятельность сводится к разного рода комбинациям того материала, который дается в опыте, и толкуется как ничего не прибавляющая к содержанию знания.

Однако для объяснения реального процесса познания эмпиризм вынужден выходить за пределы чувственного опыта и описания

169

«чистых фактов» и обратиться к аппарату логики и математики (прежде всего к индуктивному обобщению) для описания опытных данных в качестве средств построения теоретического знания Ограниченность эмпиризма состоит в преувеличении роли чувственного познания, опыта и в недооценке роли научных абстракций и теорий в познании, в отрицании активной роли и относительной самостоятельности мышления

Говоря о схоластическом теоретизировании, необходимо отметить, что понятие «схоластика» чаще всего употребляется в двух смыслах: прямом — как определенный тип (форма) религиозной философии, в особенности характерный для Средних веков, и в переносном — как бесплодное умствование, формальное знание, оторванное от реальной жизни и практики.

В свое время Гегель справедливо называл схоластику «варварской философией рассудка», лишенной всякого объективного содержания, которая «вертится лишь в бесконечных сочетаниях категорий» (а точнее — слов, терминов). При этом «презренная действительность» остается рядом и ею совсем не интересуются, что не позволяет понять ее существенные характеристики и формообразования. Однако, как верно заметил великий математик Г. Вейль, ученый обязан пробиваться сквозь туман абстрактных слов и «достигать незыблемого скального основания реальности».

Схоластика — отвлеченно-догматический способ мышления, опирающийся не на реалии жизни, а на авторитет канонизированных текстов и на формально-логическую правильность односторонних, чисто словесных рассуждений. Она не совместима с творчеством, с критическим духом подлинно научного исследования, поскольку навязывает мышлению уже готовый результат, подгоняя доводы под желаемые выводы.

Таким образом, схоластика представляет собой такой способ мышления, для которого характерны несвобода и авторитарность мысли, ее отрыв от реальной действительности, обоснование официальной ортодоксальной доктрины и подчинение ей, абсолютизация формально-логических способов аргументации, субъективизм и произвольность в оперировании понятиями и терминами (зачастую переходящие в «словесную эквилибристику»), работа в рамках компилятивного, комментаторского исследования текстов, многосложность и полисемантичность дефиниций и вместе с

170

тем — стремление к четкой рационализации знания, формально-логической стройности понятий.

Отрыв от опыта, от экспериментально установленных фактов, замкнутость мышления только на самого себя — недопустимое явление для научного познания. Как подчеркивал А. Эйнштейн, «чисто логическое мышление само по себе не может дать никаких знаний о мире фактов; все познание реального мира исходит из опыта и завершается им. Полученные чисто логическим путем положения ничего не говорят о действительности»1. Великий физик считал, что даже самая блестящая логическая математическая теория не дает сама по себе никакой гарантии истины и может не иметь никакого смысла, если она не проверена наиболее точными наблюдениями, возможными в науках о природе.

Проявления схоластического мышления чаще встречаются в социально-гуманитарном познании, чем в естественнонаучном, особенно в условиях тоталитарных политических режимов. Это — цитатничество, начетничество и компилятивность, которые становятся основными «методами» исследования; несвобода и авторитарность мысли, ее подчинение официальной идеологической доктрине и ее обоснование, субъективизм и произвольность в оперировании понятиями и терминами («словесная эквилибристика»), комментаторство и экзегетичность (произвольное толкование текстов). «Это — пресловутая «игра в дефиниции», манипулирование «голыми» (зачастую «заумными») терминами, тяга к классификаторству и системосозиданию, доказыванию давно доказанного, псевдоноваторство с забвением азбучных истин, движение мысли от умозрительно сконструированных схем и формул к реальным процессам (но не наоборот), бесплодные перетасовки понятий и бесконечное «плетение словес» и т. д.

§2. Особенности эмпирического исследования

Научное познание есть процесс, т. е. развивающаяся система знания, которая включает в себя два основных уровня — эмпирический и теоретический. Они хотя и связаны, но отличаются друг

Эйнштейн А. Физика и реальность. М., 1965, С. 62.

171

от друга, каждый из них имеет свою специфику. В чем она заключается?

На эмпирическом уровне преобладает живое созерцание (чувственное познание), рациональный момент и его формы (суждения, понятия и др.) здесь присутствуют, но имеют подчиненное значение. Поэтому исследуемый объект отражается преимущественно со стороны своих внешних связей и проявлений1, доступных живому созерцанию и выражающих внутренние отношения. Сбор фактов, их первичное обобщение, описание наблюдаемых и экспериментальных данных, их систематизация, классификация и иная фактофиксирующая деятельность — характерные признаки эмпирического познания.

Эмпирическое, опытное исследование направлено непосредственно (без промежуточных звеньев) на свой объект. Оно осваивает его с помощью таких приемов и средств, как описание, сравнение, измерение, наблюдение, эксперимент, анализ, индукция, а его важнейшим элементом является факт (от лат. factum — сделанное, свершившееся).

Любое научное исследование начинается со сбора, систематизации и обобщения фактов. Понятие «факт» имеет следующие основные значения: 1. Некоторый фрагмент действительности, объективные события, результаты, относящиеся либо к объективной реальности («факты действительности»), либо к сфере сознания и познания («факты сознания»). 2. Знание о каком-либо событии, явлении, достоверность которого доказана, т. е. синоним истины. 3. Предложение, фиксирующее эмпирическое знание, т. е. полученное в ходе наблюдений и экспериментов.

Второе и третье из названных значений резюмируются в понятии «научный факт». Последний становится таковым тогда, когда он является элементом логической структуры конкретной системы научного знания, включен в эту систему. Данное обстоятельство всегда подчеркивали выдающиеся ученые. «Мы должны признать, — отмечал Н. Бор, — что ни один опытный факт не может быть сформулирован помимо некоторой системы понятий»2.

1  Иногда утверждают, что эмпирическое познание отражает лишь внешние свойства и отношения предметов и процессов. Но это неверно, ибо тогда мы никогда не выявим их внутренние связи, существенные, закономерные отношения.

2 Бор Н. Атомная физика и человеческое познание. М., 1961. С. 114.

172

Луи де Бройль писал о том, что «результат эксперимента никогда не имеет характера простого факта, который нужно только констатировать. В изложении этого результата всегда содержится некоторая доля истолкования, следовательно, к факту всегда примешаны теоретические представления»1.

А. Эйнштейн считал предрассудком убеждение в том, что будто факты сами по себе, без свободного теоретического построения, могут и должны привести к научному познанию. Собрание эмпирических фактов, как бы обширно оно ни было, без «деятельности ума» не может привести к установлению каких-либо законов и уравнений.

В понимании природы факта в современной методологии науки выделяются две крайние тенденции: фактуализм и теоретизм. Если первый подчеркивает независимость и автономность фактов по отношению к различным теориям, то второй, напротив, утверждает, что факты полностью зависят от теории и при смене теорий происходит изменение всего фактуального базиса науки. Верное решение проблемы состоит в том, что научный факт, обладая теоретической нагрузкой, относительно независим от теории, поскольку в своей основе он детерминирован материальной действительностью.

Парадокс теоретической нагруженности фактов разрешается следующим образом. В формировании факта участвуют знания, которые проверены независимо от теории, а факты дают стимул для образования новых теоретических знаний. Последние, в свою очередь, — если они достоверны — могут снова участвовать в формулировании новейших фактов и т. д.

В научном познании факты играют двоякую роль: во-первых, совокупность фактов образует эмпирическую основу для выдвижения гипотез и построения теорий; во-вторых, факты имеют решающее значение в подтверждении теорий (если они соответствуют совокупности фактов) или их опровержении (если тут нет соответствия). Расхождение отдельных или нескольких фактов с теорией не означает, что последнюю надо сразу отвергнуть. Только в том случае, когда все попытки устранить противоречие между теорией и фактами оказываются безуспешными, приходят к выводу о ложности теории и отказываются от нее. В любой науке

Бройль Луи де. По тропам науки М , 1962. С. 164—165

173

следует исходить из данных нам фактов, которые необходимо признавать, независимо от того, нравятся они нам или нет.

Говоря о важнейшей роли фактов в развитии науки, В. И. Вернадский писал: «Научные факты составляют главное содержание научного знания и научной работы. Они, если правильно установлены, бесспорны и общеобязательны. Наряду с ними могут быть выделены системы определенных научных фактов, основной формой которых являются эмпирические обобщения.

Это тот основной фонд науки, научных фактов, их классификаций и эмпирических обобщений, который по своей достоверности не может вызвать сомнений и резко отличает науку от философии и религии. Ни философия, ни религия таких фактов и обобщений не создают»1. При этом недопустимо «выхватывать» отдельные факты, а необходимо стремиться охватить по возможности все факты (без единого исключения). Только в том случае, если они будут взяты в целостной системе, в их взаимосвязи, они и станут «упрямой вещью», «воздухом ученого», «хлебом науки».

Хотя любой факт, будучи детерминирован реальной действительностью, практикой, так или иначе концептуализирован, «пропитан» определенными теоретическими представлениями, однако всегда необходимо различать факты действительности как ее отдельные, специфические проявления, и факты знания как отражение этих проявлений в сознании человека. Не следует «гнаться» за бесконечным числом фактов, а, собрав определенное их количество, необходимо в любом случае включить собранную систему фактов в какую-то концептуальную систему, чтобы придать им смысл и значение. Ученый не вслепую ищет факты, а всегда руководствуется при этом определенными целями, задачами, идеями и т. п.

Таким образом, эмпирический опыт никогда — тем более в современной науке — не бывает слепым: он планируется, конструируется теорией, а факты всегда так или иначе теоретически нагружены. Поэтому исходный пункт, начало науки — это, строго говоря, не сами по себе предметы, не голые факты (даже в их совокупности), а теоретические схемы, «концептуальные каркасы действительности». Они состоят из абстрактных объектов («идеальных

1 Вернадский В. И. О науке. Т. 1. Научное знание. Научное творчество. Научная мысль. Дубна, 1997. С. 414—415

174

конструктов») разного рода — постулаты, принципы, определения, концептуальные модели и т. п.

Как в этой связи отмечал А. Уайтхед, научное познание представляет собой соединение двух слоев. Один слой складывается из непосредственных данных, полученных конкретными наблюдениями. Другой — представлен нашим общим способом постижения мира. Их можно, считает Уайтхед, назвать Слоем наблюдения и Концептуальным Слоем, причем первый из них всегда интерпретирован с помощью понятий, доставляемых концептуальным слоем.

Согласно К. Попперу, является абсурдом вера в то, что мы можем начать научное исследование с «чистых наблюдений», не имея «чего-то похожего на теорию». Поэтому некоторая концептуальная точка зрения совершенно необходима. Наивные же попытки обойтись без нее могут, по его мнению, только привести к самообману и к некритическому использованию какой-то неосознанной точки зрения. Даже тщательная проверка наших идей опытом сама в свою очередь, считает Поппер, вдохновляется идеями: эксперимент представляет собой планируемое действие, каждый шаг которого направляется теорией.

Поппер считает, что если в факты не «встроено нечто теоретическое», то такие «факты» не являются ни основой, ни их гарантией. Однако между теорией и фактами, описываемыми данной теорией, всегда надо проводить «реалистическое различие».

Причисляя себя к «реалистам», Поппер отмечает, что ответ на вопрос о том, истинны или нет созданные человеком теории, зависит от реальных фактов, которые, за очень немногими исключениями, явным образом не созданы человеком. Созданные человеком теории могут приходить в столкновение с этими реальными фактами, и тогда в наших поисках истины нам приходится приспосабливать теории к фактам или же отказываться от этих теорий1.

Таким образом, мы «делаем» наш опыт. Именно теоретик указывает путь экспериментатору, причем теория господствует над экспериментальной работой от ее первоначального плана и до ее последних штрихов в лаборатории. Соответственно, не может быть и «чистого языка наблюдений», так как все языки «пронизаны теориями»,

1 См.: Поппер К. Р. Объективное знание. Эволюционный подход. М., 2002. С. 309.

175

а голые факты, взятые вне и помимо «концептуальных очков», не являются основой теории.

§3. Специфика теоретического познания и его формы

Теоретический уровень научного познания характеризуется преобладанием рационального момента — понятий, теорий, законов и других форм мышления и «мыслительных операций». Живое созерцание, чувственное познание здесь не устраняется, а становится подчиненным (но очень важным) аспектом познавательного процесса. Теоретическое познание отражает явления и процессы со стороны их универсальных внутренних связей и закономерностей, постигаемых с помощью рациональной обработки данных эмпирического знания. Эта обработка осуществляется с помощью систем абстракций «высшего порядка» — таких как понятия, умозаключения, законы, категории, принципы и др.

На основе эмпирических данных здесь происходит мысленное объединение исследуемых объектов, постижение их сущности, «внутреннего движения», законов их существования, составляющих основное содержание теорий, — и «квинтэссенции» знания на данном уровне. Важнейшая задача теоретического знания — достижение объективной истины во всей ее конкретности и полноте содержания. При этом особенно широко используются такие познавательные приемы и средства, как абстрагирование — отвлечение от ряда свойств и отношений предметов, идеализация — процесс создания чисто мысленных предметов («точка», «идеальный газ» и т. п.), синтез — объединение полученных в результате анализа элементов в систему, дедукция — движение познания от общего к частному, восхождение от абстрактного к конкретному и др. Присутствие в познании идеализации служит показателем развитости теоретического знания как набора определенных идеальных моделей.

Характерной чертой теоретического познания является его направленность на себя, внутринаучная рефлексия, т. е. исследование самого процесса познания, его форм, приемов, методов, понятийного аппарата и т. д. На основе теоретического объяснения

176

и познанных законов осуществляется предсказание, научное предвидение будущего.

На теоретической стадии науки преобладающим (по сравнению с живым созерцанием) является рациональное познание, которое наиболее полно и адекватно выражено в мышлении. Мышление — осуществляющийся в ходе практики активный процесс обобщенного и опосредованного отражения действительности, обеспечивающий раскрытие на основе чувственных данных ее закономерных связей и их выражение в системе абстракций (понятий, категорий и др.). Человеческое мышление осуществляется в теснейшей связи с речью, а его результаты фиксируются в языке как определенной знаковой системе, которая может быть естественной или искусственной (язык математики, формальной логики, химические формулы и т. п.).

Говоря о важнейшем значении мышления для научного познания, М. Борн подчеркивал, что «человеческий ум может проникать в тайны природы с помощью мышления вследствие гармонии между законами мышления и законами природы»1. Отсутствие такой гармонии, расхождение законов мышления с законами бытия закрывает путь к истине, ведет к заблуждению.

Мышление человека — не чисто природное его свойство, а выработанная в ходе истории функция социального субъекта, общества в процессе своей предметной деятельности и общения, идеальная их форма. Поэтому мышление, его формы, принципы, категории, законы и их последовательность внутренне связаны с историей социальной жизни, обусловлены развитием труда, практики. Именно уровень и структура последней обусловливают в конечном итоге способ мышления той или иной эпохи, своеобразие логических «фигур» и связей на каждом из ее этапов. Вместе с развитием практики, ее усложнением и внутренней дифференциацией изменяется и мышление, проходя определенные уровни (этапы, состояния и т. п.).

Исходя из древней философской традиции, восходящей к античности, следует выделить два основных уровня мышления — рассудок и разум. Рассудок — исходный уровень мышления, на котором оперирование абстракциями происходит в пределах неизменной схемы, заданного шаблона, жесткого стандарта. Это

1 Борн М. Размышления и воспоминания физика. М., 1977. С. 53.

177

способность последовательно и ясно рассуждать, правильно строить свои мысли, четко классифицировать, строго систематизировать факты. Здесь сознательно отвлекаются от развития, взаимосвязи вещей и выражающих их понятий, рассматривая их как нечто устойчивое, неизменное. Главная функция рассудка — расчленение и исчисление. Мышление в целом невозможно без рассудка, он необходим всегда, но его абсолютизация неизбежно ведет к метафизике. Рассудок — это обыденное повседневное житейское мышление или то, что часто называют здравым смыслом. Логика рассудка — формальная логика, которая изучает структуру высказываний и доказательств, обращая основное внимание на форму «готового» знания, а не на его содержание и развитие.

Разум — (диалектическое мышление) — высший уровень рационального познания, для которого прежде всего характерны творческое оперирование абстракциями и сознательное исследование их собственной природы (саморефлексия). Только на этом своем уровне мышление может постигнуть сущность вещей, их законы и противоречия, адекватно выразить логику вещей в логике понятий. Последние, как и сами вещи, берутся в их взаимосвязи, развитии, всесторонне и конкретно. Главная задача разума — объединение многообразного вплоть до синтеза противоположностей и выявления коренных причин и движущих сил изучаемых явлений. Логика разума — диалектика, представленная как учение о формировании и развитии знаний в единстве их содержания и формы.

Процесс развития мышления включает в себя взаимосвязь и взаимопереход рассудка и разума. Наиболее характерной формой перехода первого во второй является выход за пределы сложившейся готовой системы знания на основе выдвижения новых — диалектических по своей сути — фундаментальных идей. Переход разума в рассудок связан прежде всего с процедурой формализации и перевода в относительно устойчивое состояние тех систем знания, которые были получены на основе разума (диалектического мышления).

Формы мышления (логические формы) — способы отражения действительности посредством взаимосвязанных абстракций, среди которых исходными являются понятия, суждения и умозаключения. На их основе строятся более сложные формы рационального

178

познания, такие как гипотеза, теория и другие, которые будут рассмотрены ниже.

Понятие — форма мышления, отражающая общие закономерные связи, существенные стороны, признаки явлений, которые закрепляются в их определениях (дефинициях). Например, в определении «человек есть животное, делающее орудия труда» выражен такой существенный признак человека, который отличает его от всех других представителей животного мира, выступает фундаментальным законом существования и развития человека как родового существа. Понятия должны быть гибки и подвижны, взаимосвязаны, едины в противоположностях, чтобы верно отразить реальную диалектику (развитие) объективного мира. Наиболее общие понятия — это философские категории (качество, количество, материя, противоречие и др.). Понятия выражаются в языковой форме — в виде отдельных слов («атом», «водород» и др.) или в виде словосочетаний, обозначающих классы объектов («экономические отношения», «элементарные частицы» и др.).

Суждение — форма мышления, отражающая отдельные вещи, явления, процессы действительности, их свойства, связи и отношения. Это мысленное отражение, обычно выражаемое повествовательным предложением, может быть либо истинным («Париж стоит на Сене»), либо ложным («Ростов — столица России»). В форме суждения выражаются любые свойства и признаки предмета, а не только существенные и общие (как в понятии). Например, в суждении «золото имеет желтый цвет» отражается не существенный, а второстепенный признак золота.

В современной логике по сравнению с традиционной, т. е. с начала XX в., когда сформировалась математическая (символическая) логика, вместо термина «суждение» обычно пользуются термином «высказывание». Последнее представляет собой грамматически правильное повествовательное предложение, взятое вместе с выражаемым им смыслом. Основными типами высказываний являются дескриптивные (описательные) и оценочные.

Однако истинность и ложность не являются единственными характеристиками высказываний, что было присуще традиционной логике. Для гуманитарных наук особое значение приобретают, например, нормативные суждения, в которых выражены нормы и законы права, этики — нормы поведения людей в различных условиях.

179

Умозаключение — форма мышления (мыслительный процесс), посредством которой из ранее установленного знания (обычно из одного или нескольких суждений) выводится новое знание (также обычно в виде суждения). Классический пример умозаключения:

1. Все люди смертны (посылка).

2. Сократ — человек (обосновывающее знание).

3. Следовательно, Сократ смертен (выводное знание, называемое заключением или следствием).

Важными условиями достижения истинного выводного знания являются не только истинность посылок (аргументов, оснований), но и соблюдение правил вывода, недопущение нарушений законов и принципов логики и диалектики. Наиболее общим делением умозаключений является их деление на два взаимосвязанных вида: индуктивное движение мысли от единичного, частного к общему, от менее общего к более общему, и дедуктивное (силлогизмы), где имеет место обратный процесс (как в приведенном примере). В современной логике, в отличие от традиционной, исследуют дедуктивные и недедуктивные умозаключения.

Говоря о формах мышления, следует иметь в виду, что «в научных исследованиях должно соблюдаться единство формально-логических правил определения и методологических принципов диалектики»1.

Рациональное (мышление) взаимосвязано не только с чувственным, но и с другими — внерациональными — формами познания. Большое значение в процессе познания имеют такие факторы, как воображение, фантазия, эмоции и др. Среди них особенно важную роль играет интуиция (внезапное озарение) — способность прямого, непосредственного постижения истины без предварительных логических рассуждений и без доказательств. В истории философии на важную роль интуиции (хотя и по-разному понимаемой) в процессе познания указывали многие мыслители. Так, Декарт считал, что для реализации правил своего рационалистического метода необходима интуиция, с помощью которой усматриваются первые начала (принципы), и дедукция, позволяющая получить следствия из этих начал.

1 Курбатов В. И. Логика. Систематический курс. Ростов н/Д, 2001. С. 154.

180

Единственно достоверным средством познания считали интуицию сторонники такого философского течения XX в., как интуитивизм. А. Бергсон, противопоставляя интеллекту интуицию, считал последнюю подлинным философским методом, в процессе применения которого происходит непосредственное слияние объекта с субъектом. Связывая интуицию с инстинктом, он отмечал, что она характерна для художественной модели познания, тогда как в науке господствует интеллект, логика, анализ.

История познания показывает, что новые идеи, коренным образом меняющие старые представления, часто возникают не в результате строго логических рассуждений или как простое обобщение. Они являются как бы скачком в познании объекта, прерывом непрерывности в развитии мышления. Для интуитивного постижения действительности характерна свернутость рассуждений, осознание не всего их хода, а отдельного наиболее важного звена, в частности, окончательных выводов.

Полное логическое и опытное обоснование этих выводов им находят позднее, когда они уже были сформулированы и вошли в ткань науки. Как писал известный французский физик Луи де Бройль, «человеческая наука, по существу рациональная в своих основах и по своим методам, может осуществлять свои наиболее замечательные завоевания лишь путем опасных внезапных скачков ума, когда проявляются способности, освобожденные от тяжелых оков строгого рассуждения, которые называют воображением, интуицией, остроумием»1. Крупнейший математик А. Пуанкаре говорил о том, что в науке нельзя все доказать и нельзя все определить, а поэтому приходится всегда «делать заимствование у интуиции».

Действительно, интуиция требует напряжения всех познавательных способностей человека, в нее вкладывается весь опыт предшествующего социокультурного и индивидуального развития человека — его чувственно-эмоциональной сферы (чувственная интуиция) или его разума, мышления (интеллектуальная интуиция).

Многие великие творцы науки подчеркивали, что нельзя недооценивать важную роль воображения, фантазии и интуиции в научном исследовании. Последнее не сводится к «тяжеловесным силлогизмам», а необходимо включает в себя «иррациональные

Бройль Луи де. По тропам науки. М., 1962, С. 295.

181

скачки». С их помощью, по словам Луи де Бройля, разрывается «жесткий круг, в который нас заключает дедуктивное рассуждение», что и позволяет совершить прорыв к истинным достижениям науки, осуществить великие завоевания мысли. Вместе с тем французский физик обращал внимание на то, что «всякий прорыв воображения и интуиции, именно потому, что он является единственно истинным творцом, чреват опасностями; освобожденный от оков строгой дедукции, он никогда не знает точно, куда ведет, он может нас ввести в заблуждение или даже завести в тупик»1. Чтобы этого не произошло, интуитивный момент следует соединять с дискурсивным (логическим, понятийным, опосредованным), имея в виду, что это два необходимо связанных момента единого познавательного процесса.

Познание как единство чувственного и рационального, эмпирического и теоретического, рассудка и разума, интуитивного и дискурсивного тесно связано с пониманием (см. гл. V, §6).

Рассматривая теоретическое познание как высшую и наиболее развитую его форму, следует прежде всего определить его структурные компоненты. К числу основных из них относятся проблема, гипотеза, теория и закон, выступающие вместе с тем как формы, «узловые моменты» построения и развития знания на теоретическом его уровне.

Проблема — форма теоретического знания, содержанием которой является то, что еще не познано человеком, но что нужно познать. Иначе говоря, это знание о незнании, вопрос, возникший в ходе познания и требующий ответа. Проблема не есть застывшая форма знания, а процесс, включающий два основных момента (этапа движения познания) — ее постановку и решение. Правильное выведение проблемного знания из предшествующих фактов и обобщений, умение верно поставить проблему — необходимая предпосылка ее успешного решения. «Формулировка проблемы часто более существенна, чем ее разрешение, которое может быть делом лишь математического или экспериментального искусства. Постановка новых вопросов, развитие новых возможностей, рассмотрение.старых проблем под новым углом зрения требуют творческого воображения и отражают действительный успех в науке»1.

Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965. С. 78.

182

В. Гейзенберг отмечал, что при постановке и решении научных проблем необходимо следующее: а) определенная система понятий, с помощью которых исследователь будет фиксировать те или иные феномены; б) система методов, избираемая с учетом целей исследования и характера решаемых проблем; в) опора на научные традиции, поскольку, по мнению Гейзенберга, «в деле выбора проблемы традиция, ход исторического развития играют существенную роль»1, хотя, конечно, определенное значение имеют интересы и наклонности самого ученого.

Как считает К. Поппер, наука начинает не с наблюдений, а именно с проблем, и ее развитие есть переход от одних проблем к другим — от менее глубоких к более глубоким. Проблемы возникают, по его мнению: 1) либо как следствие противоречия в отдельной теории, 2) либо при столкновении двух различных теорий, 3) либо в результате столкновения теории с наблюдениями.

Тем самым научная проблема выражается в наличии противоречивой ситуации (выступающей в виде противоположных позиций), которая требует соответствующего разрешения. Определяющее влияние на способ постановки и решения проблемы имеет, во-первых, характер мышления той эпохи, в которую формулируется проблема, и, во-вторых, уровень знания о тех объектах, которых касается возникшая проблема. Каждой исторической эпохе свойственны свои характерные формы проблемных ситуаций.

Научные проблемы следует отличать от ненаучных (псевдопроблем) — например, проблема создания вечного двигателя. Решение какой-либо конкретной проблемы есть существенный момент развития знания, в ходе которого возникают новые проблемы, а также выдвигаются те или иные концептуальные идеи, в том числе и гипотезы. Наряду с теоретическими существуют и практические проблемы.

Гипотеза — форма теоретического знания, содержащая предположение, сформулированное на основе ряда фактов, истинное значение которого неопределенно и нуждается в доказательстве. Гипотетическое знание носит вероятный, а не достоверный характер и требует проверки, обоснования. В ходе доказательства выдвинутых гипотез — а) одни из них становятся истинной теорией,

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 228.

183

б) другие видоизменяются, уточняются и конкретизируются, в) третьи отбрасываются, превращаются в заблуждения, если проверка дает отрицательный результат. Выдвижение новой гипотезы, как правило, опирается на результаты проверки старой, даже в том случае, если эти результаты были отрицательными.

Так, например, выдвинутая Планком квантовая гипотеза после проверки стала научной теорией, а гипотезы о существовании «теплорода», «флогистона», «эфира» и др., не найдя подтверждения, были опровергнуты, перешли в заблуждения. Стадию гипотезы прошли и открытый Д. И. Менделеевым периодический закон, и теория Дарвина, и др. Велика роль гипотез в современной астрофизике, геологии и других науках, которые окружены «лесом гипотез».

Выдающиеся философы и ученые хорошо понимали важную роль гипотезы для научного познания. Д. И. Менделеев считал, что в организации целеустремленного, планомерного изучения явлений ничто не может заменить построения гипотезы. «Они, — писал великий русский химик, — науке и особенно ее изучению необходимы. Они дают стройность и простоту, каких без их допущения достичь трудно. Вся история наук это показывает. А потому можно смело сказать: лучше держаться такой гипотезы, которая может со временем стать верною, чем никакой»1. Ф. Энгельс рассматривал гипотезу как «форму развития естествознания, поскольку оно мыслит» и связывал ее с понятиями теории, закона, истины.

Крупный британский философ, логик и математик А. Уайтхед подчеркивал, что систематическое мышление не может прогрессировать, не используя некоторых общих рабочих гипотез со специальной сферой приложения. Такие гипотезы направляют наблюдения, помогают оценить значение фактов различного типа и предписывают определенный метод. Поэтому, считает Уайтхед, даже неадекватная рабочая гипотеза, подтверждаемая хотя бы некоторыми фактами, все же лучше, чем ничего. Она хоть как-то упорядочивает познавательные процедуры. Указывая на важное значение гипотез для прогресса научного познания, британский ученый отмечает, что «достаточно развитая наука прогрессирует в двух отношениях. С одной стороны, происходит развитие знания

1 Менделеев Д. И. Основы химии. Т. 1. М—Л., 1947. С. 150—151.

184

в рамках метода, предписываемого господствующей рабочей гипотезой; с другой стороны, осуществляется исправление самих рабочих гипотез»1.

Наука нередко вынуждена принимать две или более конкурирующие рабочие гипотезы, каждая из которых имеет свои достоинства и недостатки. Поскольку такие гипотезы несовместимы, то, по мнению Уайтхеда, наука устремится примирить их путем создания новой гипотезы с более широкой сферой применения. При этом выдвинутая новая гипотеза должна быть подвергнута критике с ее же собственной точки зрения.

Таким образом, гипотеза может существовать лишь до тех пор, пока не противоречит достоверным фактам опыта, в противном случае она становится просто фикцией. Она проверяется (верифицируется) соответствующими опытными фактами (в особенности экспериментом), получая характер истины. Гипотеза является плодотворной, если может привести к новым знаниям и новым методам познания, к объяснению широкого круга явлений.

Говоря об отношении гипотез к опыту, можно выделить три их типа: а) гипотезы, возникающие непосредственно для объяснения опыта; б) гипотезы, в формировании которых опыт играет определенную, но не исключительную роль; в) гипотезы, которые возникают на основе обобщения только предшествующих концептуальных построений.

В современной методологии термин «гипотеза» употребляется в двух основных значениях: а) форма теоретического знания, характеризующаяся проблематичностью и недостоверностью; б) метод развития научного знания. Как форма теоретического знания гипотеза должна отвечать некоторым общим условиям, которые необходимы для ее возникновения и обоснования и которые нужно соблюдать при построении любой научной гипотезы вне зависимости от отрасли научного знания. Такими непременными условиями являются следующие:

1. Выделяемая гипотеза должна соответствовать установленным в науке законам. Например, ни одна гипотеза не может быть плодотворной, если она противоречит закону сохранения и превращения энергии.

2. Гипотеза должна быть согласована с фактическим материалом,

1 Уайтхед А. Избранные работы по философии. М., 1990. С. 625—626.

185

на базе которого и для объяснения которого она выдвинута. Иначе говоря, она должна объяснить все имеющиеся достоверные факты. Но если какой-либо факт не объясняется данной гипотезой, последнюю не следует сразу отбрасывать, а нужно более внимательно изучить прежде всего сам факт, искать новые —лучшие и более достоверные факты.

3. Гипотеза не должна содержать в себе противоречий, которые запрещаются законами формальной логики. Но противоречия, являющиеся отражением объективных противоречий, не только допустимы, но и необходимы в гипотезе (такой, например, была гипотеза Луи де Бройля о наличии у микрообъектов противоположных — корпускулярных и волновых — свойств, которая затем стала теорией).

4. Гипотеза должны быть простой, не содержать ничего лишнего, чисто субъективистского, никаких произвольных допущений, не вытекающих из необходимости познания объекта таким, каков он в действительности. Но это условие не отменяет активности субъекта в выдвижении гипотез.

5. Гипотеза должна быть приложимой к более широкому классу исследуемых родственных объектов, а не только к тем, для объяснения которых она специально была выдвинута.

6. Гипотеза должна допускать возможность ее подтверждения или опровержения; либо прямо — непосредственное наблюдение тех явлений, существование которых предполагается данной гипотезой (например, предположение Леверье о существовании планеты Нептун); либо косвенно — путем выведения следствий из гипотезы и их последующей опытной проверки (т. е. сопоставления следствий с фактами). Однако второй способ сам по себе не позволяет установить истинность гипотезы в целом, он только повышает ее вероятность. Развитие научной гипотезы может происходить в трех основных направлениях. Во-первых, уточнение, конкретизация гипотезы в ее собственных рамках. Во-вторых, самоотрицание гипотезы, выдвижение и обоснование новой гипотезы. В этом случае происходит не усовершенствование старой системы знаний, а ее качественное изменение. В-третьих, превращение гипотезы как системы вероятного знания — подтвержденной опытом — в достоверную систему знания, т. е. в научную теорию.

186

Гипотеза как метод развития научно-теоретического знания в своем применении проходит следующие основные этапы.

1. Попытка объяснить изучаемое явление на основе известных фактов и уже имеющихся в науке законов и теорий. Если такая попытка не удается, то делается дальнейший шаг.

2. Выдвигается догадка, предположение о причинах и закономерностях данного явления, его свойств, связей и отношений, о его возникновении и развитии и т. п. На этом этапе познания выдвинутое положение представляет собой вероятное знание, еще не доказанное логически и не настолько подтвержденное опытом, чтобы считаться достоверным. Чаще всего выдвигается несколько предположений для объяснения одного и того же явления.

3. Оценка основательности, эффективности выдвинутых предположений и отбор из их множества наиболее вероятного на основе указанных свыше условий обоснованности гипотезы.

4. Развертывание выдвинутого предположения в целостную систему знания и дедуктивное выведение из него следствий с целью их последующей эмпирической проверки.

5. Опытная, экспериментальная проверка выдвинутых из гипотезы следствий. В результате этой проверки гипотеза либо «переходит в ранг» научной теории, или опровергается, «сходит с научной сцены». Однако следует иметь в виду, что эмпирическое подтверждение следствий из гипотезы не гарантирует в полной мере ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Эта ситуация особенно характерна для научных революций, когда происходит коренная ломка фундаментальных концепций и методов и возникают принципиально новые (и зачастую «сумасшедшие», по словам Н. Бора) идеи. Таким образом, решающей проверкой истинности гипотезы является в конечном счете практика во всех своих формах, но определенную (вспомогательную) роль в доказательстве или опровержении гипотетического знания играет и логический (теоретический) критерий истины. Проверенная и доказанная гипотеза переходит в разряд достоверных истин, становится научной теорией. Благодаря выдвижению гипотезы намечаются только общие контуры концептуальной структуры теории, обоснование же гипотезы

187

в основных чертах завершает формирование этой структуры.

Следует иметь в виду, что сам поиск гипотезы не может быть сведен только к методу проб и ошибок, как полагал К. Поппер. В формировании гипотезы существенную роль играют принятые исследователем идеалы познания, картина мира, его ценностные и иные установки, которые целенаправленно направляют творческий поиск.

Говоря о гипотезах, нужно иметь в виду, что существуют различные их виды. Характер гипотез определяется во многом тем, по отношению к какому объекту они выдвигаются. Так, выделяют гипотезы общие, частные и рабочие. Первые — это обоснование предположения о закономерностях различного рода связей между явлениями. Общие гипотезы — фундамент построения основ научного знания. Вторые — это тоже обоснованное предположение о происхождении и свойствах единичных фактов, конкретных событий и отдельных явлений. Третьи — это предположение, выдвигаемое, как правило, на первых этапах исследования и служащее его направляющим ориентиром, отправным пунктом дальнейшего движения исследовательской мысли.

Существуют и так называемые, «ad hoc-гипотезы» (от лат. ad hoc — к этому, для данного случая). Каждая из них — это предположение, выдвинутое с целью решения стоящих перед испытываемой теорией проблем и оказавшееся в конечном итоге ошибочным вариантом ее развития. Обычно такие гипотезы логически не связаны с основными положениями данной теории и являются нарушением общепризнанных критериев научности. Однако ученью иногда сознательно идут на нарушение этих критериев, прибегая к помощи ad hoc-гипотез «во имя спасения» испытываемой теории, которая сталкивается с конкретными трудностями (невозможность предсказания новых фактов, адаптации к новым экспериментальным данным и др.).

Следует иметь в виду, что гипотезы, позволяющие успешно решать определенные проблемы, вполне могут оказаться в дальнейшем гипотезами ad hoc. Вместе с тем отдельные ad hoc-гипотезы временно обеспечивают исходной теории некоторые важные прагматические преимущества (например, достаточную степень согласованности с экспериментальными данными).

188

Теория — наиболее сложная и развитая форма научного знания, дающая целостное отображение закономерных и существенных связей определенной области действительности. Примерами этой формы знания являются классическая механика Ньютона, эволюционная теория Ч. Дарвина, теория относительности А. Эйнштейна, теория самоорганизующихся целостных систем (синергетика) и др.

А. Эйнштейн считал, что любая научная теория должна отвечать следующим критериям: а) не противоречить данным опыта, фактам; б) быть проверяемой на имеющемся опытном материале; в) отличаться «естественностью», т. е. «логической простотой» предпосылок (основных понятий и основных соотношений между ними); г) содержать наиболее определенные утверждения: это означает, что из двух теорий с одинаково «простыми» основными положениями следует предпочесть ту, которая сильнее ограничивает возможные априорные качества систем; д) не являться логически произвольно выбранной среди приблизительно равноценных и аналогично построенных теорий (в таком случае она представляется наиболее ценной); е) отличаться изяществом и красотой, гармоничностью; ж) характеризоваться многообразием предметов, которые она связывает в целостную систему абстракций; з) иметь широкую область своего применения с учетом того, что в рамках применимости ее основных понятий она никогда не будет опровергнута; и) указывать путь создания новой, более общей теории, в рамках которой она сама остается предельным случаем1.

Любая теоретическая система, как показал К. Поппер, должна удовлетворять двум основным требованиям: а) непротиворечивости (т. е. не нарушать соответствующий закон формальной логики) и фальсифицируемости — опровержимости, б) опытной экспериментальной проверяемости. Поппер сравнивал теорию с сетями, предназначенными улавливать то, что мы называем реальным миром, для осознания, объяснения и овладения им. Истинная теория должна, во-первых, соответствовать всем (а не некоторым) реальным фактам, а, во-вторых, следствия теории должны удовлетворять требованиям практики. Теория, по Попперу, есть инструмент, проверка которого осуществляется в ходе его применения и о пригодности которого судят по результатам таких применений. Рассмотрим теорию более подробно.

См.: Эйнштейн А. Физика и реальность. М., 1965. С. 139—143, 204.

189

§4. Структура и функции научной теории. Закон как ключевой ее элемент

Любая теория — это целостная развивающаяся система истинного знания (включающая и элементы заблуждения), которая имеет сложную структуру и выполняет ряд функций. В современной методологии науки выделяют следующие основные компоненты, элементы теории: 1. Исходные основания — фундаментальные понятия, принципы, законы, уравнения, аксиомы и т. п. 2. Идеализированные объекты — абстрактные модели существенных свойств и связей изучаемых предметов (например, «абсолютно черное тело», «идеальный газ» и т. п.). 3. Логика теории — совокупность определенных правил и способов доказательства, — нацеленных на прояснение структуры и изменения знания. 4. Философские установки и ценностные факторы. 5. Совокупность законов и утверждений, выведенных в качестве следствий из основоположений данной теории в соответствии с конкретными принципами.

Например, в физических теориях можно выделить две основные части: формальные исчисления (математические уравнения, логические символы, правила и др.) и содержательную интерпретацию (категории, законы, принципы). Единство содержательного и формального аспектов теории — один из источников ее совершенствования и развития.

Методологически важную роль в формировании теории играет абстрактный, идеализированный объект («идеальный тип»), построение которого — необходимый этап создания любой теории, осуществляемый в специфических для разных областей знания формах. Этот объект выступает не только как мысленная модель определенного фрагмента реальности, но и содержит в себе конкретную программу исследования, которая реализуется в построении теории.

В. С. Степин считает необходимым выделить в структуре теории в качестве ее основания особую организацию абстрактных объектов — фундаментальную теоретическую схему, связанную с соответствующим ей математическим формализмом. В содержании развитой теории, кроме ее фундаментальной схемы, автор выделяет еще один слой организации абстрактных объектов — уровень частных теоретических схем. Фундаментальная теоретическая

190

схема в совокупности с ее производными образованиями представляется как «внутренний скелет теоретического знания». Проблема генезиса теоретических схем называется коренной проблемой методологии науки. При этом отмечается, что в теории нет линейной цепочки абстрактных объектов, а есть их сложная многоуровневая иерархическая система1.

Говоря о целях и путях теоретического исследования вообще, А. Эйнштейн отмечал, что «теория преследует две цели: 1. Охватить по возможности все явления в их взаимосвязи (полнота). 2. Добиваться этого, взяв за основу как можно меньше логически взаимно связанных логических понятий и произвольно установленных соотношений между ними (основных законов и аксиом). Эту цель я буду называть «логической единственностью»2.

Многообразию форм идеализации и соответственно типов идеализированных объектов соответствует и многообразие видов (типов) теорий, которые могут быть классифицированы по разным основаниям (критериям). В зависимости от этого могут быть выделены теории: описательные, математические, дедуктивные и индуктивные, фундаментальные и прикладные, формальные и содержательные, «открытые» и «закрытые», объясняющие и описывающие (феноменологические), физические, химические, социологические, психологические и т. д.

Так, математические теории характеризуются высокой степенью абстрактности. Решающее значение во всех построениях математики имеет дедукция. Доминирующую роль в построении математических теорий играют аксиоматический и гипотетико-дедуктивный методы, а также формализация. Многие математические теории возникают за счет комбинации, синтеза нескольких основных или порождающих абстрактных структур.

Теории опытных (эмпирических) наук — физики, химии, биологии, социологии, истории и др. — по глубине проникновения в сущность изучаемых явлений можно разделить на два больших класса: феноменологические и нефеноменологические.

Феноменологические (их называют также эмпирическими) описывают наблюдаемые в опыте свойства и величины предметов и процессов, но не вникают глубоко в их внутренние механизмы

1  См.: Степин В. С. Теоретическое знание. М., 2000. С. 122—127.

2 Эйнштейн А. Физика и реальность. М., 1965. С. 264.

191

(например, геометрическая оптика, термодинамика, многие педагогические, психологические и социологические теории и др.). Такие теории не анализируют природу исследуемых явлений и поэтому не используют сколь-нибудь сложные абстрактные объекты, хотя, разумеется, в известной мере схематизируют и строят некоторые идеализации изучаемой области явлений.

Феноменологические теории решают прежде всего задачу упорядочивания и первичного обобщения относящихся к ним фактов. Они формулируются в обычных естественных языках с привлечением специальной терминологии соответствующей области знания и имеют по преимуществу качественный характер. С феноменологическими теориями исследователи сталкиваются, как правило, на первых ступенях развития какой-нибудь науки, когда происходит накопление, систематизация и обобщение фактологического эмпирического материала. Такие теории — вполне закономерное явление в процессе научного познания.

С развитием научного познания теории феноменологического типа уступают место нефеноменологическим (их называют также объясняющими). Они не только отображают существенные связи между явлениями и их свойствами, но и раскрывают глубинный внутренний механизм изучаемых явлений и процессов, их необходимые взаимосвязи, существенные отношения, т. е. их законы.

Но это уже не эмпирические, а теоретические законы, которые формулируются не непосредственно на основе изучения опытных данных, а путем определенных мыслительных действий с абстрактными, идеализированными объектами. «В основании сложившейся теории всегда можно обнаружить взаимосогласованную сеть абстрактных объектов, определяющую специфику данной теории»1.

Одним из важных критериев, по которому можно классифицировать теории, является точность предсказаний. По этому критерию можно выделить два больших класса теорий. К первому из них относятся теории, в которых предсказание имеет достоверный характер (например, многие теории классической механики, классической физики и химии). В теориях второго класса предсказание имеет вероятностный характер, который обусловливается

1 Степин В. С. Теоретическое знание. М., 2000. С. 110.

192

совокупным действием большого числа случайных факторов. Такого рода стохастические (от греч. — догадка) теории встречаются не только в современной физике, но и в большом количестве в биологии и социально-гуманитарных науках в силу специфики и сложности самих объектов их исследования.

А. Эйнштейн различал в физике два основных типа теорий — конструктивные и фундаментальные. Большинство физических теорий, по его мнению, являются конструктивными, т. е. их задачей является построение картины сложных явлений на основе некоторых относительно простых предположений (такова, например, кинетическая теория газов). Исходным пунктом и основой фундаментальных теорий являются не гипотетические положения, а эмпирически найденные общие свойства явлений, принципы, из которых следует математически сформулированные критерии, имеющие всеобщую применимость (такова теория относительности). В фундаментальных теориях используется не синтетический, а аналитический метод. К достоинствам конструктивных теорий Эйнштейн относил их законченность, гибкость и ясность. Достоинствами фундаментальных теорий он считал их логическое совершенство и надежность исходных положений1.

Несмотря на то, какого бы типа теория ни была, какими бы методами она ни была построена, «всегда остается неизменным самое существенное требование к любой научной теории — теория должна соответствовать фактам... В конечном счете только опыт вынесет решающий приговор»2, — резюмирует великий мыслитель.

В этом своем выводе Эйнштейн вовсе не случайно использует выражение «в конечном счете». Дело в том, что, как разъяснял он сам, в процессе развития науки наши теории становятся все более и более абстрактными, их связь с опытом (фактами, наблюдениями, экспериментами) становится все более сложной и опосредованной, а путь от теории к наблюдениям становится длиннее, тоньше и сложнее. Чтобы реализовать нашу постоянную конечную цель — «все лучшее и лучшее понимание реальности», надо четко представлять себе следующее объективное обстоятельство. А именно, что «к логической цепи, связывающей теорию и наблюдение, прибавляются новые звенья. Чтобы очистить путь, ведущий

1  См.: Эйнштейн А. Физика и реальность. М., 1965. С. 247—248.

2 Там же С. 260.

193

от теории к эксперименту, от ненужных и искусственных допущений, чтобы охватить все более обширную область фактов, мы должны делать цепь все длиннее и длиннее»1. При этом, добавляет Эйнштейн, чем проще и фундаментальнее становятся наши допущения, тем сложнее математическое орудие нашего рассуждения.

В. Гейзенберг считал, что научная теория должна быть непротиворечивой (в формально-математическом смысле), обладать простотой, красотой, компактностью, определенной (всегда ограниченной) областью своего применения, целостностью и «окончательной завершенностью». Но наиболее сильный аргумент в пользу правильности теории ее «многократное экспериментальное подтверждение». «Решение о правильности теории оказывается, таким образом, длительным историческим процессом, за которым стоит не доказательность цепочки математических выводов, а убедительность исторического факта. Завершенная теория так или иначе ведь никогда не является точным отображением природы в соответствующей области, она есть некая идеализация опыта, осуществляемая с помощью понятийных оснований теории и обеспечивающая определенный успех»2.

Специфическую и сложную структуру имеют теории социально-гуманитарных наук. Так, исходя из идей американского социолога Р. Мертона в современной социологии принято выделять следующие уровни социологического знания и, соответственно, типы теорий:

1. Общая социологическая теория («теоретическая социология»), дающая абстрактно-обобщенный анализ социальной реальности в ее целостности, сущности и истории развития; на этом уровне познания фиксируется структура общие закономерности функционирования и развития социальной реальности. При этом теоретическим и методологическим базисом общей социологической теории выступает социальная философия.

2. Уровень предметного рассмотрения — частные («среднего ранга») социологические теории, имеющие своим теоретическим и методологическим базисом общую социологию и дающие описание и анализ социально особенного. В зависимости от

1  Эйнштейн А, Физика и реальность, М., 1965. С. 298.

2 Гейзенберг В. Шаги за горизонт. М., 1987. С.185—186.

194

своеобразия своих объектов исследования частные теории оказываются представленными двумя относительно самостоятельными классами частных теорий — специальными и отраслевыми теориями:

а) Специальные теории исследуют сущность, структуру, общие закономерности функционирования и развития объектов (процессов, общностей, институтов) собственно социальной сферы общественной жизни, понимая последнюю как относительно самостоятельную область общественной деятельности, ответственную за непосредственное воспроизводство человека и личности. Таковы социологии пола, возраста, этничности, семьи, города, образования и т. д. Каждая из них, исследуя особый класс социальных явлений, выступает прежде всего как общая теория этого класса явлений. По сути, отмечал П. А. Сорокин, эти теории делают то же самое, что и общая социология, «но в отношении специального класса социокультурных явлений».

б) Отраслевые теории исследуют социальные (в указанном выше смысле этого термина) аспекты классов явлений, принадлежащие к другим сферам общественной жизни — экономической, политической, культурной. Таковы социологии труда, политики, культуры, организации, управления и т. д. В отличие от специальных теорий отраслевые не являются общими теориями данных классов явлений, ибо исследуют лишь один из аспектов их проявления — социальный.

Однако некоторые социолога считают, что «здание социологической науки состоит из пяти этажей». Другие полагают, что схема Мертона (общая теория — теория среднего уровня — эмпирические исследования), сыграв определенную роль в развитии социологии, «исчерпала свои возможности». Поэтому эту схему не следует совершенствовать, а «надо отказаться от нее»1.

Таким образом, теория (независимо от своего типа) имеет следующие основные особенности:

1. Теория — это не отдельно взятые достоверные научные положения, а их совокупность, целостная органическая развивающаяся система. Объединение знания в теорию производится

1 См.: Структура и уровни социологического знания: традиции и новые концепции // Социологические исследования. 2003. № 8.

195

прежде всего самим предметом исследования, его закономерностями.

2. Не всякая совокупность положений об изучаемом предмете является теорией. Чтобы превратиться в теорию, знание должно достигнуть в своем развитии определенной степени зрелости. А именно — когда оно не просто описывает определенную совокупность фактов, но и объясняет их, т. е. когда знание вскрывает причины и закономерности явлений.

3. Для теории обязательным является обоснование, доказательство входящих в нее положений: если нет обоснований, нет и теории.

4. Теоретическое знание должно стремиться к объяснению как можно более широкого круга явлений, к непрерывному углублению знаний о них.

5. Характер теории определяется степенью обоснованности ее определяющего начала, отражающего фундаментальную закономерность данного предмета.

6. Структура научных теорий содержательно «определена системной организацией идеализированных (абстрактных) объектов (теоретических конструктов). Высказывания теоретического языка непосредственно формулируются относительно теоретических конструктов и лишь опосредованно, благодаря их отношениям к внеязыковой реальности, описывают эту реальность»1.

7. Теория — это не только готовое, ставшее знание, но и процесс его получения; поэтому она не является «голым результатом», а должна рассматриваться вместе со своим возникновением и развитием.

В современной философии науки (как западной, так и отечественной) теория уже не рассматривается как неизменная, «закрытая» статичная система с жесткой структурой, а строятся различные модели динамики (роста, изменения, развития) знания (см. гл. IV, §1). В этой связи подчеркивается, что при всей плодотворности

1 Степин В. С. Теоретическое знание. М., 2000. С. 707. Наряду с теоретическими конструктами, логическими реконструкциями действительности («точка», «идеальный газ» и т. п.) автор выделяет эмпирические идеальные объекты — это абстракции, фиксирующие признаки реальных предметов опыта («Земля», «провод с током» и т. д.).

196

формализации и аксиоматизации теоретического знания нельзя не учитывать, что реальный процесс конструктивного развития теории, ориентированный задачами охвата нового эмпирического материала, не укладывается в рамки формально-дедуктивного представления о развертывании теорий

Однако развитие теории не есть только «движение мысли внутри ее самой» («идей»), а активная переработка мыслью многообразного эмпирического материала в собственное внутреннее содержание теорий, конкретизация и обогащение ее понятийного аппарата. Образ действительного развертывания (развития) теории, данный Гегелем — «снежный ком», — не утратил своей актуальности и по сей день. Вот почему важнейшим методом построения, развертывания и изложения теорий является метод восхождения от абстрактного к конкретному1.

К числу основных функций теории можно отнести следующие:

1. Синтетическая функция — объединение отдельных достоверных знаний в единую, целостную систему.

2. Объяснительная функция — выявление причинных и иных зависимостей, многообразия связей данного явления, его существенных характеристик, законов его происхождения и развития, и т. п.

3. Методологическая функция — на базе теории формулируются многообразные методы, способы и приемы исследовательской деятельности.

4. Предсказательная — функция предвидения. На основании теоретических представлений о «наличном» состоянии известных явлений делаются выводы о существовании неизвестных ранее фактов, объектов или их свойств, связей между явлениями и т. д. Предсказание о будущем состоянии явлений (в отличие от тех, которые существуют, но пока не выявлены) называют научным предвидением.

5 Практическая функция. Конечное предназначение любой теории — быть воплощенной в практику, быть «руководством к действию» по изменению реальной действительности. Поэтому

См. Ильенков Э. В. Диалектика абстрактного и конкретного в научно-теоретическом исследовании. М., 1997.

197

вполне справедливо утверждение о том, что нет ничего практичнее, чем хорошая теория. Но как из множества конкурирующих теорий выбрать хорошую? Как считает К. Поппер, важную роль при выборе теорий играет степень их проверяемости: чем она выше, тем больше шансов выбрать хорошую и надежную теорию. Так называемый «критерий относительной приемлемости», согласно Попперу, отдает предпочтение той теории, которая: а) сообщает наибольшее количество информации, т. е. имеет более глубокое содержание; б) является логически более строгой; з) обладает большей объяснительной и предсказательной силой; г) может быть более точно проверена посредством сравнения предсказанных фактов с наблюдениями. Иначе говоря, резюмирует Поппер, мы выбираем ту теорию, которая наилучшим образом выдерживает конкуренцию с другими теориями и в ходе естественного отбора оказывается наиболее пригодной к выживанию. В ходе развития науки о связи с новыми фундаментальными открытиями (особенно в периоды научных революций) происходят кардинальные изменения представления о механизме возникновения научных теорий. Как отмечал А. Эйнштейн, важнейший методологический урок, который преподнесла квантовая физика, состоит в отказе от упрощенного понимания возникновения теории как простого индуктивного обобщения опыта. Теория, подчеркивал он, может быть навеяна опытом, но создается как бы сверху по отношению к нему, и лишь затем проверяется опытом. Сказанное Эйнштейном не означает, что он отвергал роль опыта как источника знания. В этой связи он писал, что «чисто логическое мышление само по себе не может дать никаких знаний о мире фактов; все познание реального мира исходит из опыта и завершается им. Полученные чисто логическим путем положения ничего не говорят о действительности»1. Однако Эйнштейн считал, что «не всегда является вредным» в науке такое использование понятий, при котором они рассматриваются независимо от эмпирической основы, которой обязаны своим существованием. Человеческий разум должен, по его мнению, «свободно строить формы», прежде чем подтвердилось бы их действительное существование: «из голой эмпирии не может расцветать познание».

1 Эйнштейн Л. Физика и реальность. М., 1965. С. 62.

198

Эволюцию опытной науки «как непрерывного процесса индукции» Эйнштейн сравнивал с составлением каталога и считал такое развитие науки чисто эмпирическим делом, поскольку такой подход, с его точки зрения, не охватывает весь действительный процесс познания в целом. А именно — «умалчивает о важной роли интуиции и дедуктивного мышления в развитии точной науки. Как только какая-нибудь наука выходит из начальной стадии своего развития, прогресс теории достигается уже не просто в процессе упорядочения. Исследователь, отталкиваясь от опытных фактов, старается развивать систему понятий, которая, вообще говоря, логически опиралась бы на небольшое число основных предположений, так называемых аксиом. Такую систему понятий мы называем теорией... Для одного и того же комплекса опытных фактов может существовать несколько теорий, значительно различающихся друг от друга»1.

Иначе говоря, теории современной науки создаются не просто путем индуктивного обобщения опыта (хотя такой путь не исключается), а за счет первоначального движения в поле ранее созданных идеализированных объектов, которые используются в качестве средств конструирования гипотетических моделей новой области взаимодействий. Обоснование таких моделей опытом превращает их в ядро будущей теории. «Именно теоретическое исследование, основанное на относительно самостоятельном оперировании идеализированными объектами, способно открывать новые предметные области до того, как они начинают осваиваться практикой. Теоретизация выступает своеобразным индикатором развития науки»2.

Идеализированный объект выступает таким образом не только как теоретическая модель реальности, но он неявно содержит в себе определенную программу исследования, которая реализуется в построении теории. Соотношения элементов идеализированного объекта — как исходные, так и выводные, представляют собой теоретические законы, которые (в отличие от эмпирических законов) формулируются не непосредственно на основе изучения опытных данных, а путем определенных мыслительных действий с идеализированным объектом.

Эйнштейн А. Физика и реальность. М., 1965. С. 228—229.

2 Степин В, С. Теоретическое знание. 2000. С. 704.

199

Из этого вытекает, в частности, что законы, формулируемые в рамках теории и относящиеся по существу не к эмпирически данной реальности, а к реальности, как она представлена идеализированным объектом, должны быть соответствующим образом конкретизированы при их применении к изучению реальной действительности. Имея в виду данное обстоятельство, А. Эйнштейн ввел термин «физическая реальность» и выделил два аспекта этого термина. Первое его значение использовалось им для характеристики объективного мира, существующего вне и независимо от сознания. «Вера в существование внешнего мира, — отмечал Эйнштейн, — независимого от воспринимающего субъекта, лежит в основе всего естествознания»1.

Во втором своем значении термин «физическая реальность» используется для рассмотрения теоретизированного мира как совокупности идеализированных объектов, представляющих свойства реального мира в рамках данной физической теории. «Реальность, изучаемая наукой, есть не что иное, как конструкция нашего разума, а не только данность»2. В этом плане физическая реальность задается посредством языка науки, причем одна и та же реальность может быть описана при помощи разных языков.

Характеризуя науку, научное познание в целом, необходимо выделить ее главную задачу, основную функцию — открытие законов изучаемой области действительности. Без установления законов действительности, без выражения их в системе понятий нет науки, не может быть научной теории. Перефразируя слова известного поэта, можно сказать: мы говорим наука — подразумеваем закон, мы говорим закон — подразумеваем наука.

Само понятие научности (о чем выше уже шла речь) предполагает открытие законов, углубление в сущность изучаемых явлений, определение многообразных условий практической применимости законов.

Изучение законов действительности находит свое выражение в создании научной теории, адекватно отражающей исследуемую предметную область в целостности ее законов и закономерностей. Поэтому закон — ключевой элемент теории, которая есть не что иное, как система законов, выражающих сущность, глубинные связи изучаемого объекта (а не только эмпирические зависимости)

1 Эйнштейн А. Собр. науч. трудов: В 4 т. М., 1967. Т. 4. С. 136.

2 Пригожим И., Стенгерс И. Порядок из хаоса. М., 1986. С. 20.

200

во всей его целостности и конкретности, как единство многообразного.

В самом общем виде закон можно определить как связь (отношение) между явлениями, процессами, которая является.

а) объективной, так как присуща прежде всего реальному миру, чувственно-предметной деятельности людей, выражает реальные отношения вещей;

б)  существенной, конкретно-всеобщей. Будучи отражением существенного в движении универсума, любой закон присущ всем без исключения процессам данного класса, определенного типа (вида) и действует всегда и везде, где развертываются соответствующие процессы и условия;

в) необходимой, ибо, будучи тесно связан с сущностью, закон действует и осуществляется с «железной необходимостью» в соответствующих условиях;

г)  внутренней, так как отражает самые глубинные связи и зависимости данной предметной области в единстве всех ее моментов и отношений в рамках некоторой целостной системы;

д) повторяющейся, устойчивой, так как «закон есть прочное (остающееся) в явлении», «идентичное в явлении», их «спокойное отражение» (Гегель). Он есть выражение некоторого постоянства определенного процесса, регулярности его протекания, одинаковости его действия в сходных условиях. Стабильность, инвариантность законов всегда соотносится с

конкретными условиями их действия, изменение которых снимает данную инвариантность и порождает новую, что и означает изменение законов, их углубление, расширение или сужение сферы их действия, их модификации и т. п. Любой закон не есть нечто неизменное, а представляет собой конкретно-исторический феномен. С изменением соответствующих условий, с развитием практики и познания одни законы сходят со сцены, другие вновь появляются, меняются формы действия законов, способы их использования и т. д.

Важнейшая, ключевая задача научного исследования — «поднять опыт до всеобщего», найти законы данной предметной области, определенной сферы (фрагмента) реальной действительности, выразить их в соответствующих понятиях, абстракциях, теориях, идеях, принципах и т. п. Решение этой задачи может быть успешным в том случае, если ученый будет исходить из двух основных

201

посылок: реальности мира в его целостности и развитии и законосообразности этого мира, т. е того, что он «пронизан» совокупностью объективных законов. Последние регулируют весь мировой процесс, обеспечивают в нем определенный порядок, необходимость, принцип самодвижения и вполне познаваемы. Выдающийся математик А. Пуанкаре справедливо утверждал, что законы как «наилучшее выражение» внутренней гармонии мира есть основные начала, предписания, отражающие отношения между вещами. «Однако произвольны ли эти предписания? Нет; иначе они были бы бесплодны. Опыт предоставляет нам свободный выбор, но при этом он руководит нами»1.

Надо иметь в виду, что мышление людей и объективный мир подчинены одним и тем же законам и что поэтому они в своих результатах должны согласовываться между собой. Необходимое соответствие между законами объективной действительности и законами мышления достигается тогда, когда они надлежащим образом познаны.

Познание законов — сложный, трудный и глубоко противоречивый процесс отражения действительности. Но познающий субъект не может отобразить весь реальный мир, тем более сразу, полностью и целиком. Он может лишь вечно приближаться к этому, создавая различные понятия и другие абстракции, формулируя те или иные законы, применяя целый ряд приемов и методов в их совокупности (эксперимент, наблюдение, идеализация, моделирование и т. п.). Характеризуя особенности законов науки, известный американский физик Р. Фейнман писал, что, в частности, «законы физики нередко не имеют очевидного прямого отношения к нашему опыту, а представляют собой его более или менее абстрактное выражение... Очень часто между элементарными законами и основными аспектами реальных явлений дистанция огромного размера»2.

В. Гейзенберг, полагая, что открытие законов — важнейшая задача науки, отмечал, что, во-первых, когда формулируются великие всеобъемлющие законы природы — а это стало впервые возможным в ньютоновской механике — «речь идет об идеализации действительности, а не о ней самой». Идеализация возникает

Пуанкаре А. О науке. М., 1983. С. 8.

2 Фейнман Р. Характер физических законов. М., 1987. С. 110.

202

оттого, что мы исследуем действительность с помощью понятий. Во-вторых, каждый закон обладает ограниченной областью применения, вне которой он неспособен отражать явления, потому что его понятийный аппарат не охватывает новые явления (например, в понятиях ньютоновской механики не могут быть описаны все явления природы). В-третьих, теория относительности и квантовая механика представляют собой «очень общие идеализации весьма широкой сферы опыта и их законы будут справедливы в любом месте и в любое время — но только относительно той сферы опыта, в которой применимы понятия этих теорий»1.

Законы открываются сначала в форме предположений, гипотез. Дальнейший опытный материал, новые факты приводят к «очищению этих гипотез», устраняют одни из них, исправляют другие, пока, наконец, не будет установлен в чистом виде закон. Одно из важнейших требований, которому должна удовлетворять научная гипотеза, состоит, как уже было отмечено ранее, в ее принципиальной проверяемости на практике (в опыте, эксперименте и т. п.), что отличает гипотезу от всякого рода умозрительных построений, беспочвенных вымыслов, необоснованных фантазий и т. д.

Поскольку законы относятся к сфере сущности, то самые глубокие знания о них достигаются не на уровне непосредственного восприятия, а на этапе теоретического исследования. Именно здесь и происходит в конечном счете сведение случайного, видимого лишь в явлениях, к действительному внутреннему движению. Результатом этого процесса является открытие закона, точнее — совокупности законов, присущих данной сфере, которые в своей взаимосвязи образуют «ядро» определенной научной теории.

Раскрывая механизм открытия новых законов, Р. Фейнман отмечал, что «... поиск нового закона ведется следующим образом. Прежде всего о нем догадываются. Затем вычисляют следствия этой догадки и выясняют, что повлечет за собой этот закон, если окажется, что он справедлив. Затем результаты расчетов сравнивают с тем, что наблюдается в природе, с результатами специальных экспериментов или с нашим опытом, и по результатам таких наблюдений выясняют, так это или не так. Если расчеты расходятся с экспериментальными данными, то закон неправилен»2.

Гейзенберг В Шаги за горизонт. М., 1987. С. 202—204.

2 Фейнман Р. Характер физических законов. М., 1987. С. 142.

203

При этом Фейнман обращает внимание на то, что на всех этапах движения познания важную роль играют философские установки, которыми руководствуется исследователь. Уже в начале пути к закону именно философия помогает строить догадки, здесь трудно сделать окончательный выбор.

Открытие и формулирование закона — важнейшая, но не последняя задача науки, которая еще должна показать, как открытый ею закон прокладывает себе путь. Для этого надо с помощью закона, опираясь на него, объяснить все явления данной предметной области (даже те, которые кажутся ему противоречащими), вывести их все из соответствующего закона через целый ряд посредствующих звеньев

Следует иметь в виду, что каждый конкретный закон практически никогда не проявляется в «чистом виде», а всегда во взаимосвязи с другими законами разных уровней и порядков. Кроме того, нельзя забывать, что хотя объективные законы действуют с «железной необходимостью», сами по себе они отнюдь не «железные», а очень даже «мягкие», эластичные в том смысле, что в зависимости от конкретных условий получает перевес то тот, то другой закон Эластичность законов (особенно общественных) проявляется также в том, что они зачастую действуют как законы — тенденции, осуществляются весьма запутанным и приблизительным образом, как некоторая никогда твердо не устанавливающаяся средняя постоянных колебаний.

Условия, в которых осуществляется каждый данный закон, могут стимулировать и углублять, или наоборот — «пресекать» и снимать его действие. Тем самым любой закон в своей реализации всегда модифицируется конкретно-историческими обстоятельствами, которые либо позволяют закону набрать полную силу, либо замедляют, ослабляют его действие, выражая закон в виде пробивающейся тенденции. Кроме того, действие того или иного закона неизбежно видоизменяется сопутствующим действием других законов.

Каждый закон «узок, неполон, приблизителен» (Гегель), поскольку имеет границы своего действия, определенную сферу своего осуществления (например, рамки данной формы движения материи, конкретная ступень развития и т. д.). Как бы вторя Гегелю, Р. Фейнман отмечал, что даже закон всемирного тяготения не точен — «то же относится и к другим нашим законам — они не

204

точны. Где-то на краю их всегда лежит тайна, всегда есть, над чем поломать голову»1.

На основе законов осуществляется не только объяснение явлений данного класса (группы), но и предсказание, предвидение новых явлений, событий, процессов и т. п., возможных путей, форм и тенденций познавательной и практической деятельности людей.

Открытые законы, познанные закономерности могут — при их умелом и правильном применении — быть использованы людьми для того, чтобы они могли изменять природу и свои собственные общественные отношения. Поскольку законы внешнего мира — основы целесообразной деятельности человека, то люди должны сознательно руководствоваться требованиями, вытекающими из объективных законов, как регулятивами своей деятельности. Иначе последняя не станет эффективной и результативной, а будет осуществляться в лучшем случае методом проб и ошибок. На основе познанных законов люди могут действительно научно управлять как природными, так и социальными процессами, оптимально их регулировать.

Опираясь в своей деятельности на «царство законов», человек вместе с тем может в определенной мере оказывать влияние на механизм реализации того или иного закона. Он может способствовать его действию в более чистом виде, создавать условия для развития закона до его качественной полноты, либо же, напротив, сдерживать это действие, локализовать его или даже трансформировать.

Подчеркнем два важных метода, которые нельзя упустить, «работая» с научными законами. Во-первых, формулировки последних непосредственно относятся к системе теоретических конструктов (абстрактных объектов), т. е. сопряжены с введением идеализированных объектов, упрощающих и схематизирующих эмпирически необходимые ситуации.

Во-вторых, в каждой науке (если она является таковой) «идеальные теоретические модели (схемы) выступают существенной характеристикой структуры любой научной теории»2, ключевым элементом которой и является закон.

1  Фейнман Р. Характер физических законов. М., 1987. С. 29.

2 См.: Степин В. С. Теоретическое знание. М., 2000. С. 111—114.

205

Многообразие видов отношений и взаимодействий в реальной действительности служит объективной основой существования многих форм (видов) законов, которые классифицируются по тому или иному критерию (основанию). По формам движения материи можно выделить законы: механические, физические, химические, биологические, социальные (общественные); по основным сферам действительности — законы природы, законы общества, законы мышления; по степени их общности, точнее — по широте сферы их действия — всеобщие (диалектические), общие (особенные), частные (специфические); по механизму детерминации — динамические и статистические, причинные и непричинные; по их значимости и роли — основные и неосновные; по глубине фундаментальности — эмпирические (формулируемые непосредственно на основе опытных данных) и теоретические (формируемые путем определенных мыслительных действий с идеализированными объектами) и т. п.

Односторонние (а значит ошибочные) трактовки закона могут быть выражены в следующем.

1. Понятие закона абсолютизируется, упрощается, фетишизируется. Здесь упускается из виду то (замеченное еще Гегелем) обстоятельство, что данное понятие — безусловно важное само по себе — есть лишь одна из ступеней познания человеком единства взаимозависимости и цельности мирового процесса. Закон лишь одна из форм отражения реальной действительности в познании, одна из граней, моментов научной картины мира во взаимосвязи с другими (причина, противоречие

и др.).

2. Игнорируется объективный характер законов, их материальный источник. Не реальная действительность должна сообразовываться с принципами и законами, а наоборот, — последние верны лишь постольку, поскольку они соответствуют объективному миру.

3. Отрицается возможность использования людьми системы объективных законов как основы их деятельности в многообразных ее формах — прежде всего в чувственно-предметной. Однако игнорирование требований объективных законов все равно рано или поздно дает о себе знать, «мстит за себя» (например, предкризисные и кризисные явления в обществе).

206

4. Закон понимается как нечто вечное, неизменное, абсолютное, не зависящее в своем действии от совокупности конкретных обстоятельств и фатально предопределяющее ход событий и процессов. Между тем развитие науки свидетельствует о том, что «нет ни одного закона, о котором мы могли бы с уверенностью сказать, что в прошлом он был верен с той же степенью приближения, что и сейчас... Своим разжалованием всякий закон обязан воцарению нового закона, и, таким образом, не может наступить междуцарствие»1.

5. Игнорируется качественное многообразие законов, их несводимость друг к другу и их взаимодействие, дающее своеобразный результат в каждом конкретном случае.

6. Отвергается то обстоятельство, что объективные законы нельзя создать или отменить. Их можно лишь открыть в процессе познания реального мира и, изменяя условия их действия, изменять механизм последнего.

7. Абсолютизируются законы более низших форм движения материи, делаются попытки только ими объяснить процессы в рамках более высоких форм движения материи (механицизм, физикализм, редукционизм и т. п.).

8. Нарушаются границы, в пределах которых те или иные законы имеют силу, их сфера действия неправомерно расширяется или, наоборот, сужается. Например, законы механики пытаются перенести на другие формы движения и только ими объяснять их своеобразие. Однако в более высоких формах движения механические законы хотя и продолжают действовать, но отступают на задний план перед другими, более высокими законами, которые содержат их в себе в «снятом» виде и только к ним не сводятся.

9. Законы науки толкуются не как отражение законов объективного мира, а как результат соглашения научного сообщества, имеющего, стало быть, конвенциональный характер.

10. Игнорируется то обстоятельство, что объективные законы в действительности, модифицируясь многочисленными обстоятельствами, осуществляются всегда в особой форме через

1 Пуанкаре А. О науке. М., 1983. С. 418.

207

систему посредствующих звеньев. Нахождение последних — единственно научный способ разрешения противоречия между общим законом и более развитыми конкретными отношениями. Иначе «эмпирическое бытие» закона в его специфической форме выдается за закон как таковой в его «чистом виде».

§5. Единство эмпирического и теоретического, теории и практики. Проблема материализации теории

При всем своем различии эмпирический и теоретический уровни познания взаимосвязаны, граница между ними условна и подвижна. Эмпирическое исследование, выявляя с помощью наблюдений и экспериментов новые данные, стимулирует теоретическое познание (которое их обобщает и объясняет), ставит перед ним новые, более сложные задачи. С другой стороны, теоретическое познание, развивая и конкретизируя на базе эмпирии новое собственное содержание, открывает новые, более широкие горизонты для эмпирического познания, ориентирует и направляет его в поисках новых фактов, способствует совершенствованию его методов и средств и т. п.

Наука как целостная динамическая система знания не может успешно развиваться, не обогащаясь новыми эмпирическими данными, не обобщая их в системе теоретических средств, форм и методов познания. В определенных точках развития науки эмпирическое переходит в теоретическое, и наоборот. Однако недопустимо абсолютизировать один из этих уровней в ущерб другому.

Касаясь этой проблемы применительно к естествознанию, Гейзенберг отмечал, что противоречие между эмпириком (с его «тщательной и добросовестной обработкой мелочей») и теоретиком («конструирующим математические образы») обнаружилось уже в античной философии и прошло через всю историю естествознания. Как показала эта история, «правильное описание явлений природы сложилось в напряженной противоположности обоих подходов. Чистая математическая спекуляция бесплодна, если в своей игре со всевозможными формами она не находит пути назад,

208

к тем весьма немногим формам, из которых реально построена природа. Но и чистая эмпирия бесплодна, поскольку бесконечные, лишенные внутренней связи таблицы в конечном счете душат ее. Решающее продвижение вперед может быть результатом только напряженного взаимодействия между обилием фактических данных и математическими формами, потенциально им соответствующими»1.

В процессе научного познания имеет место не только единство эмпирии и теории, но и взаимосвязь, взаимодействие последней с практикой. Говоря о механизме этого взаимодействия, К. Поппер справедливо указывает на недопустимость разрушения единства теории и практики или (как это делает мистицизм) ее замены созданием мифов. Он подчеркивает, что практика — не враг теоретического знания, а «наиболее значимый стимул к нему». Хотя определенная доля равнодушия к ней, отмечает Поппер, возможна и приличествует ученому, существует множество примеров, которые показывают, что для него подобное равнодушие не всегда плодотворно. Для ученого существенно сохранить контакт с реальностью, с практикой, поскольку тот, кто ее презирает, расплачивается за это тем, что неизбежно впадает в схоластику.

Однако недопустимо понимать практику односторонне-прямолинейно, поверхностно. Она представляет собой всю совокупность чувственно-предметной деятельности человека в ее историческом развитии (а не только в наличных формах), во всем объеме ее содержания (а не в отдельных проявлениях). Не будет преувеличением вывод о том, что чем теснее и органичнее практика связана с теорией, чем последовательнее она направляется теоретическими принципами, тем более глубокое воздействие она оказывает на действительность, тем более основательно и содержательно последняя преобразуется на ее основе. Но этот вывод нельзя абсолютизировать, ибо и многие другие факторы влияют на данный процесс в разных направлениях.

Необходимо иметь в виду, что в ходе истории соотношение между теорией и практикой не остается раз навсегда данным, а развивается. Причем изменяется не только характер теории (и знания в целом), но и качественно меняются основные черты общественной

1 Гейзенберг В. Шаги за горизонт. М., 1987. С. 273.

209

практики. Появляются новые ее формы, насыщающие достижениями познания, становящиеся все более наукоемкими, направляемыми научными принципами. При исследовании взаимодействия теории и практики один из самых кардинальных вопросов состоит в том, чтобы выяснить, как и при каких конкретных условиях мысль (теория) переходит (превращается) в действие, воплощается в практическую деятельность людей.

Связи теории и практики двусторонни: прямые (от практики к всеобщим принципам и формам мышления) и обратные — реализация всеобщих схем не только в познании, но и в реальной жизни, в практике, во всех ее формах и видах. Важнейшая задача состоит в том, чтобы всемерно укреплять и углублять взаимодействие между теорией и практикой, обстоятельно изучать механизм этого взаимодействия.

Что касается прямых связей, т. е. направленных от практики к теории, от действия к мысли, то их сущность состоит в том, что все логические категории, теоретические схемы и другие абстракции формируются в конечном счете в процессе предметно-практического преобразования реальной действительности человеком как общественным существом. Практика есть то важнейшее посредствующее звено между человеком и реальной действительностью, через которое объективно всеобщее попадает в мышление в виде «фигур логики», теоретических принципов. Последние в свою очередь возвращаются обратно, помогают познавать и преобразовывать объективную реальность. Исторический опыт показал, что, вырастая из чувственно-предметной деятельности людей, из активного изменения ими природной и социальной действительности, теория возвращается в практику, опредмечивается в формах культуры.

Всякая теория, даже самая абстрактная и всеобщая (в том числе и философское знание), в конечном счете ориентирована на удовлетворение практических потребностей людей, служит практике, из которой она порождается и в которую она — сложным, порой весьма запутанным и опосредованным путем — в конце концов возвращается. Теория как система достоверных знаний (разного уровня всеобщности) направляет ход практики, ее положения (законы, принципы и т. п.) выступают в качестве духовных регуляторов практической деятельности.

Место и роль научного знания как необходимой предпосылки и элемента практически-преобразовательной деятельности людей

210

достаточно значимы. Дело в том, что по существу все продукты человеческого труда есть не что иное, как «овеществленная сила знания», опредмеченные мысли. Это в полной мере относится не только к знаниям о природе, но и к наукам об обществе и о самом мышлении. Социально-практическая деятельность всегда так или иначе связана с мысленным созданием того, что затем переходит в практику, реализуется в действительности, является «предметно-воплощенной наукой».

При этом нельзя втискивать живую жизнь во вчерашние косные теоретические конструкции. Только такая теория, которая творчески отражает живую жизнь, служит действительным руководством к действию, к преобразованию мира в соответствии с его объективными законами, превращается в действие, в общественную практику и проверяется ею.

Для того чтобы теория материализовалась, объективировалась, необходимы определенные условия. К числу важнейших из них можно отнести следующие.

1. Теоретическое знание только тогда является таковым, когда оно в качестве совокупности, системы знаний достоверно и адекватно отражает определенную сторону практики, какую-либо область действительности. Причем такое отражение является не пассивным, зеркальным, а активным, творческим, выражающим их объективные закономерности. Это важное условие действенности теории.

Самое существенное требование к любой научной теории, которое всегда было, есть и будет — ее соответствие реальным фактам в их взаимосвязи, без всякого исключения. Хотя наука всегда стремится привести хаотическое многообразие нашего чувственного опыта в соответствие с некоторой единой системой мышления, «чисто логическое мышление само по себе не может дать никаких знаний о мире фактов; все познание реального мира исходит из опыта и завершается им. Полученные чисто логическим путем положения ничего не говорят о действительности»1.

Теория, даже самая общая и абстрактная, не должна быть расплывчатой, здесь нельзя ограничиваться «прощупыванием наугад». Это особенно характерно для первых шагов науки, для исследования новых областей. «Чем менее конкретна теория, тем труднее

1 Эйнштейн Л. Физика и реальность. М., 1965. С. 62.

211

ее опровергнуть... При помощи расплывчатых теорий такого рода легко забраться в глухой тупик. Опровергнуть подобную теорию нелегко»1, а ведь именно такими являются социальные и философские концепции.

Знание становится теоретическим только тогда, когда оно построено не как механическая, эклектическая сумма своих моментов, а как их органическая целостность, отражающая целостность соответствующего объективного фрагмента реальности, предметной деятельности