37583

АЛЛЕЛЬНЫЕ ВАРИАНТЫ ГЕНОВ-КАНДИДАТОВ ПОДВЕРЖЕННОСТИ ТУБЕРКУЛЕЗУ У РУССКОГО НАСЕЛЕНИЯ ЗАПАДНОЙ СИБИРИ

Диссертация

Биология и генетика

Задачи исследования: Изучить распространенность и межлокусное взаимодействие полиморфных вариантов гена NRMP1 46914G C D543N C274T 146585G аллельных вариантов генов VDR B b F f IL12В 1188C IL1B 39531 2 IL1RN VNTR у русских г. Показано что структура неравновесия по сцеплению между полиморфизмами гена NRMP1 идентична у русских и тувинцев. Впервые выявлены ассоциации полиморфизма 3953А1 А2 гена IL1B c ограниченным деструктивным ТБ легких VNTR полиморфизма гена IL1RN и полиморфизма 274С Т гена NRMP1 с...

Русский

2013-09-24

1.02 MB

1 чел.

ГОСУДАРСТВЕННОЕ  ОБРАЗОВАТЕЛЬНОЕ  УЧРЕЖДЕНИЕ  

ВЫСШЕГО  ПРОФЕССИОНАЛЬНОГО  ОБРАЗОВАНИЯ

СИБИРСКИЙ  ГОСУДАРСТВЕННЫЙ  МЕДИЦИНСКИЙ  УНИВЕРСИТЕТ

ФЕДЕРАЛЬНОГО  АГЕНТСТВА  

ПО  ЗДРАВООХРАНЕНИЮ  И  СОЦИАЛЬНОМУ  РАЗВИТИЮ

РОССИЙСКАЯ  АКАДЕМИЯ  МЕДИЦИНСКИХ  НАУК

СИБИРСКОЕ  ОТДЕЛЕНИЕ  ТОМСКИЙ  НАУЧНЫЙ  ЦЕНТР

ГОСУДАРСТВЕННОЕ  УЧРЕЖДЕНИЕ  

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ  ИНСТИТУТ  МЕДИЦИНСКОЙ  ГЕНЕТИКИ

На правах рукописи

КОЛОКОЛОВА  ОЛЬГА  ВАЛЕНТИНОВНА

АЛЛЕЛЬНЫЕ  ВАРИАНТЫ  ГЕНОВ-КАНДИДАТОВ   ПОДВЕРЖЕННОСТИ  ТУБЕРКУЛЕЗУ  У  РУССКОГО  НАСЕЛЕНИЯ  ЗАПАДНОЙ  СИБИРИ

03.00.15. – генетика

14.00.26 – фтизиатрия

Диссертация

на соискание ученой степени

кандидата медицинских наук

Научные руководители:

академик РАМН,

профессор В. П. Пузырев

член-корреспондент РАМН,

профессор А. К. Стрелис

                                             ТОМСК-2005


ОГЛАВЛЕНИЕ

Список сокращений…………………………………………………………..

4

Введение………………………………………………………………………

5

Глава 1. Обзор литературы…………………………………………………..

11

1.1. Роль наследственных факторов в возникновении и развитии    туберкулеза……………………………………………………….

11

1.2. Молекулярные механизмы патогенеза туберкулеза у человека.

21

1.3. Физиологические функции белковых продуктов генов-кандидатов подверженности туберкулезу, их роль в патогенезе заболевания………………………………………….

26

Глава 2. Материал и методы исследования………………………………...

42

2.1. Обследованные группы населения………………………………

42

2.1.1. Характеристика контрольной выборки………………….

42

2.1.2. Характеристика выборки больных туберкулезом………

43

2.1.3. Характеристика семейной выборки пробандов,   больных туберкулезом……………………………………

44

2.2. Методы исследования…………………………………………….

45

2.2.1. Клинико – лабораторные методы исследования………..

45

2.2.2. Молекулярно – генетические методы анализа полиморфизма генов……………………………………...

46

2.2.3. Генетико – статистические методы анализа…………….

50

Глава 3. Результаты и обсуждение………………………………………….

53

3.1. Распространенность полиморфизма генов NRAMP1, VDR, IL12B, IL1B, IL1RN  среди здоровых лиц (контрольная группа)…………………………………………………………….

53

3.2. Анализ связи полиморфизма генов NRAMP1, VDR, IL12B, IL1B, IL1RN с туберкулезом……………………………………..

64

3.3. Анализ накопления случаев туберкулеза в семьях больных…..

81

3.4. Анализ связи полиморфизма генов NRAMP1, VDR,  IL12B, IL1B, IL1RN с патогенетически важными параметрами болезни……………………………………………………………

84

3.4.1. Анализ ассоциаций исследованных генов с качественными признаками туберкулеза………………..

84

3.4.2. Анализ ассоциаций исследованных генов с количественными признаками туберкулеза…………….

94

Заключение…………………………………………………………………...

98

Выводы………………………………………………………………………..

105

Список литературы…………………………………………………………..

107

СПИСОК  СОКРАЩЕНИЙ

ТБ – туберкулез

ВОЗ – всемирная организация здравоохранения

МБТ – микобактерии туберкулеза

ГЗТ – гиперчувствительность замедленного типа

СОЭ – скорость оседания эритроцитов

РХФ – равновесие Харди-Вайнберга

NRAMP1 – макрофагальный белок, ассоциированный с естественной ресистентностью

NRAMP1 – ген макрофагального белка, ассоциированного с естественной резистентностью

MBP – маннозо - связывающий белок

TNFα – фактор некроза опухолей α

TNFА – ген фактора некроза опухолей α

VDR – ген рецептора к витамину D

HLA – главный комплекс гистосовместимости человека

INF-γ – гамма интерферрон

IL-1β – интерлейкин-1β

IL-12β – интерлейкин-12β

IL1B – ген интерлейкина-1β

IL12B – ген интерлейкина-12β

IL1RN – ген антагониста рецептора к интерлейкину-1β

ВВЕДЕНИЕ

По данным Всемирной организации здравоохранения (ВОЗ) от туберкулеза (ТБ) ежегодно умирают более двух миллионов человек во всем мире. В связи с этим в 1993 г. ТБ объявлен всемирной опасностью. Несмотря на наметившиеся тенденции к стабилизации и позитивную динамику отдельных показателей, эпидемиологическая ситуация по туберкулезу в Российской Федерации остается сложной [Перельман М.И., 2001; Онищенко Г.Г., 2003; Ерохин В.В., 2003; Белиловский и др., 2003]. В 27 субъектах РФ уровень заболеваемости значительно выше, чем по стране, причем наибольшие показатели отмечены в Сибирском федеральном округе [Мурашкина Г.С. и др., 1999; Краснов В.А., 2004]. Таким образом, ТБ является одной из самых серьезных медико-социальных проблем здравоохранения, как Томской области, так и в целом России [Перельман М.И., 2003; Стрелис А.К., 2004].

Несомненно, ключевым звеном патогенеза заболевания является проникновение микобактерий туберкулеза (МБТ) в организм человека. Однако нельзя недооценивать роль предрасполагающих факторов, к которым относят возраст больного, сопутствующие заболевания, неблагоприятное влияние факторов внешней среды, различные патологические состояния специфического и неспецифического иммунитета [Давыдовский И.В., 1962].

Известно, что туберкулезной инфекции свойственен выраженный клинический полиморфизм [Пузик В.И. и др., 1973]. Основой для такой вариабельности клинического течения болезни является не только внешние средовые причины, но и генетически детерминированные [Апт А.С и др., 1982; Хоменко А.Г., 1990]. Благодаря врожденной относительной резистентности человека к туберкулезу заболевает лишь малая часть инфицированных МБТ, в то время как, по данным ВОЗ,  инфицируется практически каждый третий житель планеты.

Близнецовые и генетико-эпидемиологические исследования установили важную роль наследственности в развитии туберкулеза [Чуканова В.П. и др., 2001; Kallman F.,  Reisner D., 1943; Comstock G.W., 1978; Fine P.E.M., 1981].

С генетической точки зрения ТБ, как и большинство инфекционных заболеваний, относят к мультифакториальной патологии, которая представляет собой результат сложного взаимодействия большого числа генов с разнообразными факторами окружающей среды [Мороз А.М., Торонджадзе В. Г., 1977; Березовский Б.А. и др., 1986]. Современные достижения в области молекулярной генетики открыли новые перспективы в изучении патогенеза болезней: появилась возможность идентифицировать гены, продукты экспрессии которых принимают участие в развитии патологических состояний [Hill A. V. S., 1999].

Важнейший этап патогенеза туберкулеза - персистенция возбудителя в фагосомах макрофагов [Авербах М.М. и др., 1982; Литвинов В.И. и др., 1983]. Макрофаги поглощают патоген в очагах воспаления, но часто теряют способность элиминировать его в лизосомах, что в итоге приводит к их массированному размножению и последующему выходу из погибших клеток [Myrvik Q. et al., 1984]. В связи с этим в число генов-кандидатов туберкулеза входят гены, продукты которых участвуют в процессе фагоцитоза микобактерий. Современные характеристики туберкулезной инфекции диктуют необходимость контроля прохождения микобактерии по эндосомально – лизосомальному пути.

Одним из методов анализа роли генетических факторов в возникновении и развитии распространенных заболеваний является исследование ассоциаций генетических маркеров с заболеваниями [Пузырев В.П., 2000; Collins F.S., 1999; McKusick V., 2000]. В основе такой ассоциации маркера с болезнью могут лежать три причины. Во-первых, наличие ассоциации может свидетельствовать о том, что ассоциированный локус и есть ген или один из генов болезни. Во-вторых, причиной ассоциации может быть неравновесие по сцеплению между маркерным локусом и локусом болезни. И, наконец, ассоциация может быть артефактом, возникшим вследствие подразделенности популяции [Пузырев В.П., Степанов В.А., 1997]. Феномен ассоциации генетического маркера с заболеванием или каким-либо признаком болезни определяется дифференциальной приспособленностью носителей разных генотипов [Алтухов Ю.П., 2003].

Одним из приоритетных направлений в активном выявлении туберкулеза является определение групп риска. Формирование этих групп требует методологически правильного подхода, основанного на четком знании факторов, определяющих повышенный риск заболевания [Горбач Н.А. и др., 2004]. Методами молекулярной медицины было установлено, что у человека гены многих ферментов, рецепторов и других белков характеризуются наличием одного или нескольких структурных полиморфизмов, которые не приводят к значимым изменениям первичной структуры белка, и соответственно, очевидным патологическим последствиям, но оказывают влияние на функциональную активность кодируемых белков. Эти специфические для конкретной патологии маркеры могут быть выявлены задолго до ее клинической манифестации, что позволит определить группы риска, организовать их мониторинг, а в случае необходимости, предложить индивидуально обоснованную профилактику и превентивную терапию. Таким образом, идентификация генов и их аллелей, участвующих в определении чувствительности или резистентности к туберкулезу, позволит не только глубже проникнуть в фундаментальные механизмы иммунитета и патологии этой инфекции, но и будет способствовать усовершенствованию лечебно-профилактических мероприятий.

Настоящее исследование является фрагментом изучения подверженности к туберкулезу в различных этнических группах, которое проводится в ГУ НИИ медицинской генетики ТНЦ СО РАМН под руководством академика РАМН В.П. Пузырева. Получены результаты исследования роли генов-кандидатов в возникновении и развитии туберкулеза у тувинцев [Рудко А.А., 2004]. Нами изучено влияние генов NRAMP1 (ген макрофагального белка, ассоциированного с естественной резистентностью), VDR (ген рецептора к витамину D), IL12B (ген интерлейкина 12В), IL1B (ген интерлейкина 1В), IL1RN (ген антагониста рецептора к интерлейкину 1В) на предрасположенность к туберкулезу у русских г. Томска. Выбор сходных полиморфизмов генов для оценки резистентности к ТБ у тувинцев и русских позволил провести сравнительный анализ распространенности исследованных маркеров у больных и здоровых представителей данных этнических групп населения.

Цель исследования: изучить роль полиморфных вариантов генов NRAMP1, VDR, IL12B, IL1B и IL1RN в возникновении и развитии туберкулеза у русских жителей г. Томска.

Задачи исследования:

  1.  Изучить распространенность и межлокусное взаимодействие полиморфных вариантов гена NRAMP1 (469+14G/C, D543N, C274T, 1465-85G/A), аллельных вариантов генов VDR (B/b, F/f), IL12В (A1188C), IL1B (+3953A1/A2), IL1RN (VNTR) у русских г. Томска.
  2.  Оценить частоту встречаемости больных туберкулезом среди  родственников больных и здоровых лиц.
  3.  Провести анализ ассоциаций полиморфизма исследуемых генов с туберкулезом.
  4.  Исследовать влияние изучаемых аллельных вариантов на варьирование патогенетически значимых признаков болезни.
  5.  Провести сравнительный анализ русских г. Томска и жителей Тувы по распространенности исследованных генов, гаметическому неравновесию между парами полиморфизмов генов и выявленным ассоциациям.

Научная новизна:

Впервые получены сведения о распространенности аллельных вариантов генов NRAMP1, VDR, IL12B, IL1B, IL1RN у русских жителей г. Томска. Проведен межпопуляционный сравнительный анализ генов-кандидатов туберкулеза у русских и тувинцев, установивший отличия в распределении генотипов и частот аллелей по всем исследованным генетическим маркерам. Показано, что структура неравновесия по сцеплению между полиморфизмами гена NRAMP1 идентична у русских и тувинцев. Изучено влияние полиморфизма генов-кандидатов туберкулеза на возникновение и развитие различных клинических вариантов заболевания. Впервые выявлены ассоциации полиморфизма +3953А1/А2 гена IL1B c ограниченным деструктивным ТБ легких, VNTR полиморфизма гена IL1RN и полиморфизма 274С/Т гена NRAMP1 с распространенной деструктивной формой заболевания, полиморфизма 1465-85G/A гена NRAMP1 с первичным туберкулезом и полиморфизма 1188А/С гена IL12B как с распространенным деструктивным туберкулезом легких, так и с первичной по генезу формой патологии. Показана связь полиморфизма генов IL12B, NRAMP1 и VDR с патогенетически важными для ТБ качественными и количественными характеристиками патологического процесса: объемом поражения ткани легкого, деструктивными изменениями, уровнем палочкоядерных нейтрофилов, а также СОЭ у женщин.

Практическая значимость:

Полученные результаты исследования полиморфизма генов-кандидатов туберкулеза представляются важными для формирования представлений о взаимосвязи особенностей генофондных параметров популяции с закономерностями распространения этого инфекционного заболевания, позволяют глубже проникнуть в фундаментальные механизмы иммунитета и патологии ТБ. Сведения о вкладе полиморфизма исследованных генетических маркеров в формирование вариабельности подверженности к этому заболеванию, а также в определение различий клинических проявлений болезни, могут быть использованы при организации профилактических и лечебных мероприятий. Полученные данные могут быть полезны в уточнении стратегии формирования групп риска по заболеванию туберкулезом.

Положения, выносимые на защиту:

  1.  В популяциях человека имеет место специфичность распространения генотипов и аллелей генов-кандидатов туберкулеза NRAMP1, VDR, IL1B, IL1RN, IL12B, что может составлять основу различной подверженности к заболеванию у представителей разных этнических групп населения.
  2.  Полиморфизмы генов NRAMP1, IL12B, IL1B, IL1RN являются структурными элементами наследственной компоненты подверженности к туберкулезу у русских г. Томска.
  3.  Вклад генов NRAMP1, VDR, IL1B, IL1RN, IL12B в развитие туберкулеза и изменчивость его клинических проявлений у представителей европеоидного и монголоидного населения Сибири различен.

ГЛАВА 1. ОБЗОР  ЛИТЕРАТУРЫ

  1.  Роль наследственных факторов в возникновении и развитии туберкулеза

Туберкулез известен с глубокой древности. Об этом свидетельствуют многочисленные литературные данные и  исторические факты. Научные материалы палеонтологов указывают на древний возраст микобактериальной инфекции. На костях древнеегипетских мумий эпохи бронзы удалось обнаружить несколько бесспорных туберкулезных поражений. Большая заслуга в этом принадлежит английскому исследователю Арманду Рафферу (1921) [Холмовская М.Б., 1997].

Некоторые признаки легочной чахотки описаны в египетских папирусах, а так же в произведениях древнейших китайских ученых и в священных книгах индусов [Хоменко А.Г., 1990]. Уже в те времена исследователи пытались объяснить вопрос, который интересовал многих. Почему некоторые люди более подвержены  туберкулезу, чем другие?

Решалась эта  проблема различными учеными по-разному, в зависимости от уровня знаний в тот или иной период человеческой истории. Гиппократ, а так же его современники считали туберкулез наследственной болезнью: «Некоторые – более устойчивы в болезнях, другие совершенно не способны им противостоять. Как от родителей эпилептиков рождаются дети-эпилептики, так от чахоточных рождаются дети предрасположенные к чахотке» [Цит. по Рабухин А.Е., 1959].

Однако уже в те времена высказывалась мысль о заразности легочной чахотки. Так в Персии, по свидетельству Геродонта, обычно изолировали не только «прокаженных, но и чахоточных и золотушных» больных, запрещали им оставаться в городах и поддерживать какую-либо связь с окружающим населением [Рабухин А.Е., 1948].

С открытием возбудителя туберкулеза роль наследственности при этом заболевании фактически перестала признаваться. В течение длительного времени во фтизиатрии основное внимание уделялось изучению возбудителя болезни, патологических изменений и их клинических проявлений.

В настоящее время общепризнанно, что этиологическим фактором туберкулеза являются микобактерии туберкулеза (МБТ). Туберкулез – инфекционное заболевание, которое отличается преимущественно хроническим течением различных клинических форм, своеобразием специфических иммунологических и морфологических проявлений. Однако проникновение в организм возбудителя туберкулеза является необходимым, но недостаточным условием для развития болезни. В патогенезе туберкулеза немаловажную роль играют так называемые способствующие факторы. К таким факторам относят некоторые свойства макроорганизма (пол, возраст, сопутствующие заболевания, общая реактивность организма и т.д.), вирулентность микобактерии туберкулеза и массивность инфицирования, а также воздействие внешней среды (неблагоприятная микросоциальная среда, социально-гигиенические факторы и низкий экономический уровень жизни), при котором происходит инфицирование. Иногда роль сопутствующих факторов в этиологии туберкулеза выступает на первое место [Давыдовский И.В., 1962].

Несомненно, что семейное накопление туберкулеза обусловлено общностью внешнесредовых факторов, воздействующих на каждого члена семьи. Но даже в условиях тесного семейного контакта с бактериовыделителем не все члены семьи заболевают туберкулезом. Если  проследить историю взаимодействия человеческой популяции с возбудителями инфекционных болезней, то можно заметить, что эпидемии особо опасных заболеваний не заканчивались полным вымиранием. Выживали индивиды - возможно, носители определенных генетических систем, имеющих отношение к сопротивляемости соответствующим инфекциям [Хоменко А.Г., 1990].

Туберкулез отличается клиническим полиморфизмом, что проявляется различными формами заболевания – от малых с бессимптомным течением до обширных деструктивных процессов в легких с выраженной клинической картиной, а также наличием туберкулезного процесса различной локализации в других органах [Пузик В.И. и др., 1973]. По-видимому, причины такого разнообразия проявлений туберкулеза могут определяться не только неблагоприятным сочетанием внешних факторов, но и внутренними, наследственными причинами.

Степень влияния наследственных факторов на возникновение и течение болезни при разной патологии неодинакова. В одних случаях генетически могут быть детерминированы  несовместимые с жизнью дефекты, в других – речь может идти об одном из многих компонентов патогенеза заболевания.

Чувствительность к  туберкулезу у разных видов животных существенно варьирует: от врожденной  резистентности крыс, до крайней подверженности у морских свинок. Кроме того, существуют внутривидовые отличия в подверженности к данному заболеванию [Гамалея Н.Ф., 1939; Авербах М.М. и др., 1980; Сабадаш Е.В. и др., 2002].

Аналогичным образом человеческая популяция проявляет врожденную относительную резистентность к туберкулезу [Апт А.С. и др., 1982; Авербах М.М. и др., 1982; Мороз А.М., 1984]. Благодаря этому заболевает лишь малая часть инфицированных МБТ, в то время как по данным ВОЗ инфицируется практически каждый третий житель планеты. Подобная избирательность свидетельствует о том, что не все члены популяции в равной степени подвержены туберкулезу.

Исследуя группу больных туберкулезом методом изучения их родословных, В. Г. Штефко (1930)  провел параллели между конституциональными признаками и заболеванием. Так же он установил различное течение болезни у лиц разной национальности. Полученные данные позволили предположить существование наследственной предрасположенности к туберкулезу.

Выявление при профилактических флюрографических обследованиях рентгенположительных лиц с зажившими элементами перенесенной первичной инфекции, у которых наступило спонтанное излечение, также свидетельствует о том, что не все люди в равной степени подвержены заболеванию туберкулезом в условиях заражения микобактериями туберкулеза.

Б. А. Березовский и соавт. (1986) провели анализ частоты болезни среди родственников больных туберкулезом, не находившихся в контакте с последними, а также в контрольной группе здоровых лиц. Полученные результаты выявили достоверные различия в сравниваемых группах, при этом частота туберкулеза среди родителей и сибсов пробанда более чем в 5 раз превышала таковую в популяции. На основании этих данных было сделано предположение, что наряду с известными, достаточно изученными причинами возникновения туберкулеза легких определенное значение в его развитии имеют генетические факторы.

Анализ 33 больных рецидивирующим туберкулезом с бактериовыделением после завершенной химиотерапии показал, что из 25 лиц находившихся с этими больными в контакте, 5 остались неинфицированными. В тоже время среди остальных туберкулинположительных лиц из контакта не отмечено случаев заболевания туберкулезом [Golli V. et al., 1981].

Сходные результаты получили и другие авторы, наблюдавшие за лицами из семейного контакта с 458 больными туберкулезом в течение 4 лет после выявления источника инфекции. Всего за 4 года было выявлено, что среди 1250 лиц из семейного контакта заболели лишь 48 из них преимущественно на 1-ом и 2-ом году наблюдения [Kameda K. et al., 1983].

H. Hara и соавторы (1982) приводят данные о том, что из 28 человек, находящихся в контакте с бациллярными больными, лишь у 6 на протяжении 2,5 лет был установлен туберкулез.

Под руководством академика РАМН А. Г. Хоменко было осуществлено   комплексное генетико-эпидемиологическое исследование, в котором принимали участие 522 многодетные семьи  узбекской, туркменской, молдавской этнических групп. Задача данного исследования сводилась к определению коэффициента наследуемости (подверженности, предрасположенности). Для этого обследовали более 5000 родственников первой и второй степени родства по отношению к пробандам, которые страдали туберкулезом легких.

Результаты исследования установили семейное накопление туберкулеза среди различных групп родственников разной степени родства. При этом в семьях пробандов, которые болели деструктивным туберкулезом легких и являлись бактериовыделителями, частота туберкулеза среди родственников первой степени родства  значительно превышала частоту заболевания среди населения не только при наличии семейного контакта (в 7,2 раза), но и при отсутствии тесного семейного контакта (в 5 раз). Кроме того, аналогичным образом во всех обследованных этнических группах  в семьях родственников первой степени родства, где пробанды болели недеструктивными формами туберкулеза без бактериовыделения, частота туберкулеза легких в 4,3 раза превышала частоту заболевания среди населения сопоставимого возраста [Чуканова В. П. и др., 2001].

У родственников второй степени родства (племянников пробандов), которые не состояли в семейном контакте с пробандами, установлено, что частота туберкулеза среди них превышала частоту заболевания среди населения соответствующего возраста в 2-2,5 раза. Учитывая более отдаленную степень родства, увеличение частоты заболевания в этой группе родственников в большей мере подчеркивает значение генетических факторов в семейном накоплении заболевания. Выявленные закономерности распространения туберкулеза позволяют считать, что среди кровных родственников больных туберкулезом легких риск развития болезни значительно выше, чем среди всего населения.

Особый способ клинико-генеалогического изучения предрасположен-ности к болезням – изучение заболеваемости индивидов, генетически не родственных с больным туберкулезом (супруги пробандов, приемные дети), но связанных с ним общностью семейных средовых влияний. Анализ распространенности туберкулеза среди супругов пробандов, не состоящих в кровном родстве с больными туберкулезом, но находившихся с ними в семейном контакте, установил, что частота туберкулеза легких в этой группе достоверно не отличалась от частоты заболевания среди населения обследованных этнических групп [Чуканова В. П. и др., 1995].

На основании проведенных популяционных исследований были выявлены этнические особенности в патогенезе и клиническом течении туберкулеза [Хаудамова Г.Т., 1991; Хоменко А.Г., 1996; Stead W.W., 1992; Bellamy R., 1998]. Анализ заболеваемости туберкулезом органов дыхания основных этнических групп Казахстана (казахов и русских) выявил повышенный риск (в 3 раза) заболевания коренного населения [Хауадамова Г.Т., 1991].

Вероятно, большая часть такой этнически зависимой предрасположенности обусловлена факторами внешней среды, то есть определенными традициями данной популяции, экономическими причинами и т. д. Однако имеются данные о том, что более подвержены туберкулезу популяции, происходящие с территорий свободных от этого заболевания [Bellamy R., 1998; Stead W.W., 1992]. Данное положение легко объяснимо с точки зрения естественного отбора. Резистентность к туберкулезной инфекции создавалась и поддерживалась в процессе симбионтных отношений макро- и микроорганизмов [Земскова З.С., Дорожкова И.Р., 1984].

С целью разделения генетических и средовых эффектов и оценки их соотносительного вклада в этиологию и патогенез туберкулеза были предприняты близнецовые исследования [Kallman F., Reisner D., 1943; Comstock G.W., 1978; Fine P.E.M., 1981]. Эти работы показали, что заболеваемость туберкулезом монозиготных близнецов в среднем в 3,5 раза выше, чем дизиготных.

Полученные в ходе близнецовых исследований факты свидетельствовали о генетической подоплеке туберкулеза, однако, не предоставили данных о типе наследования заболевания. Генетический анализ восприимчивости и резистентности к туберкулезу, проведенный на лабораторных животных, показал, что наследование этих признаков носит сложный, полигенный характер  [Lurie M.B. et al., 1952; Lynch C.J. et al., 1965].

На основании экспериментальных исследований была выдвинута гипотеза мультифакториального типа наследования предрасположенности к туберкулезу легких [Мороз А. М., Торонджадзе В. Г., 1977]. Позднее Б. А. Березовский и соавт. (1986) сравнили имеющиеся сведения по генетике туберкулеза с критериями мультифакториального наследования,  предложенными J.H. Edwards (1969). Полученные в ходе сравнения результаты подтвердили высказанную ранее гипотезу.

С генетической точки зрения, мультифакториальные заболевания представляют результат сложного взаимодействия большого числа генов с разнообразными факторами окружающей среды. В отличие от менделирующей патологии, в основе которой лежат редко встречаемые «главные гены», но со значительными эффектами, при мультифакториальных болезнях генетическая система полигенов представлена огромным числом аллельных вариантов генов, эффекты которых в отдельности незначительны. Однако их совокупное действие формирует неблагоприятный «генетический фон», который под влиянием дополнительных факторов реализуется в патологический фенотип [Пузырев В. П., 2003].

Современные представления о генетической составляющей мультифакториальных заболеваний во многом связаны с концепцией подверженности и порогового проявления мультифакториального фенотипа [Falconer D., 1965; Edwards J.H., 1969]. Согласно этой концепции, подверженность к заболеванию наследственно обусловлена, но реализация ее возможна только при взаимодействии с факторами среды. Патологический фенотип проявляется при пересечении некоего «порога» подверженности, описываемого   количественными признаками. Порог подразумевает наличие резкого качественного различия: за этим порогом на шкале подверженности располагаются пораженные индивиды [Фогель Ф., Мотульски А., 1989].

Развитие молекулярно-генетических технологий позволило решить проблему идентификации конкретных генетических систем, ответственных  за предрасположенность к мультифакториальным заболеваниям. Картирование генов осуществляется в рамках двух стратегий: генов-кандидатов и позиционного клонирования [Пузырев В.П., Степанов В.А., 1997].

Ген определяется как кандидатный, если продукт его экспресии вовлечен в развитие болезни. Анализ ассоциации полиморфизма генов-кандидатов с изучаемой болезнью или патологическими признаками позволяет установить их патогенетическую роль и, таким образом, «картировать» ген заболевания. При позиционном клонировании определение генов подверженности проводится путем анализа сцепления заболевания и маркерами с установленным положением на хромосоме. Это дает возможность картировать болезни, для которых не известны не только гены-кандидаты, но даже детали развития болезни.

Идентификация генов и их аллелей, от экспресии которых зависит чувствительность или резистентность к туберкулезу позволила бы глубоко проникнуть в фундаментальные механизмы иммунитета и патологии этой инфекции. В результате появилась бы возможность использовать методы генетического типирования для выявления среди здоровых людей групп с генетически повышенным риском заболевания, требующих первоочередных мер профилактики и, вероятно, особого подхода к вакцинации [Кобринский Б.А., 1987].

Сложность патогенеза, а так же различия в клиническом проявлении туберкулеза предполагают, что число генов-кандидатов заболевания достаточно велико (табл. 1). При этом вклад каждого из них в суммарную подверженность различен [Hill A.V.S., 1998]. Дело еще более осложняется действием факторов внешней среды, значительно модифицирующих положение порога подверженности туберкулезу. Кроме того, большое значение для определения генов сложнонаследуемых заболеваний имеет также выбор популяции для исследования. Индивидуальные сочетания аллелей генов предрасположенности, формирующие риск заболевания, являются уникальными для каждой популяции, что может быть одной из причин невоспроизводимости в разных выборках результатов анализа сцепления болезни с маркером [Terwilliger J.D. et al., 1997].

Таким образом, само по себе картирование генов туберкулеза еще не исчерпывает все проблемы генетики данной патологии. Следующим за картированием шагом, по-видимому, является изучение совместного действия комплекса генов предрасположенности, выявление его основных функциональных звеньев, установление особенностей взаимодействия с факторами негенетической природы – вот задачи, которые необходимо решить для понимания механизмов нормальной и патологической реализации генетической информации.

                                                                                                           

 

Таблица 1

Гены-кандидаты подверженности туберкулезу

     Ген

  Хромосомная локализация

   (MIM)

Название белкового продукта

        Функция белка

NRAMP1

2q35         (600266)

Макрофагальный протеин 1, ассоциированный с естественной резистентностью

Транспорт двухвалентных ионов металлов, киллинг внутриклеточно расположенных МБТ

VDR

12q12-q14

(601769)

Рецептор к витамину D

Связывание с витамином D, активация клеточного иммунитета

IL1А, IL1В

2q14(147760)

2q14(147720)

Интерлейкин 1

Интерлейкин 1

Активация клеточного иммунного ответа

IL12В

5q31.1-q33.1

(161561)

Интерлейкин 12

Индукция синтеза IFN-

IFNG

12q14

(147570)

Интерферон

Активация Т-лимфо-цитов, макрофагов

TNFА

12р13.2

(191190)

Фактор некроза опухолей

Индукция формирования гранулемы

NOS2

17р13.1-q25

(600719)

Индуцибельная синтаза оксида азота

Цитотоксическое действие

MBP

10q11.2-q21

(154545)

Маннозо-связывающий белок

Активация системы комплемента

HLA

6p21.3

(142860)

Главный комплекс гистосовместимости

Регуляция силы иммунного ответа

IL1RN

2q14.2

(147679)

Антагонист  рецептора к интерлейкину-1

Угнетение провоспалительного эффекта

IL12R

19p113.1

(601604)

Рецептор к интерлейкину 12

Связывание интерлейкина 12 на поверхности клеток-мишеней

1.2. Молекулярные механизмы патогенеза туберкулеза у человека

Туберкулез – хроническое инфекционное заболевание, протекающее с внутриклеточным (в макрофагах) паразитированием микобактерий [Myrvik Q. N. et al., 1984]. Несмотря на самую современную химиотерапию, лечение туберкулеза, как правило, бывает длительным и не всегда эффективным. Одной из причин безуспешного лечения данной инфекции по общепринятому мнению является недостаточная эффективность защитных механизмов макроорганизма, в значительной мере генетически обусловленных. Сведения об участии иммунной системы, складывающихся межклеточных взаимодействиях, накопленные за последние десятилетия, изменили (уточнили) представления о патогенезе туберкулеза.

Туберкулез чаще всего развивается в результате заражения МБТ, которые выделяет в окружающую среду больной человек. Респираторный тракт, а так же кишечник являются входными воротами инфекции. Таким образом, основной путь проникновения патогена – аэрогенный, но возможен и алиментарный. Определенную роль при аэрогенном заражении играет система мукоцилиарного клиренса, позволяющая вывести попавшие в бронхи частицы пыли, капельки слизи, слюны, мокроты, содержащие микроорганизмы. Аналогичным образом, при алиментарном пути проникновения микобактерий защитную роль играет переваривающая функция желудочно-кишечного тракта.

После проникновения патогена в легкие важную роль в защите от инфекции играют альвеолярные макрофаги. Эти клетки непосредственно подавляют рост бактерий, фагоцитируя их, а также они участвуют в реакциях клеточного противотуберкулезного иммунитетах [Авербах М.М. и др., 1982; Литвинов В.И. и др., 1983; Myrvik Q. N. et al., 1984].

Процесс фагоцитоза можно разделить на несколько следующих друг за другом этапов. В первую очередь бактерия прикрепляется к фагоциту, затем следует фаза  поглощения микроорганизма, и как следствие ингибиция роста или уничтожение  инфекта.

Процесс прикрепления микобактерий к фагоцитам осуществляется посредством рецепторов комплемента, маннозных рецепторов и других рецепторов клеточной поверхности макрофага. Взаимодействие между маннозными рецепторами и инфектом происходит при помощи гликопротеина клеточной стенки микобактерий, имеющего маннозный остаток на обращенной во внешнюю среду части молекулы [Schlesinger L. S., 1996].

Мутации генов, белковые продукты которых вовлечены в механизмы иммунологической защиты, определяют степень резистентности к инфекциям. Маннозо-связывающий белок (МВР) является Са-зависимым белком плазмы крови. Выявлено, что у человека этот белок осуществляет функцию активатора системы комплемента, кроме того, он действует непосредственно как опсонин, взаимодействуя с рецепторами макрофагов [Hill A.V.S., 1998].

Исследовали взаимосвязь полиморфизма гена МВР с чувствительностью к легочному туберкулезу в Индии. Анализ показал, что с туберкулезом ассоциированы три точечных замены в исследуемом гене [Selvaraj P. et al., 1999]. Аналогичное исследование, проведенное в Гамбии, выявило связь полиморфных вариантов данного гена с развитием легочной формы туберкулеза [Bellamy R. et al., 2000].

Фагоцитирующая клетка выбрасывает окружающие микроорганизм псевдоподии, которые затем сливаются на периферии, образуя окруженную мембраной вакуоль [Ерохин В.В., 1974; Leake E.S., Myrvik Q.N., 1971]. Микобактерии, находящиеся в фагосоме попадают под воздействие целого ряда неблагоприятных факторов, направленных на их уничтожение. К таким факторам можно отнести слияние фагосомы с лизосомами, содержащими литические ферменты [Jeckett P. S. et al., 1978]. Так же макрофаг способен производить реактивные радикалы  кислорода и азота, играющие, вероятно, основную роль в уничтожении инфекта внутри макрофага [Nelson N., 1999]. Установлено, что “нокаутированные” по гену индуцибельной синтазы оксида азота (NOS2) мыши не способны противостоять туберкулезной инфекции, у них наблюдался  усиленный рост M. tuberculosis в легких, селезенке и печени.  Макрофаги этих мышей не производили NO и инфекция распространялась [Jackett P. S. et al., 1978; Walker L., Lowrie D. B., 1981].

Если макроорганизм не в состоянии устранить внутриклеточно размножающихся микобактерий, то в результате хронического воспаления в месте освобождения антигенов происходит скопление большого числа макрофагов, которые выделяют фиброгенные факторы и стимулируют образование грануляционной ткани и фиброза. Возникшая гранулома представляет собой попытку организма ограничить распространение персистирующей инфекции. Однако при интенсивном размножении микобактерий в организме человека и малоэффективном фагоцитозе выделяется большое количество токсичных веществ и индуцируется гиперчувствительность замедленного типа (ГЗТ), которая способствует выраженному экссудативному компоненту воспаления с развитием казеозного некроза. В процессе разжижения казеозных масс микобактерии получают возможность бурного внеклеточного размножения, что обусловливает прогрессирование туберкулеза [Ройт А., 1991, 2000].

Важную роль в противотуберкулезной защите играет, секретируемый макрофагами и моноцитами цитокин – фактор некроза опухолей (TNF). Он принимает участие в индукции формирования гранулемы, а так же способствует активации Т-клеток, тем самым повышая антибактериальную активность макроорганизма [Kindler V. et al., 1989; Mohan V. P. et al., 2001]. На модели мышей с “нокаутированным” геном, кодирующим рецептор для TNF, продемонстрировано существенное значение фактора некроза опухолей для выживания в условиях туберкулезной инфекции [Flynn J. L. et al., 1995]. В настоящее  время известно несколько мутаций гена TNFА, находящегося в локусе главного комплекса гистосовместимости, однако их связь с туберкулезом не выявлена. Так, в небольшом исследовании, проводившемся в Гамбии, не обнаружили ассоциации полиморфизма 308G/A гена TNFА с клинически подтвержденным туберкулезом. Такой же результат был получен при поиске взаимосвязи полиморфизма гена  TNFА c туберкулезом в Бразилии [Knight J. C., Kwiatkowski D., 1999].

При поиске конкретных генетических систем, отвечающих за развитие восприимчивости или резистентности к туберкулезу, в первую очередь обращалось внимание на главный комплекс гистосовместимости человека – HLA-систему, в которой расположены гены иммунного ответа. При этом продукты данного комплекса – антигены HLA – выступали в качестве биологических маркеров. Результаты анализа ассоциаций аллелей HLA-комплекса с туберкулезом показали связь DR-локуса с заболеванием, к тому же выявили высокую рассовую и этническую специфичность. В русской популяции заболевание ассоциировалось с В5, В14 и В17 антигенами HLA-комплекса [Хоменко А.Г., 1996]. Вероятно, гены комплекса HLA оказывают влияние на восприимчивость к туберкулезу, регулируя силу иммунного ответа и обуславливая этнические различия в подверженности ТБ.

Также была выявлена ассоциативная взаимосвязь ряда генетических маркеров – фенотипов крови с возникновением туберкулеза и с характером уже возникшего заболевания. Анализировали распределение фенотипических и генных частот 9 генетических локусов белков крови:  ингибитора протеаз, трансферрина, фосфоглюкомутазы 1, кислой эритроцитарной фосфотазы 1, гаптоглобина, витамин-Д-транспортирующего белка, глиоксалазы 1, комплемента и эстеразы Д. При этом выявили существование различий между больными туберкулезом легких и практически здоровыми людьми. Эти различия выражаются в накоплении у больных туберкулезом одних фенотипов и в уменьшении частот других фенотипов. Следует отметить, что полученный эффект касался в основном одних и тех же 6 белковых локусов, что подтверждает их реальное значение в дифференциации между больными ТБ и здоровыми людьми [Богадельникова И.В., 1999].

С целью картирования генов предрасположенности к туберкулезу группа исследователей провели широкомасштабное сканирование генома с использованием 299 высокоинформативных ДНК – маркеров у 173 пар сибсов, полностью конкордантных по развитию туберкулеза [Bellamy R. et al., 2000]. При этом выявили 2 локуса предрасположенности – на длинных плечах хромосомы 15 и Х  [Cervino A.C.L. et al., 2002].

На основании экспериментальных исследований, проведенных А.М. Морозом и В.Г. Торонджадзе (1977), были выявлены две линии мышей, оппозитные по своей чувствительности к туберкулезной инфекции. У резистентных линий после внутривенного заражения микобактериями туберкулеза наблюдаются длительный латентный период и медленное развитие инфекционного процесса, выражающееся в персистенции микобактерий на фоне незначительных гранулематозно измененных тканей, не приводящих к гибели животных. В то же время заражение мышей чувствительной линии приводит к быстрому размножению микобактерий в тканях, образованию гранулем в легких, селезенке, печени и быстрой гибели животных [Авербах М.М. и др., 1980; Мороз А. М., 1984]. На этих линиях исследователи изучили некоторые механизмы естественной резистентности и приобретенного иммунитета и высказали предположение, что устойчивость к инфекциям во многом зависит от способности макрофагов подавлять рост микобактерий в своей цитоплазме. Проведенные позднее эксперименты на 60 мышах двух линий, одна из которых чувствительна, другая устойчива к туберкулезной инфекции, полностью подтвердили данное предположение [Ельшанская М. П. и др., 1985].

Важнейший этап патогенеза туберкулеза - персистенция возбудителя в фагосомах макрофагов. Макрофаги поглощают патоген в очагах воспаления, но часто теряют способность элиминировать его в лизосомах, что в итоге приводит к их массированному внутриклеточному размножению и последующему выходу из погибших клеток. Получены данные, свидетельствующие о том, что имеются существенные различия в судьбе фагосом, содержащих вирулентные и авирулентные микобактерии, поскольку только первые препятствуют их слиянию с лизосомами [Myrvik Q. et al., 1984; Frenkel G. et al., 1986].

С точки зрения развития новых подходов к лечению туберкулеза очевидна необходимость контроля прохождения микобактерий по эндосомально-лизосомальному пути: от ранней эндосомы - к поздней, от поздней эндосомы – к лизосоме.

1.3. Физиологические функции белковых продуктов генов-кандидатов подверженности туберкулезу, их роль в патогенезе заболевания

Одним из генов предрасполагающих к развитию туберкулеза является NRAMP1 (от англ. Natural-Resistance-Associated Macrophage Protein 1 gene – ген макрофагального протеина 1, ассоциированного с естественной резистентностью). Более того, R. Bellamy и соавт. (1998) отнесли NRAMP1 к основным кандидатным генам туберкулеза у человека. Белковый продукт этого гена имеет вес около 60 кД, он локализован в лизосомальном компартменте покоящегося макрофага, но во время фагоцитоза он работает на мембране фагосомы [Gruenheid S. et al., 1997]. Nramp1 участвует в процессах активации макрофагов, являясь ключевым звеном в механизме транспорта нитритов из внутриклеточных компартментов в более кислую среду фаголизосомы, где он способен вступать в химическую реакцию с образованием NO [Blackwell J. M., Searle S., 1999].

Белок входит в семейство функционально связанных мембранных белков (к этому семейству относят также Nramp2), ответственных за транспорт двухвалентных катионов, таких как Fe2+,  Mn2+,  Zn2+,  Cu2+  [Jabado N. et al., 2000; Cellier M. et al., 2001].

Известно, что ионы металлов являются жизненно важными элементами, участвующими во многих метаболических реакциях, происходящих в каждой живой клетке. Следовательно, недостаток, избыток или отсутствие данных элементов может привести к развитию какого-либо  патологического состояния или даже к гибели клетки. Постоянство ионов металлов в организме обеспечивается регуляцией их потребления, хранения и выведения. Для того чтобы поддерживалась необходимая концентрация ионов, каждая клетка обладает определенной системой, обеспечивающей транспорт веществ через мембрану. Сбой этой системы или ее части может повлечь за собой потерю равновесия между выведением и поступлением веществ, что приведет к изменению внутриклеточной концентрации ионов. Недостаточный транспорт ионов может оказаться причиной нехватки жизненно важных метаболических элементов, а чрезмерное их накопление может вызвать токсическое воздействие этих же веществ, ведущее к гибели клетки. Возможно, что антибактериальная функция Nramp1 заключается в создании неблагоприятной для бактерии окружающей среды внутри фагосомы [Gruenheid S. et al., 2000; Barton C.H. et al, 1999].

Во время фагоцитоза микроба макрофаг продуцирует активные кислородные метаболиты, которые являются токсичными для бактерии. Выживание патогена во время кислородозависимой перестройки метаболизма фагоцита обеспечивается микробными ферментами, большинство из которых содержат ионы металлов в своих активных центрах [Cellier M. et al., 1994].

В свою очередь истощение запаса ионов металлов в фагосоме, вызванное транспортной деятельностью макрофагального белка ассоциированного с естественной резистентностью, приводит к снижению продукции металлосодержещих ферментов поглощенной бактерией.

Следовательно, дефекты продукции или функции Nramp1 могут приводить к нарушению его транспортной функции и, как следствие, к повышению чувствительности к внутриклеточным патогенам, таким как микобактерии (рис. 1) [Barton C.H. et al., 1999].

Рис. 1. Схема антибактериального действия NRAMP1 [по Пальцеву М.А., 2002]

Опыты, проведенные на инбредных мышах, показали, что уровень естественной резистентности к внутривенному заражению низкими дозами M. bovis (BCG) контролируется одним геном, локализованным в проксимальном регионе мышиной хромосомы 1. Этот локус  обозначили как Bcg (также он известен как Lsh или Ity). Два различных фенотипа Bcg были ассоциированны с чувствительностью (Bcg-s) и с резистентностью (Bcg-r) на ранней стадии инфекции, вызванной M. bovis, M. avium, M. lepraemurium, Leishmania donovani, Salmonella typhimurium [Bredley D.J., 1977; Forget A. et al., 1981].

Экспериментальные исследования показали, что через 3 недели после заражения 10 КОЕ M. bovis (BCG) из селезенки мышей Bcg-s высевается на 3-4 порядка больше микобактерий, чем из селезенки мышей Bcg-r [Gros P. et al., 1981].Результаты исследований на моделях мышей позволили утверждать, что высокая чувствительность линий мышей Bcg/Lsh/Ity к заражению внутриклеточными патогенами объясняется дефектом локализованного на 1-ой хромосоме гена в локусе Bcg [Blackwell S.M. et al., 1994; Skamene E., 1994].

 При помощи позиционного клонирования изолировали кандидатный ген и обозначили его как Nramp1 [Vidal S.M. et al., 1993]. Позже было подтверждено, что Nramp1 и ген, расположенный в локусе Bcg, идентичны [Govoni G. et al., 1996]. У лабораторных мышей ген Nramp1 имеет 2 аллеля Nramp1-s (восприимчивый, рецессивный) и Nramp1-r (резистентный, доминантный) [Malo D. et al., 1993].

Секвенирование матричной РНК Nramp1 от восприимчивых и резистентных линий мышей показало, что подверженность к инфекции связана с заменой глицина на аспарагиновую кислоту в позиции 169 (G169D) внутри 4-ого трансмембранного домена белка [Malo D. et al., 1994]. Элиминация функции Nramp1 у «нокаутированных» мышей (Nramp1-/-) приводит к повышению восприимчивости к группе бактериальных возбудителей, хорошо адаптированных к выживанию в макрофаге [Govoni G., Gros P., 1998].

Однако нельзя не учитывать, что в выше перечисленных экспериментах на мышах использовался штамм M. bovis (BCG), а он является авирулентным для человека. Более того, E. Medina и R. North (1998) показали, что в то время как Nramp1 действительно контролирует резистентность мышей к заражению M. bovis, резистентность к заражению M. tuberculosis, вероятно, не связана с мутациями данного локуса. Мыши с мутантным (чувствительным к заражению M. bovis) фенотипом не отличались по чувствительности к заражению M. tuberculosis от мышей с резистентным (дикого типа) фенотипом.

Учитывая полученные результаты, G. Govoni и P. Gros (1998) сделали вывод, что возбудители, не попадающие под контроль Nramp1, либо отличаются своим поведением внутри макрофага, либо не являются внутриклеточными паразитами. Эти данные свидетельствуют, что Nramp1 играет важную роль в резистентности к микобактериям и некоторым другим возбудителям инфекций у мышей, а его человеческий гомолог, вероятно, связан с подобными инфекциями у людей.

Такой человеческий  гомолог гена Nramp1, обозначенный как NRAMP1, клонировали и картировали на человеческой хромосоме 2q 35 [Cellier M. et al., 1996]. В данном гене содержится 15 экзонов различной протяженности, разделенных интронами, размер которых также широко варьирует [Marquet S. et al., 2000]. Описано 9 полиморфных вариантов гена NRAMP1, которые, вероятно, влияют на функцию гена [Liu J. et al., 1995].

С целью изучения функции гена было проведено исследование различных полиморфизмов NRAMP1 у западных африканцев в Гамбии всвязи с туберкулезом в местной популяции. Четыре полиморфизма гена - 5`(CA)n, INT4,  D543N, 3`UTR были ассоциированы с туберкулезом (р=0,03; р=0,009; р=0,008; р<0,001 соответственно). 5`(CA)n 201 п.о. аллель находился в неравновесии по сцеплению с одним из аллелей полиморфизма INT4 (Р<0,001). Полиморфизм D543N также проявил неравновесие по сцеплению с делецией в 3`UTR регионе гена (р<0,001). Аллельные варианты INT4 и 3`UTR гена NRAMP1 были незначительно связаны друг с другом и статистически значимо ассоциированы с туберкулезом [Bellamy R. et al., 1998]. Таким образом, при изучении связи NRAMP1 с туберкулезом у африканцев было обнаружено, что изменчивость данного гена связана с вариабельностью восприимчивости к туберкулезу.

Аналогичным образом, было проведено изучение различных полиморфных вариантов гена NRAMP1 в корейской популяции. Материалом для исследования послужили образцы крови от 192 пациентов с лабораторно подтвержденным туберкулезом легких. Как показал анализ, в исследуемой этнической группе туберкулез был ассоциирован с полиморфизмом 3`UTR гена NRAMP1 [Ryu S. et al., 2000].

По всей видимости, отличия в модели аллельной ассоциации гена с туберкулезом можно объяснить генетической гетерогенностью разных этнических групп. Так, например, анализ японской популяции показал различия в ассоциации гена с туберкулезом в двух группах пациентов: первая – жители города Токио, вторая – жители города Осака. Была обнаружена слабая зависимость между полиморфизмом D543N и туберкулезом в популяции Токио (р=0,045), и, напротив, имелась существенная связь с полиморфизмом (GT)n гена NRAMP1 в обеих популяциях [Gao P.S. et al., 2000]. К тому же была показана ассоциация полиморфизма D543N гена NRAMP1 с формированием деструкции при туберкулезе [Abe T. et al., 2003]. Для полиморфизмов D543N и 3`UTR найдена ассоциация с туберкулезом (р=0,041, р=0,030 соответственно) в китайской популяции [Liu W. et al., 2004].

Если в упомянутых выше исследованиях материалом послужили образцы крови от не родственных между собой индивидов больных туберкулезом, то в исследовании, проведенном в Гвинее (Конакри) тестировались 44 семьи на предмет ассоциации между NRAMP1 и туберкулезом. Каждая из этих семей содержала как минимум одного сибса больного туберкулезом. Всего было проанализировано 160 образцов крови путем тестирования по трем полиморфизмам: 5`(CA)n, 3`UTR, INT4. Для обработки полученных результатов был применен TDT-тест, при помощи которого обнаружили статистически значимую ассоциацию полиморфизма INT4 гена NRAMP1 с туберкулезом [Cervino A.C.L. et al., 2000].

Недавно был проведен поиск связи этого гена с туберкулезом в России (Башкортостан, Тува). При сравнении частот генотипов в группах больных инфильтративным туберкулезом легких и здоровых индивидов жителей Башкортостана была найдена ассоциация полиморфизма 3`UTR с подверженностью к туберкулезу (χ2 =21,34, OR=6,83) [Имангулова М.М. и др., 2004]. При аналогичном исследовании тувинцев показана связь с туберкулезом для варианта 1465-85G/A гена NRAMP12 =6,40, р=0,041) [Рудко А.А., 2004].

Однако несколько исследований предоставили негативные результаты. Так, не было найдено связи полиморфных вариантов гена NRAMP1 с туберкулезом  в эндемичной популяции Морокко и Дании [Soborg C. et al., 2002; Baghdadi J. et al., 2003]. Итак, несмотря на некоторую неопределенность в функции полиморфных вариантов гена NRAMP1, его ассоциация с данным заболеванием подтверждена в различных популяционных исследованиях (табл. 2).

Возможность с большой надежностью определять группы высокого риска, используя ДНК-типирование детей, чьи родители больны туберкулезом, для выявления тех, кто унаследует неблагоприятные аллели, была бы очень важна. По мнению R. J. North и E. Medina (1998), основное препятствие для более или менее надежного определения групп риска путем типирования по гену NRAMP1 – относительно слабый вклад этого гена в общую структуру генетически обусловленной восприимчивости и резистентности к туберкулезу.

Таблица 2

Обзор исследований полиморфных вариантов гена NRAMP1 при туберкулезе

Популяция

Количест-во пациен-тов с ТБ

Количест-во здоро-вых лиц

Исследованные полиморфизмы

Ассоциа-ции с ТБ

Авторы

Гамбия

410

417

5’(CA)n, INT4, D543N, 3’UTR

INT4, 3’UTR

Bellamy R. et al., 1998

Корея

192

192

D543N, 3’UTR

3’UTR

Ryu S. et al., 2000

Япония

267

202

(GT)n, INT4, D543N, 3’UTR

D543N, (GT)n

Gao P.S. et al., 2000

Гвинея

44 семьи

-

5’(CA)n, INT4,

3’UTR

INT4

Cervino et al., 2000

Дания

104

176

5’(CA)n, INT4, D543N, 3’UTR

-

Soborg C. et al., 2002

Морокко

116 семей

-

274С/Т, INT4, 1465-85G/A, D543N, 3’UTR, (GT)n

-

Baghdadi J. et al., 2003

Россия (Башкор-тостан)

108

195

D543N, 3’UTR

3’UTR

Имангулова М.М. и др., 2004

Россия (Тува)

238

263

274С/Т, INT4, 1465-85G/A, D543N,

1465-85G/A

Рудко А.А. и др., 2004

Китай

120

240

INT4, D543N, 3’UTR

D543N, 3’UTR

Liu W. et al., 2004

Способность уничтожать внутриклеточных паразитов зависит от стадии активации макрофагов и приобретается ими под действием цитокинов, в частности, под действием гамма интерферона (IFN-), которые выделяются стимулированными лимфокинпродуцирующими Т-клетками [Ройт А., 1991]. Цитокины представляют собой группу полипептидных медиаторов, участвующих в формировании и регуляции защитных реакций организма. К цитокинам относят интерфероны, колониестимулирующие факторы, интерлейкины, хемокины, трансформирующие ростовые факторы, группа фактора некроза опухолей и некоторые другие. К общим главным свойствам цитокинов, объединяющим их в самостоятельную систему регуляции, относятся: плейотропизм и взаимозаменяемость биологического действия, отсутствие антигенной специфичности действия, саморегуляция продукции и формирование цитокиновой сети. Цитокины в первую очередь регулируют развитие местных защитных реакций в тканях с участием различных типов клеток крови, эндотелия, соединительной ткани и эпителиев. Гиперпродукция цитокинов ведет к развитию системной воспалительной реакции и может служить причиной развития ряда патологических состояний [Симбирцев А.С., 2002].

Мутации генов некоторых цитокинов, играющих важную роль в механизмах иммунологической защиты против микобактерий, а так же мутации генов кодирующих рецепторы к этим интерлейкинам могут играть свою роль в предрасположенности к туберкулезу. Так, генетически измененные мыши («нокауты»), лишенные гена, кодирующего IFN- или рецептор к нему, очень чувствительны к заражению микобактериями [Flynn J. et al., 1993]. Описаны также случаи летальной БЦЖ инфекции у детей с врожденным дефектом экспрессии рецепторов к IFN- [Altare F. еt al., 1998]. Примечательно, что в литературе не встречается описание пациентов с генетическим недостатком IFN-. Вероятно, такие мутации являются фатальными.

Роль макрофагов в противотуберкулезном иммунитете не ограничивается фагоцитозом. Второй основной функцией клеток макрофагального ряда является презентация переработанных микобактериальных антигенов, что необходимо для запуска последующих иммунологических реакций [Покровский В.И. и др., 1979]. Кроме того, макрофаги участвуют в синтезе важнейших медиаторов иммунного ответа при туберкулезе, таких как интерлейкин-1 (ИЛ-1) и др. [Chensue S. et al., 1986]. ИЛ-1 является ключевым элементом в развитии воспаления, биологический эффект которого опосредуется через специфические клеточные рецепторные комплексы. Регуляция действия данного цитокина осуществляется посредством рецепторного антагониста интерлейкина-1, который конкурентно взаимодействует с рецептором к ИЛ-1 и, таким образом, ингибирует провоспалительный эффект [Tarlow J.K. et al., 1993].

S. Chensue и соавторы (1986) считают, что продукция интерлейкина-1 мононуклеарными клетками периферической крови больных является специфическим индикатором активности процесса, более выраженным, чем показатели СОЭ или С-реактивного белка, и предлагают использовать этот показатель для диагностики активного туберкулеза и контроля за эффективностью лечения больных.

В одной из работ была исследована in vitro способность макрофагов синтезировать интерлейкин-1 в ответ на воздействие синтетического активатора макрофагов мурамилдипептида у больных туберкулезом и здоровых доноров. Обнаружено, что макрофаги больных отличает пониженная способность секретировать этот цитокин [Селедцова Г.В. и др., 1991]. Причем при фиброзно–кавернозной форме туберкулеза наблюдалось более выраженное снижение продукции ИЛ-1, чем при инфильтративном туберкулезе [Хонина Н.А. и др., 2000] В настоящее время многие цитокины, в том числе и интерлейкин-1, применяются в клинической практике в виде лекарственных препаратов. Была изучена эффективность лечения больных туберкулезом с применением в комплексной терапии рекомбинантного ИЛ-1. Наблюдения показали, что использование препарата беталейкина повышает эффективность лечения по закрытию полостей распада, уменьшению и фрагментации специфических фокусов, степени выраженности остаточных изменений [Скворцова Л.А. и др., 2003].

Возможно, неспособность макрофагов активироваться для продукции ИЛ-1 под влиянием стимула связана с мутацией в гене, кодирующем этот цитокин. Было показано, что ген, кодирующий интерлейкин-1IL1B находится на хромосоме 2q14, а недалеко от этого гена на участке 2q14.2 расположен ген рецепторного антагониста ИЛ-1IL1RN  [Patterson D. et al., 1993; Nicklin M.J.H. et al., 1994]. Известны два биаллельных полиморфизма в гене ILв позициях – 511 и +3953 [Giovine F.S. et al., 1993; Pociot F. et al., 1992]. Так же описан VNTR полиморфизм во втором интроне гена IL1RN, обусловленный тандемным повтором участка из 86 п.о. от 2 до 6 раз. Пяти аллелям VNTR полиморфизма в зависимости от частоты встречаемости были присвоены следующие названия: самый частый аллель – А1 (четыре повтора), второй по частоте аллель А2 (два повтора), А3 (пять повторов), А4 (три повтора), А5 (шесть повторов) [Tarlow J.K. et al., 1993].

Анализ полиморфизма кластера генов  интерлейкина-1 (IL1A, IL1B, IL1RN) у африканцев показал взаимосвязь IL1A, IL1RN с чувствительностью к туберкулезу. Так, гетерозиготы по аллелю 2 VNTR полиморфизма гена IL1RN статистически значимо реже встречались среди больных туберкулезом, чем в контрольной группе. Однако авторы отмечают отсутствие влияния полиморфизма IL1B на подверженность туберкулезу [Bellamy R., Ruwende C., 1998]. В другом исследовании не было найдено различий в частотах генотипов IL1RN между выборками больных легочным туберкулезом и контрольной [Selvaraj P. et al., 2000].

Wilkinson R.J. и соавторы (1999) не обнаружили различий в частотах генотипов полиморфизма генов IL1B и IL1RN в группах больных туберкулезом и здоровых индивидов. Между тем было показано, что стимулированная in vitro микобактериями туберкулеза секреция IL-1RN у IL-1RNА2 индивидов выше, чем у IL1RNА2- индивидов. Таким образом, с аллелем 2 (2 повтора) VNTR полиморфизма связано повышение продукции IL1RN. В исследовании было описано влияние полиморфизма +3953А1/А2 IL1B на экспрессию продукта гена. В дополнение к этому авторы обнаружили ассоциацию IL1RNА2-/IL1B(+3953)А1+ гаплотипа с низкой экспрессией IL1RN и повышенным уровнем IL-1, что проявляется в провоспалительном фенотипе [Wilkinson R.J. et al., 1999].

Ген, кодирующий интерлейкин-12β (IL12В) также можно рассматривать в качестве кандидата при развитии туберкулезной инфекции, так как продукт данного гена играет ключевую роль в клеточном иммунном ответе [Тотолян А.А., Фрейдлин И.С., 2000]. Brightbill H. D. и соавторы (1999) продемонстрировали, что бактериальные лиганды (липопротеины) стимулируют выработку IL-12 макрофагами человека посредством активации Toll-like рецепторов на поверхности макрофага. Интерлейкин -12 связывается с 1 и 2 комплексом рецептора к IL-12 на поверхности Т-хелперов и других клеток-киллеров. В свою очередь, Т-хелперы продуцируют IFN-, который связывается с R1/R2 комплексом рецептора к IFN- на поверхности макрофагов и активирует их. Активированные макрофаги устремляются к месту нахождения микобактерий и активно их поглощают [Rook G. A. W. et al., 1985]. Таким образом, гибель микобактерий внутри макрофага осуществляется в результате сложных, опосредованных цитокинами, взаимодействий лимфоцитов и фагоцитов.

Интерлейкин 12 имеет 2 цепи, массой 35 kD (р35), кодируемая IL12А и массой 40 kD (р40), кодируемая IL12В. Тогда как IL12р40 главным образом взаимодействует с рецептором IL121 на поверхности Т-хелпера, IL12р35 в первую очередь сцепляется с IL122. Используя иммунопреципитацию, Oppmann B. и соавторы (2000) определили, что IL12В и р19 формируют растворимый комплекс, который они назвали IL23. Анализ установил, что IL23, подобно IL12, связывается с рецептором IL121. Не так давно были выявлены  цитокины IL18 и IL29 имеющие сходство в функции с IL12 и IL23.

 Ген NKSF2 (от англ. Natural Killer Cell Stimulatory Factor 2 – альтернативное название IL12) был картирован в дистальной области длинного плеча 5 хромосомы [Warrington J.A. et al., 1992]. В дальнейшем при помощи ПЦР анализа ДНК клеток гибридов был определен участок на хромосоме 5q31-33, где локализован IL12В [Sieburth D. et al., 1992]. J. A Warrington. и U Bengtsson. (1994) используя методы физического картирования, определили порядок расположения и относительное расстояние между 12 генами в 5q31-33 регионе. Ген IL12В был одним из них.

Группа исследователей картировала ген IL12в на 11 хромосоме мыши [Noben-Trauth N. et al., 1996]. Используя модель животного, были получены экспериментальные данные о роли гена IL12В в защите от туберкулезной инфекции. Элиминация функции IL12в у «нокаутированных» мышей (IL12р40-/-) при условии их инфицирования вирулентным штаммом М. tuberculosis приводила к распространенной туберкулезной инфекции и гибели животного. Однако мыши с генотипом IL12р35-/- не проявляли повышенной чувствительности к туберкулезу. Данное наблюдение наводит на мысль о значительной роли субъединицы р40 интерлейкина-12 в развитии резистентности к туберкулезу [Cooper A. M. et al., 2002].

Генетический дефицит IL12 или IL12R приводит к частичной или полной недостаточности выработки IFN-. Как правило, вакцина BCG и непатогенные микобактерии не вызывают у человека заболевания, однако известны случаи, когда они приводили к развитию тяжелой распространенной инфекции. Так было описано несколько пациентов с генетическим дефектом выработки IL12р40 и IL12р70 (комплекс судъединиц р40 и р70), большинство из которых страдали от диссеминированной инфекции М. bovis BCG. Недавно был обнаружен мононуклеотидный полиморфизм гена IL12В в 3`-UTR, обусловленный заменой А на С [Cervino A.C.L. et al., 2000]. Эта информация дает возможность оценить роль изменчивости гена IL12В в формировании полигенной подверженности к туберкулезу.

Если рассмотреть патогенез туберкулеза, возникает множество привлекательных кандидатов на роль «причинного» гена. Одним из таких генов, предположительно влияющих на исход отношений между человеком и микобактерией, является ген рецептора к витамину Д (VDR) [Uitterlinden A.G. et al., 2004]. Витамин Д – это группа родственных стероидов, одним из важнейших среди которых является так называемый Д3 (холекальциферол). Главный эффект активированного  витамина Д3 (1,25(ОН)2Д3) или кальцитриола – стимуляция активной адсорбции кальция и фосфата из кишечника. К тому же кальцитриол оказывает влияние на клетки крови – модулирует пролиферацию и дифференциацию лимфоцитов, а также способствует конверсии циркулирующих моноцитов в макрофаги [Rigby W. F., 1988; Bellamy R., Hill A. V. S., 1998].

Активизированные макрофаги в свою очередь также способны к образованию кальцитриола. При туберкулезе этот локально продуцируемый кальцитриол может активизировать «проглатывание» и элиминацию МБТ макрофагами и минимизировать тканевую деструкцию [Davies P.D.O., 1985; Cadranel J. et al., 1988]. Исследования in vitro показали, что метаболиты витамина Д могут усиливать способность моноцитов человека ограничивать размножение внутриклеточно расположенных микобактерий туберкулеза. В то время как добавление одного рекомбинантного человеческого IFN- к пулированным моноцитам человека не оказывало влияния на их туберкулостатическую активность, введение в данную систему дополнительно кальцитриола приводило к полной остановке роста микобактерий [Rook G.A.W. et al., 1986; Denis M., 1991].

Все перечисленные эффекты холекальциферола осуществляются посредством специальных рецепторов, которые присутствуют во многих клетках и органах, в том числе  в лимфоцитах периферической крови и моноцитах [Griffin M.D. et al., 2003]. Такая широкая распространенность рецепторов к витамину Д говорит о том, что данный стероид и его метаболиты регулируют деятельность многих систем организма.

Локализация гена кодирующего рецептор к витамину Д определена у человека на хромосоме 12q12-q14 [Labuda M., 1991]. Известны его полиморфные варианты, наиболее часто из которых исследуются три полиморфизма: F/f, T/t, B/b. Обозначение и название этих полиморфных маркеров произошло от первых букв рестриктаз, используемых для их детекции в ПДРФ-анализе (FokI, TagI, BsmI).

Результаты исследования, проведенного в Западной Африке (Гамбия) методом случай – контроль, выявили статистически значимую ассоциацию tt генотипа VDR гена с резистентностью к легочному туберкулезу [Bellamy R., 2000]. Подобная работа была проведена в Китае, результаты которой показали наличие ассоциации ff генотипа VDR гена с подверженностью к ТБ [Liu W. et al., 2004].

Однако в популяции Перу статистически значимой ассоциации различных полиморфизмов гена VDR с туберкулезом найдено не было [Roth D. E. еt al., 2004]. В другом исследовании было показано, что большую роль в предрасположенности к ТБ играют гаплотипы гена VDR [Bornman L. et al., 2004]. В Лондоне была проведена работа, в результате которой исследователи определили наличие связи между дефицитом холекальциферола в организме человека и активным туберкулезом. Наряду с этим, авторы продемонстрировали отрицательное влияние комбинации генотипов ТТ и Tt,  а так же генотипа ff с недостатком витамина Д на резистентность к ТБ [Wilkinson R.J. et al., 2000].

В другом исследовании было показано, что генотип tt VDR  гена ассоциирован с подверженностью к легочному туберкулезу у женщин, а, в свою очередь, ТТ генотип – с резистентностью  к ТБ у женщин [Selvaraj P. et al., 2000]. Таким образом, витамин Д, действуя через рецепторы и модулируя функцию макрофагов, может повышать противотуберкулезную защиту человека. Данное утверждение отчасти объясняет тот факт, что заболеваемость туберкулезом выше в течение холодных сезонов года, когда кожный синтез кальцитриола от экспозиции солнца понижен и серологический уровень витамина Д более низкий [Chan T.Y., 2000].

Однако известно, что действие продукта экспрессии гена рецептора витамина D оказывает умеренное влияние на полную чувствительность к туберкулезу [Hill A.V.S., 2001]. К тому же, роль кальцитриола в антибактериальном иммунитете не однозначна, поскольку он наряду с активизацией макрофагов проявляет такие эффекты, как угнетение пролиферации лимфоцитов, снижение продукции иммуноглобулина и синтеза цитокинов [Bellamy R., Hill A.V.S., 1998; Wilkinson R. J. et al., 2000].

В целом, можно отметить, что в настоящее время имеется достаточно разрозненная информация о генетических основах подверженности к туберкулезу, а так же, видимо, общее количество генов, в той или иной мере влияющих на развитие этого инфекционного заболевания, гораздо выше. Таким образом, поиск новых генов-кандидатов туберкулеза, а так же изучение полиморфизма известных генов-кандидатов в популяциях различного этнического состава  и их вклада в общую подверженность к заболеванию представляется на сегодняшний день важной задачей, решение которой позволит определить новые подходы к более эффективному лечению и профилактике ТБ.

ГЛАВА 2. МАТЕРИАЛ  И  МЕТОДЫ  ИССЛЕДОВАНИЯ

2.1. Обследованные группы населения

Настоящее исследование включало три аспекта: анализ популяционной распространенности полиморфизма генов NRAMP1, VDR, IL1B, IL1RN и IL12В, оценку их патогенетической значимости в отношении туберкулеза, а также влияние исследуемых генов на патогенетически важные параметры заболевания. В соответствии с этим, первую часть работы выполнили на материале популяционной выборки здоровых жителей г. Томска (140 человек). Вторая и третья часть исследования проведена на материале выборки больных туберкулезом (304 человека) и их семей (42 семьи, 109 человек), живущих в г. Томске и Томской области.

Работа выполнена на базе ГОУ ВПО Сибирский государственный медицинский университет Росздрава и ГУ НИИ медицинской генетики ТНЦ СО РАМН.  Набор материала для исследования осуществлялся в Областной Томской клинической туберкулезной больнице, Детском легочно-туберкулезном отделении Железнодорожной больницы, Областной детской туберкулезной больнице, а также Областном противотуберкулезном диспансере, в соответствии с этическими нормами с обязательным получением согласия испытуемых.

2.1.1. Характеристика контрольной выборки

В качестве контрольной группы использовалась популяционная выборка, сформированная для настоящего исследования на основе ДНК–банка ГУ НИИ медицинской генетики ТНЦ СО РАМН. Все лица, вошедшие в эту группу, были русскими. Основным критерием отбора образцов было отсутствие родства между индивидами. В данную выборку вошли индивиды никогда не болевшие туберкулезом по анамнестическим данным (140 человек), средний возраст которых составил 61,819,4 лет. Частично ее составили индивиды (118 человек) не родственные между собой и не имеющие по результатам клинического и параклинического обследования легочной патологии. Остальная часть контрольной группы (22 человека) включала пациентов, которым первоначально ошибочно был выставлен диагноз туберкулеза, но затем при более детальном обследовании данное заболевание было исключено. Таким образом, этих индивидов можно считать здоровыми от ТБ.

2.1.2. Характеристика выборки больных туберкулезом

Исследованная выборка больных туберкулезом была сформирована из индивидов, не родственных между собой. Выборка была однородной как по расовой принадлежности, так и по этническому происхождению, средний возраст составил 30,615,4 года. Все пациенты были русскими; женщин – 99 (32,6%), средний возраст которых составил 26,3 14,6 года, мужчин –205 (67,4%), средний возраст – 32,8 15,4 лет.  

Диагноз туберкулеза легких устанавливался на основании данных микроскопии мокроты с обязательным рентгенологическим исследованием легких для определения формы заболевания и распространенности специфического процесса (общепринятые методы). Обследованные пациенты имели следующие клинические формы туберкулеза: у 43 человек был диагностирован первичный туберкулез (у 35 – туберкулез внутригрудных лимфоузлов, у 3 – первичный туберкулезный комплекс, у 2 – плеврит туберкулезной этиологии первичного периода, у 2 – гематогенно-диссеминированный туберкулез легких), 150 пациентам был поставлен диагноз инфильтративного туберкулеза легких, 65 – диссеминированный туберкулез легких, 27 пациентам – очаговый туберкулез, у пятерых обследованных индивидов развилась казеозная пневмония, у 4 – фиброзно–кавернозный туберкулез легких, такому же количеству больных был выставлен диагноз туберкуломы легких, 3 пациентам – туберкулез почек, 2 – туберкулез бронха, 1 – плеврит туберкулезной этиологии.

2.1.3. Характеристика семейной выборки пробандов, больных туберкулезом

Исследованная семейная выборка была зарегистрирована по пробандам – больным туберкулезом, находившихся на лечении в противотуберкулезных учреждениях г. Томска в период с 2000 по 2004 г. Всего было обследовано 42 семьи (109 человек), в том числе 25, зарегистрированных по пробандам – детям в возрасте от 1 года до 15 лет. Семнадцать семей  было выбрано по взрослым пробандам в возрасте от 17 до 48 лет (табл. 3).

Таблица 3

Структура семейного материала выборки изученной по полиморфным ДНК-маркерам генов NRAMP1, VDR, IL1B, IL12B, IL1RN

Выборка

Количество детей в семье

Всего

1

2

3

4

5

Полные семьи (изучены оба родителя и дети)

19(57)

0

0

0

1(7)

20(64)

Неполные семьи (изучен один родитель и дети)

16(32)

1(3)

0

0

0

17(35)

Нет данных о родителях

0

5(10)

0

0

0

5(10)

Примечание. В скобках указано количество индивидов.

Часть пробандов–детей составили мальчики (n=10), а девочек было в 1,5 раза больше (n=15). Средний возраст пробандов–детей разного пола достоверно не различался (7,2 года у мальчиков и 7,5 лет у девочек). Среди взрослых пробандов было 7 женщин (средний возраст – 19,8 лет) и 10 мужчин (средний возраст – 23,9 лет). Всем пробандам был поставлен диагноз туберкулеза, причем первичный и вторичный генез заболевания встречался с одинаковой частотой. Среди обследованных родственников пробандов первой степени родства было 28 лиц мужского пола, из них 8 человек болели туберкулезом, и  39 -женского, из них с туберкулезом  14.

2.2. Методы исследования

2.2.1. Клинико-лабораторные методы исследования

Клинико – эпидемиологический анализ больных туберкулезом включал: возраст начала заболевания, социальную категорию, вредные привычки (курение, злоупотребление алкоголем, употребление наркотиков), сопутствующую патологию, наличие контакта с туберкулезным больным, а также данные о туберкулезе у родственников больного. Анализу подвергались выраженность клинических проявлений (жалобы, объективный статус больного), результаты лабораторных и инструментальных методов исследования (микроскопия и посев мокроты на МБТ, чувствительность к противотуберкулезным препаратам, рентгенологическое исследование легких, общий анализ крови) на момент начала заболевания.

Для решения задачи по оптимизации и стандартизации сбора информации о больном ТБ была разработана специальная карта «Унифицированный носитель информации», содержащая блоки, охватывающие сведения о жалобах больного, эпидемиологическом анамнезе, анамнезе заболевания, объективном статусе, результатах лабораторного и инструментального обследования. В дальнейшем на основании сведений из этих карт была создана электронная база данных в формате Microsoft Excel.

2.2.2. Молекулярно – генетические методы анализа полиморфизма генов

Всего было изучено 9 полиморфных вариантов пяти генов – кандидатов подверженности туберкулезу. Исследовали 4 полиморфных варианта гена NRAMP1: 469+14G/C (INT4) – трансверсия гуанина на цитозин в 4 интроне, С274Т – консервативная замена в 3 экзоне, 1465-85 G/A – транзиция в 13 интроне и D543N – неконсервативная замена цитозина на аденин в 15 экзоне; два полиморфизма VDR гена: B/b, F/f; полиморфный вариант IL1B гена в 5 экзоне +3953А1/А2; VNTR полиморфизм гена IL1RN, расположенный во 2 интроне. Также выборки генотипировали по полиморфизму гена IL12В, обусловленному трансверсией аденина на цитозин в 3`-UTR области (табл. 4) .

Для генотипирования индивидов по указанным полиморфизмам использовали образцы тотальной ДНК, выделенной из цельной венозной крови по стандартной неэнзиматической методике [Маниатис Т. и др., 1984; Lahiri D. et al., 1992]. Выделенную ДНК замораживали и хранили при температуре -20 С до проведения эксперимента. Генотипирование осуществляли с помощью полимеразной цепной реакции (ПЦР), используя структуру праймеров и параметры температурных циклов, описанных в литературе (табл.5).

Смесь для ПЦР содержала 0,5-2,0 мкл специфической пары праймеров с концентрацией 1 о.е./мл, 1,2-1,8 мкл 10 буфера для амплификации с концентрацией MgCl2 0,5-2,0 mM, 0,5-1,0 е. а. Taq ДНК-полимеразы («Сибэнзим», «Медиген», Новосибирск) и 100-200 нг геномной ДНК. Смесь помещали в 0,5 мл пробирки типа «Эппендорф», наслаивали сверху минеральное масло для предотвращения испарения и амплифицировали в автоматических минициклерах «MJ Rеsearch» (США) и «БИС 108» (Россия-Новосибирск).

Программа амплификации включала предварительную денатурацию при 94С в течении 5 минут, с последующими 30-35 циклами отжига при температуре 60С (1мин.), элонгации цепи при 72С (40 сек.) и денатурации при 94С (40 сек.). Программу завершала финальная элонгация при 72С в течение 3 минут. Амплификат подвергали гидролизу соответствующей рестриктазой (табл.5) при оптимальной для фермента температуре в течении 12-24 ч. Рестрикционная смесь включала 5-7 мкл амплификата, 1,0-1,2 мкл 10 буфера для рестрикции, поставляемого фирмой – производителем («Сибэнзим», Новосибирск), и 1-5 единиц активности фермента (в зависимости от эффективности его работы). Продукты рестрикции фракционировали в 3% агарозном геле при напряжении 120 В в течении 30 минут. Фрагменты ДНК окрашивали бромистым этидием и визуализировали в ультрафиолетовом свете.

Таблица 4

Структура материала популяционных выборок г. Томска и Томской области, изученных по полиморфным ДНК-маркерам генов

NRAMP1, VDR, IL1B, IL12B, IL1RN

Ген

Полиморфизм

Выборка больных туберкулезом

Выборка здоровых индивидов

NRAMP1

469+14G/C

279

137

D543N

278

139

1465-85G/A

279

135

274C/T

299

116

IL12B

1188А/С

279

129

VDR

B/b

293

108

F/f

298

113

IL1B

+3953A1/A2

301

139

IL1RN

VNTR

299

140


                                                                                                                                                                                      Таблица 5

Характеристики исследованных полиморфизмов

Ген

Полимор-физм

Структура праймеров

tо

отжига прай-меров, оС

Фермент рестрик-ции

Продукты гидролиза,

п. н.

Литерату-ра

Аллель «дикого» типа

Мутантный аллель

1

2

3

4

5

6

7

8

NRAMP1

274C/T

5’-tgccaccatccctatacccag –3’

5’-tctcgaaagtgtcccactcag –3’

60

Mnl I

167;37;12 bp

102;65;37;

12 bp

Liu J. et al., 1995

469+14

G/C

5’-tctctggctgaaggctctcc –3’

5’-tgtgctatcagttgagcctc – 3’

60

Apa I

624 bp

455;169 bp

1465-85G/A

5’-gcaagttgaggagccaagac –3’

5’-acctgcatcaactcctcttc –3’

60

Bsе 1I

142;75;24

bp

102;75;40;

24 bp

D543N

5’-gcatctccccaattcatggt –3’

5’-aactgtcccactctatcctg –3’

60

Bme 18I

126;79;39 bp

201;39 bp

IL12

A1188C

5’-ttctatctgatttgcttta –3’

5’-tgaaacattccatacatcc –3’

43

Taq I

233 bp

165;68 bp

Hall M. A. еt al., 2000

                                                                                                                                                              Продолжение таблицы 5

1

2

3

4

5

6

7

8

VDR

B/b

5’-aacttgcatgaggaggagcatgtc-3’

5’-ggagaggagcctctgtcccatttg-3’

60

Pct I

813 bp

505;308 bp

Wilkinson R.J. et al., 2000

F/f

5’-agctggccctggcactgactctgctct-3’

5’-atggaaacaccttgcttcttctccctc-3’

60

Fok I

267 bp

197;70 bp

IL1B

+3953

A1/A2

5’-gttgtcatcagactttgacc-3’

5’-ttcagttcatatggaccaga-3’

58

Taq I

220 bp

148; 72 bp

Wilkinson R.J. et al., 1999

IL1RN

VNTR

5’-tcctggtctgcaggtaa-3’

5’-ctcagcaacactcctat-3’

60

А1-410 п.о. (4 повтора)

А2-240 п.о. (2 повтора)

А3-500 п.о. (5 повторов)

А4-325 п.о. (3 повтора)

А5-595 п.о. (6 повторов)

Tarlow J.K. et al., 1993


2.2.3. Генетико – статистические методы анализа

Распределение генотипов по исследованным полиморфным локусам проверяли на соответствие равновесию Харди-Вайнберга (РХВ) с помощью точного теста Фишера [Вейр Б., 1995]. Рассчитывали ожидаемую гетерозиготность полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN [Nei M., 1975]. Относительное отклонение ожидаемой гетерозиготности от наблюдаемой (D) рассчитывали по формуле:

D=(hobshexp)/hexp,

где hobs и hexp – ожидаемая и наблюдаемая гетерозиготность соответственно.

Для анализа ассоциации маркеров исследуемых генов с туберкулезом, а также с качественными патогенетически важными признаками заболевания, сравнивали частоты аллелей и генотипов в группах больных и здоровых индивидов, используя критерий χ2 с поправкой Йетса на непрерывность. При численностях генотипов менее пяти использовали точный тест Фишера. В дополнение к этому об ассоциации разных генотипов (или их комбинаций) с заболеванием судили по величине отношения шансов (odds ratio (OR)), которая показывает, во сколько раз выше вероятность заболеть для индивида с определенным генотипом (или комбинацией генотипов) [Pearce N., 1993].

OR= (A/B)/(C/D), где

А – число (процент) людей с данным генотипом (комбинацией генотипов) в группе больных;

С - число (процент) людей с данным генотипом (комбинацией генотипов) в группе здоровых;

В – число (процент) индивидов, не имеющих данного генотипа (комбинации генотипов) в группе больных;

D - число (процент) индивидов, не имеющих данного генотипа (комбинации генотипов) в группе здоровых.

Значения OR>1 указывают на возможную положительную ассоциацию с заболеванием. Обсуждение величин OR проводили при уровне значимости не более 5%.

На материале семейной выборки больных изучение ассоциаций полиморфизма исследованных генов с туберкулезом проводили с использованием теста на неравновесие при переносе (Transmission/Disequilibrium Test, TDT), который в случае диаллельного маркерного локуса М  сводится  к  анализу  таблицы сопряженности 22, где в ячейках матрицы суммированы случаи  наследования и не наследования от родителей больными детьми маркерных аллелей [Spielman R. S. et al., 1993].

 a – число случаев наследования аллеля М1 от родителей М1М1;

 b – число случаев наследования аллеля М1 от родителей М1М2;

 c – число случаев наследования аллеля М2 от родителей М1М2;

 d – число случаев наследования аллеля М2 от родителей М2М2;

Используются данные только от гетерозиготных родителей. Статистика теста рассчитывается по формуле:

TDT=(b-c)2/(b+c)

и в случае верной нулевой гипотезы (Н0: нет ассоциации) асимптотически распределена как χ2 с 1 степенью свободы.

С целью выявления ассоциации маркеров исследуемых генов с количественными, патогенетически важными признаками туберкулеза, проводили сравнение средних значений уровней метрических показателей у носителей разных генотипов с помощью однофакторного дисперсионного анализа по Фишеру и теста LSD. При наличии зависимости признака от пола показатели анализировались отдельно в группе мужчин и женщин. В случае влияния возраста на количественный параметр проводилась его корректировка, которая осуществлялась с помощью уровня линейной регрессии и рассчитывалась по формуле [Лильин Е.Т. и др., 1984]:

y=x+b(t0  -t), 

где y – коррегированное значение исходной величины (х) признака;

     t – возраст индивида

     t0 – определенный возраст, к которому приводятся все значения;

     b – коэффициент линейной регрессии признака по возрасту, который рассчитывается по формуле:

b=rxt/st2

где rxtкоэффициент корреляции признака с возрастом;

     st  - стандартное отклонение возраста в выборке.

Проверку на нормальность распределений осуществляли с помощью критерия Колмогорова-Смирнова и Лилифорса. В случае неравных дисперсий использовали непараметрические тесты Манна-Уитни, Краскела-Уоллиса и медианный тест [Лакин Г.Ф., 1990]. Сравнение дисперсий проводили по критерию Левене.

Расчеты гаметического неравновесия между парами молекулярно-генетических маркеров проводили по Hill W. G. (1974). Все расчеты осуществляли с помощью программ «STATISTICA for Windows 6.0» и «Microsoft Excel 7.0».

ГЛАВА 3. РЕЗУЛЬТАТЫ   И   ОБСУЖДЕНИЕ

Учитывая поставленные задачи, исследование включало три аспекта: изучение популяционной распространенности полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN, анализ связи исследованных генов с туберкулезом и поиск ассоциаций с патогенетически важными параметрами заболевания у русских жителей г. Томска. К настоящему времени получены результаты исследования аллельных вариантов генов подверженности к ТБ у тувинцев, выполненного по аналогичной схеме и с использованием того же набора полиморфизма генов [Рудко А.А. и др., 2003]. Это дало возможность провести сравнение полученных результатов между русскими жителями г. Томска и тувинцами.

3.1. Распространенность полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN среди здоровых лиц (контрольная группа)

В настоящее время во многих популяциях мира достаточно широко исследованы полиморфные варианты гена NRAMP1, и в меньшей степени изучена распространенность аллелей генов VDR, IL12B, IL1B, IL1RN  [Рудко А.А. и др., 2003; Имангулова М.М. и др., 2004; Bellamy R. et al., 1998; Ryu S. et al., 2000; Cervino A.C.L. et al.,  2000;. Gao P. S., 2000; Baghdadi J. et al., 2004; Liu W. et al., 2004;]. Результаты исследований показали, что полиморфизм этих генов вносит вклад в возникновение туберкулеза.

Однако известно, что восприимчивость к инфекционному заболеванию определяется одновременно многими генами с различным вкладом каждого из них в формирование того или иного патологического фенотипа. К тому же, один и тот же ген может участвовать в формировании чувствительности (или резистентности) к нескольким инфекционным заболеваниям. Вероятно, для каждого гена (и их ансамблей) существует свое «поле действия», которое модифицируется средой [Пузырев В.П., 2000]. Сочетания генов предрасположенности к болезни могут быть неодинаковы в популяциях, обусловливая различия в подверженности к заболеванию у разных народов. В связи с этим  перспективным направлением исследований генетических основ предрасположенности к туберкулезу является изучение вкладов конкретных сочетаний аллелей в подверженность к болезни в различающихся как по расовой, так и по этнической принадлежности популяциях.

У здоровых жителей г. Томска распределение генотипов по всем изученным полиморфным вариантам гена NRAMP1 (469+14G/C, D543N, 1465-85 G/A, 274 C/T), VDR  (B/b, F/f), а также генов интерлейкинов (полиморфизм 1188A/C гена IL12B, полиморфизм +3953 A1/A2 гена IL1B) соответствовало ожидаемому при равновесии Харди-Вайнберга (РХВ), причем для большинства полиморфизмов наблюдаемая гетерозиготность (Hobs) превышала ожидаемую (Hexp) (табл.6). Лишь для частот генотипов VNTR полиморфизма гена IL1RN показано отклонение от ожидаемых при РХВ (χ2=16,75 р=0,010). При этом наблюдаемое количество гомозигот А2А2 превышало ожидаемое в 2,5 раза, а уровень гетерозиготности был меньше ожидаемого (D= –0,280). Возможно, этот факт объясняется тем, что анализируемая популяционная группа индивидов была выбрана не случайным образом  из общей популяции, а  включала только здоровых в отношении туберкулезной инфекции.

Сравнение распространенности полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN  у здоровых от туберкулеза русских и тувинцев показало статистически значимые отличия между этими этническими группами, которые имели место в распределении, как частот аллелей, так и генотипов по большинству изученных генов (табл. 7). Максимальные отличия между сравниваемыми этническими группами выявлены для полиморфизма B/b гена VDR, VNTR полиморфизма гена IL1RN и 1188А/С гена IL12B.  

Таблица 6

Частоты аллелей и генотипов исследованных генов у здоровых жителей

г. Томска

Ген

Поли-морфизм

Гено-типы

N.O.

N.E.

Частота аллеля

χ2

(df)

Hobs

Hexp

D

NRAMP1

469+14

G/C

GG

GC

CC

97

38

2

98,22

35,56

3,22

G=

0,847

0,44

(1)

0,277

0,260

+0,069

D543N

DD

DN

NN

127

12

0

127,26

11,48

0,26

D=

0,957

0,01 (1)

0,086

0,083

+0,045

1465-85

G/A

GG

GA

AA

73

47

15

68,98

55,04

10,98

G=

0,715

2,60 (1)

0,348

0,408

-0,146

274C/T

CC

CT

TT

80

34

2

81,11

31,78

3,11

C=

0,836

0,37

(1)

0,293

0,274

+0,070

IL12B

1188

A/C

AA

AC

CC

85

43

1

87,92

37,15

3,92

A=

0,826

2,75

(1)

0,333

0,288

+0,157

VDR

B/b

BB

Bb

bb

19

63

26

23,61

53,77

30,61

b=

0,532

2,93

(1)

0,583

0,498

+0,172

F/f

FF

Ff

ff

42

54

17

42,13

53,73

17,13

F=

0,611

0,00

(1)

0,478

0,476

+0,005

IL1B

+3953

A1/A2

A1A1

A1A2

A2A2

90

44

5

90,24

43,51

5,24

A1=

0,806

0,00

(1)

0,317

0,313

+0,011

IL1RN

VNTR

A1A1

A1A2

A1A3

A1A4

A2A2

другие

93

27

4

3

12

1

86,49

40,94

3,96

2,20

4,84

1,57

A1=

0,786

A2=

0,186

A3=

0,018

16,8*

(6)

0,250

0,347

-0,280

Примечание. N.O. и N.E. – наблюдаемая и ожидаемая численности генотипов соответственно; χ2 – критерий для сравнения ожидаемого и наблюдаемого распределения генотипов; d.f. – число степеней свободы; Hobs и Hexp – соответственно наблюдаемая и ожидаемая гетерозиготность; D – относительное отклонение наблюдаемой гетерозиготности от ожидаемой; * – p < 0,05

Таблица 7

Частоты аллелей и генотипов исследованных генов у русских жителей  

г. Томска и тувинцев  

Ген

Полимор-физм

Генотип / аллель

Русские

N (%)

Тувинцы

N (%)

p

1

2

3

4

5

6

NRAMP1

469+14 G/C

GG

GC

CC

97 (70,8)

38 (27,7)

2 (1,5)

224 (85,2)

36 (13,7)

3 (1,1)

0,002

G

0,847

0,920

0,002

D543N

DD

DN

NN

127 (91,4)

12 (8,6)

0 (0)

198 (75,3)

57 (21,7)

8 (3)

0,000

D

0,957

0,861

0,000

1465-85 G/A

GG

GA

AA

73 (54,1)

47 (34,8)

15 (11,1)

162 (61,6)

88 (33,5)

13 (4,9)

0,057

G

0,715

0,783

0,040

274 C/T

CC

CT

TT

80 (69)

34 (29,3)

2 (1,7)

207 (78,7)

49 (18,6)

7 (2,7)

0,072

C

0,836

0,880

0,127

IL12B

1188 A/C

AA

AC

CC

85 (65,9)

43 (33,3)

1 (0,8)

104 (39,5)

119 (45,3)

40 (15,2)

0,000

A

0,826

0,622

0,000

VDR

B/b

BB

Bb

bb

19 (17,6)

63 (58,3)

26 (24,1)

2 (0,8)

88 (33,5)

173 (65,7)

0,000

b

0,532

0,825

0,000

F/f

FF

Ff

ff

42 (37,2)

54 (47,8)

17 (15)

148 (56,3)

98 (37,3)

17 (6,4)

0,001

F

0,611

0,749

0,000

IL1B

+3953 A1/A2

A1A1

A1A2

A2A2

90 (64,7)

44 (31,7)

5 (3,6)

197 (74,9)

61 (23,2)

5 (1,9)

0,086

A1

0,806

0,865

0,035

 

Продолжение таблицы 7

1

2

3

4

5

6

IL1RN

VNTR

A1A1

A1A2

A2A2

другие

93 (66,4)

27 (19,3)

12 (8,6)

8 (5,7)

190 (72,5)

31 (11,8)

1 (0,4)

40 (15,3)

0,000

A1

A2

A3

0,786

0,186

0,018

0,849

0,069

0,013

0,000

Примечание. N – численность лиц с соответствующими генотипами; р – достигнутый уровень значимости

 

У русских г. Томска по сравнению с тувинцами аллели b гена VDR и А1 гена IL1RN встречались реже, а аллель 1188А гена IL12B – чаще. Кроме того, рассматриваемые популяционные группы статистически значимо различались по частотам аллелей и генотипов полиморфизмов 469-14G/C, D543N гена NRAMP1 и F/f гена VDR. Так, у русских чаще, чем у тувинцев наблюдали аллель 543D и реже аллель 469+14G гена NRAMP1. Индивиды, гомозиготы и гетерозиготы по аллелю f гена VDR, чаще встречались среди жителей г. Томска. Распределение генотипов полиморфизма 1465-85G/A гена NRAMP1 и +3953A1/A2 гена IL1B в исследованных популяционных группах не отличалось, однако частоты аллелей этих полиморфизмов были статистически значимо ниже у русских. Лишь для варианта 274С/Т гена NRAMP1 не найдено отличий по частотам аллелей и генотипов у русских и тувинцев.

К настоящему времени накоплены результаты многочисленных исследований роли генов-кандидатов туберкулеза в патогенезе заболевания у представителей различных этнических групп. Это позволило провести сравнительный анализ частот генотипов между русскими г. Томска и другими изученными популяциями мира. Найдены статистически значимые отличия русских от других этносов по частотам аллелей генов NRAMP1, VDR, IL12B (табл. 8).

Частота аллеля 469+14G NRAMP1 у жителей г. Томска оказалась статистически значимо ниже, чем у африканцев из Гамбии, но выше, чем у китайцев [Bellamy R. et al., 1998; Liu W. et al., 2004]. Самым широко исследованным полиморфизмом гена NRAMP1 оказался D543N. Во все изученных популяциях этот генный маркер был низко полиморфным. Русские отличались по частоте аллелей D543N от коренных жителей Башкирии, у которых аллель 543N вообще не обнаружен [Имангулова М.М. и др., 2004]. При сравнении с другими исследованными популяциями (китайцы, корейцы, японцы, татары, гамбийцы) статистически значимых отличий для этого полиморфного варианта не показано (рис. 2, табл. 8) [Имангулова М.М. и др., 2004; Bellamy R. et al., 1998; Ryu S. et al., 2000; Gao P. S. et al., 2000; Liu W. et al., 2004].

Рис. 2. Частоты аллелей гена NRAMP1 у русских г. Томска и в других популяциях мира (по данным литературы). * – р < 0,05

Таблица 8

Частоты аллелей генов-кандидатов туберкулеза в различных популяциях мира в сравнении с русскими г. Томска

NRAMP1 / 469+14 G/C

Популяции

Китайцы

Гамбийцы

Частота ал.

χ2

(p)

G=0,785

3,83

(0,050)

G=0,934

18,65

(0,000)

NRAMP1 / D543N

Популяции

Китайцы

Корейцы

Японцы

Гамбийцы

Татары

Башкиры

Частота аллеля

χ2

(p)

D=0,981

1,84

(0,175)

D=0,925

2,38

(0,123)

D=0,933

1,30

(0,254)

D=0,948

0,16

(0,690)

D=0,983

0,94

(0,333)

D=1,00

5,57

(0,018)

VDR / F/f

Популяции

Китайцы

Индийцы (Лондон)

Частота аллеля

χ2

(p)

F=0,604

0,01

(0,935)

F=0,806

20,28

(0,000)

IL1B / +3953A1/A2

Популяции

Индийцы (Лондон)

Частота аллеля

χ2

(p)

A1=0,794

0,05

(0,825)

IL1RN / VNTR

Популяции

Индийцы (Лондон)

Частота аллеля

χ2

(p)

A1=0,719 A2=0,241 A3=0,039 A4=0

7,15

(0,067)

IL12B / 1188A/C

Популяции

Англичане

Камерунцы

Греки

Ирландцы

Частота аллеля

χ2

(p)

А=0,835

0,06

(0,812)

А=0,625

18,37

(0,000)

А=0,789

0,98

(0,323)

А=0,802

0,23

(0,629)

Примечание. χ2 – критерий использован для сравнения частот аллелей; р – достигнутый уровень значимости

Рис. 3. Частоты аллелей полиморфизма F/f гена VDR, +3953A1/A2 гена IL1B, VNTR гена IL1RN у русских г. Томска и в других популяциях (по данным литературы). * – р < 0,05

Не показано различий при сравнении частот аллелей полиморфизма F/f гена VDR  у русских г. Томска и китайцев [Liu W. et al., 2004]. Однако при сравнении с индийцами Лондона найдены статистически значимые отличия [Wilkinson R.J. et al., 2000].  В исследованной выборке русских аллель F гена VDR встречался реже (рис. 3, табл. 8).

Для полиморфных вариантов +3953А1/А2 гена IL1B и VNTR гена IL1RN не выявлено отличий частот аллелей у русских и индийцев Лондона. Аллель 1188А гена IL12B у жителей г. Томска встречался чаще, чем у камерунцев (χ2 =18,37 р=0,000). Не выявлено различий в распространенности этого маркера при сравнении с англичанами, ирландцами и греками (рис. 4, табл. 8) [Hall M.A. et al., 2000].

Установленные различия частот аллелей сравниваемых генов между русским населением г. Томска и другими популяциями мира свидетельствуют об этнической специфичности генов-кандидатов подверженности к туберкулезу. Возможно, это является одной из причин дифференциальной распространенности ТБ в этнических группах. Интересными представляются выявленные отличия по частотам аллелей для всех анализируемых маркеров у русских г. Томска при сравнении с жителями Тувы. Кроме того, известно, что по частотом аллелей рассматриваемых генов тувинцы значительно отличались не только от русских, но и от представителей иных популяционных групп [Рудко А.А. и др., 2003]. Вероятно, этот факт обусловлен длительной изоляцией тувинцев от других этносов, что привело к формированию уникального генофонда [Пузырев В.П. и др., 1999].

 

Рис. 4. Частоты аллелей полиморфизма 1188А/С гена IL12B у русских г. Томска и в других популяциях мира (по данным литературы). * – р < 0,05

Известно, что между неаллельными генами, расположенными близко на хромосоме, может возникнуть неравновесие по сцеплению в силу того, что в процессе мейоза кроссинговер между ними происходит реже, чем между далеко расположенными локусами. К тому же, под воздействием факторов популяционной динамики (естественного отбора) «сцепленными» могут оказаться гены, локализованные на разных хромосомах [Животовский Л.А., 1984]. Поэтому был проведен анализ гаметического неравновесия между исследованными полиморфными вариантами.

Известно, что гены NRAMP1, IL1B и IL1RN расположены на длинном плече второй хромосомы, ген VDR – на двенадцатой, а ген IL12B – на пятой хромосоме. У русских г. Томска установлено, что в неравновесии по сцеплению находятся четыре пары полиморфизмов гена NRAMP1: 469+14G/C и 274C/T, 469+14G/C и 1465-85G/A, 274C/T и 1465-85G/A, D543N и 1465-85G/A (табл. 9). Во всех случаях неравновесия в фазе притяжения были часто встречающиеся аллели.

Полиморфизм 274С/Т расположен в третьем экзоне гена, а 469+14G/C – в четвертом интроне. Такая  локализация их в гене легко обьясняет наблюдаемое между ними сцепление (+0,104). Полиморфизм 1465-85G/A и D543N находятся в 13 интроне и 15 экзоне соответственно, что обусловливает неравновесие по сцеплению между ними (+0,017). Сила сцепления между полиморфизмом 1465-85G/A и вариантами 469+14G/C, 274C/T была примерно на одном уровне и составила +0,078 и +0,085, соответственно. Интересным представляется тот факт, что пары полиморфизмов гена NRAMP1, оказавшихся в неравновесии по сцеплению, были идентичны у тувинцев и русских [Рудко А.А., 2004]. Кроме того, у жителей г. Томска, в фазе притяжения оказались аллели гена VDR: b и F, сила сцепления между ними составила +0,053.

Аллельный вариант F/f гена VDR у русских оказался в фазе отталкивания с полиморфизмами 469+14G/C, 274C/T, 1465-85G/A гена NRAMP1, мера неравновесия для них была –0,040, -0,039, -0,058, соответственно. Во всех случаях в фазе отталкивания оказались часто встречаемые аллели.


Таблица 9

Неравновесие по сцеплению между парами исследованных полиморфных вариантов генов у русских г. Томска

Ген 

NRAMP1

IL12B

VDR

IL1B

IL1RN

Ген 

Полимор-физм

469+14G/C

274C/T

1465-85 G/A

D543N

1188

A/C

F/f

B/b

+3953

A1/A2

VNTR

NRAMP1

469+14

G/C

-

+0,104

+0,078

+0,078

-0,009

-0,040

-0,012

-0,030

+0,002

274C/T

70,39

-

+0,085

+0,002

-0,019

-0,039

-0,003

-0,026

+0,003

1465-85 G/A

29,94

29,79

-

+0,017

-0,041

-0,058

-0,027

-0,014

+0,016

D543N

1,54

0,085

4,69

-

+0,001

-0,010

-0,005

-0,001

+0,013

IL12B

1188A/C

0,505

1,88

7,08

0,029

-

+0,011

+0,016

+0,018

-0,000

VDR

F/f

6,12

4,92

7,68

1,05

0,361

-

+0,053

-0,012

+0,008

B/b

0,465

0,03

1,47

0,221

0,730

4,65

-

+0,006

-0,010

IL1B

+3953

A1/A2

5,88

3,63

0,747

0,017

1,85

0,371

0,104

-

-0,023

IL1RN

VNTR

0,024

0,042

0,890

3,08

0,001

0,162

0,217

2,65

-

Примечание. Над центральной диагональю указаны значения меры неравновесия по сцеплению (D), под диагональю – соответствующее значение χ2 для теста на неравновесие по сцеплению. Выделены величины, для которых достигнутый уровень значимости составил 5% и менее


  1.  

Также в фазе отталкивания находились аллели 1465-85G гена NRAMP1 и 1188А гена IL12B, 469+14G гена NRAMP1 и +3953А1 гена IL1B, мера сцепления для них была –0,041 и –0,030.

Естественный отбор в теории популяционной генетики является важнейшим фактором эволюции, вызывающим адаптивные изменения в генетической структуре популяций. В случае формирования гаметического неравновесия между маркерами под воздействием естественного отбора, определенные комбинации аллелей разных локусов дают селективные преимущества их носителям и, следовательно, сохраняются при отборе и накапливаются в популяции [Алтухов Ю.П., 2003].

3.2. Анализ связи полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN  с туберкулезом

Туберкулез – инфекционное заболевание, обладающее клиническим полиморфизмом. Специфическая гранулема – субстрат болезни – может развиться в любом органе или ткани [Cтруков А.И., Кауфман О.Я., 1989; Ерохин В.В., Земскова З.С., 2003]. Современная классификация туберкулеза, в основу которой положено два признака: локализация процесса и клинико – рентгенологические особенности форм, насчитывает 23 основных клинических формы туберкулеза [Хоменко А.Г., 1996]. Такое разнообразие проявлений одного заболевания определяют множество факторов. Несомненно, в этом случае играют немаловажную роль свойства самой микобактерии туберкулеза, такие как вирулентность, резистентность к противотуберкулезным препаратам, а также массивность инфекции. От состояния естественных защитных сил организма (барьерная функция слизистой оболочки дыхательных путей и желудочно-кишечного тракта) также будет зависеть исход встречи человека и микобактерии туберкулеза.

Результаты современных генетических исследований не оставили сомнений в существовании наследственной предрасположенности к туберкулезу [Хоменко А.Г., 1996; Чуканова В.П., 2001; Hill A.V.S., 1999]. Они показали, что одной из причин, определяющих такое разнообразие клинических проявлений, является полиморфизм генов, чьи продукты экспрессии вовлечены в патогенез заболевания. В то же время, пока не ясно, какие именно варианты генов имеют решающее значение. В связи с этим важно изучить вклад конкретных сочетаний аллелей в развитие болезни.

В исследованной выборке 304 больных туберкулезом русских жителей г. Томска и Томской области проанализировано распределение генотипов и частот аллелей полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN (табл. 10). Выявлено отклонение наблюдаемого распределения генотипов полиморфизма B/b гена VDR от ожидаемого при РХВ (χ2=6,95; р=0,008) за счет повышенной гетерозиготности (табл. 10). Учитывая неслучайный характер отбора индивидов в выборке, можно предположить наличие вероятного вклада гена VDR в патогенез туберкулеза. Для исследованных полиморфизмов генов NRAMP1, IL12B, IL1B, IL1RN в общей группе больных туберкулезом  отклонение от РХВ не показано.

Известно, что у жителей Тувы больных туберкулезом выявлено отклонение от РХВ для полиморфизмов 1465-85G/A и D543N гена NRAMP1 за счет пониженного количества гетерозигот в обоих случаях и для полиморфизмов B/b и F/f гена VDR за счет повышенной гетерозиготности [Рудко А.А., 2004]. Таким образом, как для русских, так и для тувинцев, больных туберкулезом, характерно повышенное количество гетерозигот B/b гена VDR. Сравнение частот аллелей и генотипов у русских и тувинцев, больных туберкулезом, показало статистически значимые отличия для всех исследованных полиморфных маркеров (табл. 11). Максимальная степень отличий частот аллелей и генотипов показана для полиморфизма B/b гена VDR.

Таблица 10

Частоты аллелей и генотипов исследованных полиморфизмов у больных туберкулезом

Ген

Поли-морфизм

Гено-типы

N.O.

N.E.

Частота аллеля

χ2

(d.f.)

Hobs

Hexp

D

NRAMP1

469+14

G/C

GG

GC

CC

179

94

6

183,07

85,86

10,07

G=

0,810

2,25

(1)

0,337

0,308

+0,095

D543N

DD

DN

NN

263

14

1

262,23

15,54

0,23

D=

0,971

1,28

(1)

0,050

0,056

-0,099

1465-85

G/A

GG

GA

AA

126

126

27

128,03

121,94

29,03

G=

0,677

0,25

(1)

0,452

0,437

+0,033

274C/T

CC

CT

TT

163

122

14

167,82

112,37

18,81

C=

0,749

2,01

(1)

0,408

0,376

+0,086

IL12B

1188

A/C

AA

AC

CC

162

100

17

161,09

101,82

16,09

A=

0,760

0,05

(1)

0,358

0,365

-0,018

VDR

B/b

BB

Bb

bb

49

168

76

60,37

145,26

87,37

b=

0,546

6,95*

(1)

0,573

0,496

+0,157

F/f

FF

Ff

ff

124

134

40

122,42

137,16

38,42

F=

0,641

0,12

(1)

0,450

0,460

-0,023

IL1B

+3953

A1/A2

A1A1

A1A2

A2A2

169

108

24

165,21

115,57

20,22

A1

0,741

1,16

(1)

0,359

0,384

-0,066

IL1RN

VNTR

A1A1

A1A2

A1A3

A1A4

A2A2

A2A3

другие

158

100

10

1

25

4

1

152,43

110,16

11,53

0,43

19,90

4,17

0,38

A1=

0,714

A2=

0,258

A3=

0,027

6,35

(6)

0,385

0,422

-0,088

Примечание. Обозначения см. табл. 6

Таблица 11

Сравнение частот аллелей и генотипов у русских и тувинцев с ТБ

Полимор-физм

Гено-типы

Частоты (%)

p

Ал-лели

Частоты  

p

русские

тувинцы

русские

тувинцы

NRAMP1

469+14 G/C

GG

GC

CC

179 (64,2)

94 (33,7)

6 (2,1)

198 (85)

32 (13,7)

3 (1,3)

0,000

G

0,810

0,918

0,000

D543N

DD

DN

NN

263 (94,6)

14 (5)

1 (0,4)

191 (80,9)

39 (16,5)

6 (2,6)

0,000

D

0,971

0,892

0,000

1465-85G/A

GG

GA

AA

126 (45,2)

126 (45,2)

27 (9,6)

153 (65,7)

63 (27)

17 (7,3)

0,000

G

0,677

0,794

0,000

274C/T

CC

CT

TT

163 (54,5)

122 (40,8)

14 (4,7)

190 (80,5)

45 (19,1)

1 (0,4)

0,000

C

0,749

0,900

0,000

IL12B

1188 A/C

AA

AC

CC

162 (58)

100 (35,8)

17 (6,2)

90 (38,6)

102 (43,8)

41 (17,6)

0,000

A

0,760

0,605

0,000

VDR

B/b

BB

Bb

bb

49 (16,7)

168 (57,3)

76 (26)

3 (1,3)

82 (35)

149 (63,7)

0,000

b

0,546

0,812

0,000

F/f

FF

Ff

ff

124 (41,6)

134 (45)

40 (13,4)

125 (53,6)

102 (43,8)

6 (2,6)

0,000

F

0,641

0,755

0,000

IL1B

+3953 A1/A2

A1A1

A1A2

A2A2

169 (56,1)

108 (35,9)

24 (8)

185 (79,1)

47 (20)

2 (0,9)

0,000

A1

0,741

0,891

0,000

Примечание. р – достигнутый уровень значимости при сравнении частот аллелей и генотипов

У русских с ТБ и здоровых по сравнению с жителями Тувы чаще наблюдали гомозиготный по аллелею В и гетерозиготный генотипы. Среди жителей г. Томска, больных туберкулезом, по сравнению с тувинцами статистически значимо чаще встретились аллели 469+14C, 1465-85A, 274T гена NRAMP1, f гена VDR, и +3953А2 гена IL1В, реже регистрировались аллели 543N гена NRAMP1 и 1188С гена IL12B. В целом можно отметить, что отличия в распределении генотипов и аллелей между русскими и тувинцами были идентичными у больных и здоровых: у русских с туберкулезом преобладали те же аллели генов, что и у здоровых.

При сравнении распределений генотипов и частот аллелей в выборках больных и здоровых лиц, живущих в г. Томске и Томской области, выявлены статистически значимые отличия для полиморфизма 274С/Т гена NRAMP1 и трех генов, принимающих участие в продукции интерлейкинов (табл. 12). Так, у больных туберкулезом статистически значимо чаще регистрировался гетерозиготный генотип 274С/Т гена NRAMP1 (OR=1,66, 95%CI:1,02–2,71; p=0,040). Лица, обладающие гомозиготным генотипом 274С/C чаще встречались среди здоровых (OR=0,54, 95%CI:0,33–0,87; р=0,010). Показаны отличия частот аллелей у больных и здоровых для полиморфизма +3953 А1/А2 гена IL1B (p=0,036) за счет повышения доли аллеля А2 у больных туберкулезом. В тоже время, не найдено отличий при сравнении распределения генотипов этого полиморфизма гена IL(табл. 12). 

Различия по VNTR полиморфизму гена IL1RN в выборках больных и здоровых касались как частот аллелей, так и частот генотипов. Аллель А2 статистически значимо чаще встречался у пациентов с туберкулезом. При сравнении частот генотипов выявлено более высокое количество гетерозигот А1/А2 у больных туберкулезом по сравнению с контролем (OR=2,10, 95%CI:1,26–3,51, р=0,003) (табл. 12). В противоположность этому у африканцев гетерозиготы по аллелю А2 IL1RN статистически значимо реже встречались у больных туберкулезом, чем в контрольной группе [Bellamy R., Ruwende C., 1998].

Найдена ассоциация полиморфизма 1188А/С гена IL12В с туберкулезом. Установлено, что распределение генотипов и частота аллелей в группах больных и здоровых различаются. В выборке больных статистически значимо чаще встречаются гомозиготы по аллелю 1188С (р=0,035). В данном случае вероятность заболеть туберкулезом обладателей гомозиготного генотипа 1188С/С значимо выше, чем у индивидов с гомозиготным генотипом 1188А/А и гетерозиготным (OR=8,31,  95%CI:1,15–169,30, р=0,030) (табл. 12). Несмотря на отклонение распределения генотипов от ожидаемого при РХВ полиморфизма B/b гена VDR у больных туберкулезом, не показано отличий между больными и здоровыми.

Диагноз туберкулеза устанавливается на основании наличия у больного характерных жалоб, эпидемиологического анамнеза, анамнеза заболевания, клинических симптомов, характерных изменений в общем анализе крови и рентгенологической картины. Однако только при обнаружении микобактерий туберкулеза (МБТ) в мокроте диагноз туберкулеза можно считать верифицированным [Рабухин А.Е.,1976].

Учитывая это, при дальнейшем анализе из общей группы больных была выделена выборка пациентов с бактериовыделением (МБТ+) (n=234). При сравнении распределения генотипов и частот аллелей в группах больных лабораторно подтвержденным туберкулезом и контрольной, найдены статистически значимые отличия для полиморфизма 274С/Т гена NRAMP1, аллельного варианта  +3953 А1/А2 гена IL1B, VNTR полиморфизма гена IL1RN и полиморфизма 1188А/С IL12В (табл. 13). Частота аллеля 274Т гена NRAMP1 была выше в группе больных (р=0,009). Показана протективная роль генотипа 274С/С (OR=0,53, 95%CI: 0,32– 0,88, р=0,012).

Таблица 12

Статистические показатели для сравнения частот аллелей и генотипов у больных туберкулезом и здоровых

Ген

Полимор-физм

Гено-типы

Сравнение

OR (95%CI)

Генотипов

 р

Аллелей

р

NRAMP1

469+14

G/C

GG

GC

CC

0,393

0,229

0,74 (0,46–1,18)

1,32 (0,832,13)

1,48 (0,2710,77)

D543N

DD

DN

0,283

0,377

1,66 (0,703,88)

0,56 (0,241,34)

1465-85

G/A

GG

GA

AA

0,134

0,312

0,70 (0,451,08)

1,54 (0,992,41)

0,86 (0,421,76)

274C/T

CC

CT

TT

0,009

0,020

0,54* (0,330,87)

1,66* (1,022,71)

2,80 (0,5918,13)

IL12B

1188

A/C

AA

AC

CC

0,035

0,044

0,72 (0,451,13)

1,12 (0,701,78)

8,31* (1,15169,30)

VDR

B/b

BB

Bb

bb

0,925

 0,791

0,94 (0,511,76)

0,96 (0,601,54)

1,10 (0,641,91)

F/f

FF

Ff

ff

0,705

 0,469

1,20 (0,751,93)

0,89 (0,571,41)

0,88 (0,461,69)

IL1B

+3953

A1/A2

A1A1

A1A2

A2A2

0,108

0,036

0,70 (0,451,08)

1,21 (0,771,90)

2,32 (0,827,10)

IL1RN

VNTR

A1A1

A1A2

A2A2

0,030

0,023

0,57* (0,360,88)

2,10* (1,263,51)

0,97 (0,452,13)

Примечание. р - достигнутый уровень значимости; OR – величина отношения шансов; (95%CI) - доверительный интервал для OR; * - р < 0,05

Таблица 13

Статистические показатели для сравнения частот аллелей и генотипов у больных лабораторно подтвержденным туберкулезом и здоровых

Полимор-физм

Гено-тип

N

р

OR (95% СI)

Частота аллеля

р

NRAMP1

274С/Т

CC

CT

TT

126

94

12

0,021

0,53* (0,320,88)

1,64* (0,992,73)

3,11 (0,6420,47)

C=0,746

0,009

IL12B

1188 А/С

AA

AC

CC

125

82

12

0,044

0,69 (0,431,11)

1,20 (0,741,94)

7,42* (0,99154,58)

A=0,758

0,046

IL1B

+3953 А1/А2

A1A1

A1A2

A2A2

131

82

21

0,080

0,69 (0,441,09)

1,16 (0,731,87)

2,64 (0,918,21)

A1=0,735

0,036

IL1RN

VNTR

A1A1

A1A2

A2A2

другие

121

79

21

11

0,042

0,55* (0,350,87)

2,16* (1,28–3,68)

1,06 (0,482,38)

-

А1=0,707

A2=0,267

A3=0,024

A4=0,002

0,029

Примечание. р - достигнутый уровень значимости; OR – величина отношения шансов; (95%CI) - доверительный интервал для OR; N – количество индивидов с определенным генотипом; *- p < 0,05

Рисковыми для туберкулеза оказались генотипы 274С/Т и 274Т/Т гена NRAMP1. Не найдено отличий в распределении частот генотипов +3953 А1/А2 полиморфизма гена IL1B, в то время как аллель А2 статистически значимо чаще встречался в группе больных лабораторно подтвержденным туберкулезом, чем в группе здоровых индивидов (р=0,036) (табл. 13). Ассоциация VNTR полиморфизма гена IL1RN, а имменно связь А2 аллеля с туберкулезом, прослеживается как в общей выборке больных, так и в группе пациентов с наличием МБТ в мокроте. При анализе результатов подсчета отношения шансов показана более высокая подверженность туберкулезу индивидов с генотипом А1/А2 (OR=2,16, 95%CI:1,28–3,68, p=0,003). Протективным эффектом обладал полиморфизм А1А1 гена IL1RN (OR=0,55).

Для полиморфизма 1188А/С гена IL12B выявлены различия между больными туберкулезом МБТ+ и здоровыми по частотам аллелей (р=0,046) и генотипов (р=0,044). У больных туберкулезом чаще, чем в контрольной группе регистрировался гомозиготный генотип 1188С/С, риск развития туберкулезного процесса у этих индивидов был в семь раз выше, чем у обладателей других генотипов этого полиморфизма.

Различают первичный туберкулез, который развивается в ранее не инфицированном МБТ организме, а также вторичный генез туберкулеза, когда заболевание возникает при повторном инфицировании. Микобактерии туберкулеза проникают в организм различными путями. При небольшом их количестве, слабой вирулентности и при достаточной устойчивости организма они могут не вызвать специфических изменений на месте внедрения, а также и при лимфо–гематогенном рассеивании. Возникает состояние латентного микробизма [Земскова З.С., Дорожкова И.Р., 1984]. В дальнейшем может развиться инфицирование МБТ, когда возбудитель находится в макроорганизме, но человек не заболевает туберкулезом. При других условиях в результате первичного заражения образуются туберкулезные очаги в том или ином органе (первичный туберкулез).

Если же на фоне инфицирования в организм дополнительно попадет новая порция вирулентных микобактерий, может развиться заболевание, которое будет иметь вторичный генез (вторичный туберкулез). Наличие факторов, приводящих к снижению общей и местной резистентности организма, таких как курение, сахарный диабет, кортикостероидная терапия, лечение цитостатиками, ВИЧ-инфицирование и другие, увеличит вероятность этого события. Также вторичный туберкулез может возникнуть в результате обострения перенесенного в прошлом первичного процесса.

Патогенетические механизмы первичных и вторичных форм туберкулеза разнятся. Поэтому различаются и клинические формы, характерные для этих двух групп. Если для первичного туберкулеза свойственно поражение лимфатических узлов средостения или мезентериальных и, как осложнение, легочной ткани (исключение составляет первичный туберкулезный комплекс, при котором первичный аффект формируется в легком), то при вторичном генезе туберкулеза, как правило, поражается легочная ткань.

В связи с этим фактом можно предположить, что резистентность макроорганизма к первичному и вторичному туберкулезу обусловлена разными факторами иммунитета, а значит, варианты генов, приводящие к предрасположенности к разным по генезу формам туберкулеза, также будут различаться.

В ходе дальнейшего анализа больные туберкулезом были поделены на две группы в зависимости от того, на каком этапе симбиоза человека и микобактерии произошло заболевание. В выборку больных с первичным туберкулезом были отнесены пациенты, у которых выставили диагнозы: туберкулез внутригрудных лимфоузлов (n=36), первичный туберкулезный комплекс (n=3), гематогенно-диссеминированный туберкулез легких первичного периода (n=2), плеврит туберкулезной этиологии первичного периода (n=2).

Сравнение частот аллелей и распределений генотипов в выборках больных первичным туберкулезом и контрольной показало наличие ассоциации с заболеванием  полиморфизма 1465-85G/A гена NRAMP1: найдены статистически значимые различия частот аллелей (р=0,047) и генотипов (р=0,004) этого полиморфизма в группах больных и здоровых. У заболевших первичным туберкулезом  чаще, чем в контрольной группе, встречался гетерозиготный генотип 1465-85G/A, риск заболевания у этих индивидов был три раза выше, чем у обладателей других генотипов этого полиморфизма (OR=3,16, 95%CI:1,47–6,86; р=0,002) (табл. 14). Показано, что генотип 1465-85G/G чаще регистрировался у здоровых индивидов (OR=0,33, 95%CI:0,15–0,73; р=0,005), таким образом, установлена его протективная роль в отношении первичного туберкулеза.

                                                                                                           

Таблица 14

Cтатистические показатели для сравнения частот аллелей и генотипов полиморфизма 1465-85 G/A гена NRAMP1 у больных туберкулезом первичного периода и здоровых

Полимор-физм

Гено-тип

N

р

OR (95%CI)

Частота аллеля

р

1465-85

G/A

GG

GA

AA

12

27

4

0,004

0,33* (0,15–0,73)

3,16* (1,47–6,86)

0,82 (0,22–2,86)

G=0,593

0,047

Примечание. Обозначения см. табл. 13

Известно, что продукт гена Nramp1 у мышей участвует в процессе фагоцитоза, влияя на судьбу МБТ в макроорганизме. Кроме того, на мышах показано, что именно ранняя фаза инфекции с микобактериями туберкулеза штамма BCG находится под контролем гена Nramp1 [Scamene E. et al., 1980]. По всей видимости, дефект продукции или функции человеческого гомолога Nramp1 при первой встрече человека с микобактерией может способствовать возникновению заболевания. Тогда, как в организме инфицированного ранее индивида срабатывают механизмы иммунологической защиты, и мутации в гене, а следовательно и дефекты  белка NRAMP1 не оказывают подобного влияния.

Ранее показано, что полиморфизм 1465-85G/A гена NRAMP1 оказывает предрасполагающую роль  к инфильтративному туберкулезу у тувинцев [Рудко А.А., 2004]. Частота гомозигот А/А этого полиморфизма была практически в два раза выше у больных ТБ, чем у здоровых. Учитывая результаты исследования генетических основ подверженности к туберкулезу русских и тувинцев, можно отметить, что ген NRAMP1 оказывает влияние на предрасположенность к  заболеванию, проявляя этническую специфичность.

Выборку больных с вторичным происхождением туберкулеза составили пациенты с установленным диагнозом инфильтративного туберкулеза легких (150 человек), диссеминированного туберкулеза легких (65 человек), очагового туберкулеза (27 человек), казеозной пневмонии (5 человек), впервые выявленного фиброзно–кавернозного туберкулеза легких (4 человека), туберкуломы (4 человека), туберкулеза почечной паренхимы (3 человека), туберкулеза бронха (2 человека), плеврита туберкулезной этиологии (1 человек). Всем больным диагноз туберкулеза был установлен впервые.

При сравнении частот аллелей и распределений генотипов ассоциацию с вторичным туберкулезом продемонстрировали полиморфизм 274С/Т гена NRAMP1, полиморфный маркер гена IL,  VNTR полиморфизм гена IL1RN, а также ген IL12B (табл. 15). Аллель 274Т гена NRAMP1 чаще встречался в группе больных (р=0,005), причем у лиц гетерозиготных по этому полиморфизму риск заболеть туберкулезом возрастал в 1,75 раза (95%СI:1,06–2,88; p=0,026), а у гомозигот 274Т/Т шанс заболеть был в пять раз выше, чем у обладателей других генотипов этого полиморфизма (95%CI:1,07–33,72; p=0,037).

Показано, что генотип 274С/С статистически значимо чаще встречался у здоровых лиц (OR=0,51, 95%CI:0,31–0,82; p=0,005). В целом, сравнивая результаты, полученные при исследовании частот аллелей и генотипов у больных первичным и вторичным туберкулезом, можно отметить, что разные полиморфизмы гена NRAMP1 оказывают неравнозначное влияние на предрасположенность к туберкулезу у русских г. Томска.

Таблица 15

Статистические показатели для сравнения частот аллелей и генотипов у больных вторичным туберкулезом легких и здоровых

Полимор-физм

Гено-тип

N

р

OR (95% СI)

Частота аллеля

р

NRAMP1

274С/Т

CC

CT

TT

136

108

13

0,010

0,51* (0,310,82)

1,75* (1,062,88)

5,01* (1,0733,72)

C=0,739

0,005

IL1B

+3953 А1/А2

A1A1

A1A2

A2A2

146

92

21

0,103

0,70 (0,451,10)

1,19 (0,751,89)

2,36 (0,827,34)

A1=0,741

0,041

IL1RN

VNTR

A1A1

A1A2

A2A2

другие

134

89

23

12

0,025

0,55* (0,350,86)

2,20* (1,313,72)

1,04 (0,482,31)

-

А1=0,705

A2=0,269

A3=0,023

A4=0,003

 0,019

Примечание. р - достигнутый уровень значимости; OR – величина отношения шансов; (95%CI) - доверительный интервал для OR; N – количество индивидов с определенным генотипом; *- p < 0,05

Показано, что полиморфизм 1465-85 G/A гена NRAMP1 проявил связь с первичным туберкулезом. Учитывая, что при аналогичном сравнении частот генотипов и аллелей в выборках больных вторичными формами туберкулеза и здоровых, различий не было найдено, полученные данные позволяют предположить наличие влияния этого полиморфизма на более раннее возникновение заболевания. Полиморфный вариант 274С/Т оказался ассоциированным с вторичным генезом заболевания. Для маркеров D543N и 469+14G/C гена NRAMP1 не показано предрасполагающего влияния на ТБ у русских жителей г. Томска.

Известно, что IL–1β является провоспалительным цитокином, а значит, его варианты могут приводить к ослаблению защитной реакции организма и, как следствие, способствовать заболеванию при наличии возбудителя в организме. Выявлены различия частот аллелей при сравнении группы контроля и больных вторичным туберкулезом, при которых заболевание ассоциированно с аллелем А2 IL2=4,17, р=0,041). Продукт гена IL1RN является рецепторным антагонистом IL–1β, выполняя функцию специфического блокатора биологического действия IL–1β. Показано, что аллель А2 приводит к увеличению продукции белка IL–1RN [Wilkinson R. J. et al., 1999].

Выявлено статистически значимое увеличение частоты аллеля А2  VNTR полиморфизма гена IL1RN у больных по сравнению с контролем (χ2=9,92, р=0,019). Распределение генотипов этого полиморфизма также различалось в группах лиц с вторичным туберкулезом и здоровых (χ2=14,49, р=0,025): у больных чаще регистрировался гетерозиготный генотип А1/А2, риск развития заболевания у них был выше более чем в 2 раза, по сравнению с лицами с другими генотипами этого полиморфизма (95%CI: 1,31–3,72,  р=0,002). Протективная роль в развитии вторичного туберкулеза показана для генотипа А1/А1, так как он статистически значимо чаще встречен у здоровых (OR=0,55, 95%CI: 0,35–0,86,  р=0,007).

В целом, сравнение общей группы больных туберкулезом, выборки пациентов–бактериовыделителей, больных вторичным ТБ с контрольной выборкой показало аналогичные результаты, то есть связь полиморфизмов 274С/Т гена NRAMP1, +3953 А1/А2 гена IL1B и  VNTR гена IL1RN с заболеванием. Общую выборку больных  на 86% составили пациенты с вторичным туберкулезом. При первичном туберкулезе, как правило, не встречается выделение МБТ с мокротой [Рабухин А.Е., 1976]. В исследовании жителей г. Томска только один больной с первичным туберкулезным комплексом был бактериовыделителем. Так, выборка больных туберкулезом МБТ+ практически на 100% состояла из пациентов с туберкулезом вторичного периода. Таким образом, полиморфизм 274С/Т гена NRAMP1, +3953 А1/А2 полиморфизм гена IL1B и  VNTR полиморфизм IL1RN проявили ассоциацию с вторичным туберкулезом. Тем более, что ассоциации, найденные при сравнении первичного туберкулеза с контролем, затрагивали иные гены.

Найдена связь полиморфизма 1188А/С гена IL12B как с первичным, так и с вторичным туберкулезом, причем генотип 1188С/С чаще встречался у больных, чем у здоровых  (табл. 16). Это наблюдение вполне объяснимо, поскольку известно, что IL-12 участвует в активации макрофагов посредством Т-хелперов, вырабатывающих INF-γ, а активизированные макрофаги, в свою очередь, устремляются к месту нахождения микобактерий и активно их поглощают. Вероятно, варианты гена IL12B влияют на подверженность заболеванию у неинфицированных МБТ и инфицированных ранее людей.

Кроме анализа связи генетических маркеров с заболеванием по типу случай–контроль был использован метод оценки ассоциации болезни с генетическими маркерами на семейном материале с помощью Transmission Disequilibrium Test (TDT). Метод оценивает предпочтительность переноса аллеля М1 больному потомку от М1М2 гетерозиготных родителей.

Если аллель М1 переносится существенно больше, чем в половину раз, можно заключить, что маркерный локус сцеплен с локусом предрасположенности к заболеванию, и что аллель М1 положительно ассоциирован с аллелем, который увеличивает восприимчивость к заболеванию, или является таковым [Spielman R.S. et. al., 1993].

Таблица 16

Статистические показатели для сравнения частот аллелей и генотипов полиморфизма 1188А/С гена IL12B у больных различным по генезу туберкулезом и здоровых

Выборка больных ТБ

Генотипы

1188А/С

Сравнение

OR(95%CI)

p

генотипов

аллелей

ТБ первичного периода

АА

27

р=0,012

р=0,370

0,93(0,42–2,06)

0,997

АС

11

0,71(0,30–1,64)

0,500

СС

4

13,47(1,35326,42)

0,013

ТБ вторичного периода

АА

135

р=0,041

р=0,041

0,69(0,43–1,10)

0,120

АС

89

1,20(0,75–1,94)

0,491

СС

13

7,43(1,00153,87)

0,023

Примечание. Обозначения см. табл. 12

Рассчет TDT провели для всех исследованных полиморфных маркеров, за  исключением D543N гена NRAMP1, для которого TDT не был рссчитан из-за низкой гетерозиготности родителей пробандов (табл. 17). Анализ показал наличие связи полиморфизма 1188А/С гена IL12B с туберкулезом. Дети, больные туберкулезом, лишь в 13% случаев наследовали от родителей аллель 1188А, тогда как аллель 1188С – в 87%.

Таблица 17

Число аллелей, унаследованных больными потомками от гетерозиготных родителей

Ген

Полиморфизм

Аллели

Количество

перенесенных аллелей

TDT

p

(d.f.=1)

NRAMP1

469+14G/C

G

10

1,00

0,317

С

  6

1465-85G/A

G

12

0,15

0,695

A

14

274C/T

C

9

0,06

0,808

T

8

IL12B

1188A/C

A

2

8,07

0,005

C

13

VDR

B/b

B

6

2,00

0,157

b

12

F/f

F

11

0,00

1,000

f

11

IL1B

+3953A1/A2

A1

9

0,05

0,818

A2

10

IL1RN

VNTR

A1

9

0,60

0,439

не А1*

6

Примечание. р – достигнутый уровень значимости; d.f. – число степеней свободы; * - аллели А2 и А3

Найденная связь изменчивости гена IL12B закономерна, поскольку продукт экспрессии этого гена – IL–12 является ключевым цитокином для усиления клеточно-опосредованного иммунного ответа и инициации эффективной противоинфекционной  защиты. Он  секретируется макрофагами в ответ на индукцию микробными компонентами и продуктами, активирует дифференцировку Т-лимфоцитов, повышает их цитотоксическую активность, усиливает пролиферацию естественных киллеров, Т-лимфоцитов и продукцию других цитокинов. Главный эффект – индукция синтеза INF-γ.  Характер течения и исход многих инфекций зависят от способности возбудителя индуцировать синтез IL-12 [Тотолян А.А., Фрейдлин И.С., 2000].

Таким образом, у русских жителей г. Томска установлена ассоциация полиморфизма 1188А/С гена IL12B с заболеванием: индивиды-носители аллеля 1188С в большей степени подвержены туберкулезу, как первичному, так и вторичному. Важным обстоятельством с точки зрения достоверности является тот факт, что показанная связь маркера с заболеванием выявлена как методом случай – контороль, так и TDT на семейном материале.

3.3. Анализ накопления случаев туберкулеза в семьях больных

В практической деятельности фтизиатры выделяют такое понятие, как семейный контакт по туберкулезу. Оно подразумевает наличие тесного семейного общения родственников и неродственных индивидов с больным туберкулезом. Также выделяют смежное понятие - семейный туберкулез. О таком туберкулезе говорят, когда больны родственники пациента.

При сравнении частоты встречаемости родственников, больных туберкулезом, у заболевших этой инфекцией и у здоровых индивидов, были выявлены отличия (χ2=15,67, р<0,001) (табл. 18). Показано, что вероятность заболеть туберкулезом выше у индивидов, в семьях которых имеются лица, перенесшие это заболевание (OR=3,63, 95%CI:1,84–7,31; р<0,000). У больных частота туберкулеза среди родственников первой степени родства в 3,63 раза выше по сравнению с родственниками первой степени родства здоровых индивидов.

Таблица 18

Частота заболевания туберкулезом родственников больных данным инфекционным заболеванием и здоровых индивидов

Выборка

Нет тубер-кулеза в роду

Имеют родственников с туберкулезом

Кол-во родствен-ников 1 степени родства  с

туб-зом

Кол-во родствен-ников 2 степени родства  с

туб-зом

Из них 1 степени родства

Из них 2 степени родства

Из них 1 и 2 степени родства

Здоровые

n=97

84

(86,6%)

1

(1%)

11

(11,4%)

1

(1%)

2

14

Больные  

туберкулезом

n=225

144

(64%)

59

(26,2%)

12

(5,3%)

10

(4,5%)

93

25

Примечание. n – численность группы

Необходимо отметить, что учитывались родственники I и II степени родства, перенесшие туберкулез, но не имеющие тесного семейного контакта в период болезни с обследуемыми индивидами. Таким образом, в данном случае туберкулезный контакт, как причину накопления случаев заболевания у родственников индивидов больных ТБ, можно исключить.

К тому же исследование распространенности туберкулеза среди супругов пробандов, не состоящих в кровном родстве с больными туберкулезом, но находившихся с ними в семейном контакте, проведенное В.П. Чукановой с соавт. (1995), показало, что частота туберкулеза легких в этой группе не отличалась от частоты заболевания среди населения обследованной этнической группы. Кроме того, было установлено, что в семьях пробандов, которые болели деструктивными формами инфекции, частота туберкулеза среди родственников первой степени родства превышала в пять раз частоту заболевания среди населения при отсутствии семейного контакта [Чуканова В.П. и др., 1995]. В аналогичном исследовании, проведенном ранее, получены сходные результаты: в роду здоровых туберкулез встречался в пять раз реже, чем у больных [Березовский Б.А. и др., 1986]. Можно заметить, что в исследовании жителей г. Томска увеличение заболеваемости среди родственников больных несколько ниже. Возможно, это обусловлено социальными, демографическими, или другими причинами. Повышение частоты туберкулеза у родственников больных по  сравнению со здоровыми, свидетельствует в пользу имеющегося мнения о наследственной предрасположенности к инфекционным заболеваниям, в том числе к туберкулезу.

При дальнейшем анализе выборку больных разделили на две группы: первую группу составили пациенты, родственники которых болели туберкулезом, вторую – те, среди родственников которых не было заболевших этой инфекцией. Учитывались родственники I и II степени родства. При сравнении частот аллелей у больных первой и второй группы установлено, что в выборке больных семейным туберкулезом статистически значимо чаще встречался аллель 543N гена NRAMP1 2=6,08, р=0,014).

Полиморфизм D543N гена NRAMP1 является наиболее исследованным в различных популяциях мира из всех аллельных вариантов этого гена. Показана его значимость в подверженности к туберкулезу у японцев и китайцев [Gao P. S. et al., 2000; Liu W. et al., 2004]. Однако у русских г. Томска не найдено ассоциаций этого полиморфизма с заболеванием. Вероятно, полученное накопление аллеля 543N гена NRAMP1 в группе больных, чьи родственники заболели ТБ, по сравнению с больными, у которых здоровые родственники, можно объяснить неравновесием по сцеплению с другим полиморфизмом этого гена, значимым для туберкулеза.

3.4. Анализ связи полиморфизма генов NRAMP1, IL12B, VDR, IL1B, IL1RN с патогенетически важными параметрами болезни

Учитывая поставленные задачи, поиск ассициаций исследуемых полиморфизмов с патогенетически важными параметрами болезни проведен в два этапа: во-первых, анализировали качественные, патогенетически значимые признаки туберкулеза, во-вторых, проведен анализ связи генов с количественными показателями болезни.

3.4.1. Анализ ассоциаций исследованных генов с качественными признаками туберкулеза

Патоморфологические изменения в органах и тканях при туберкулезе многообразны, обусловлены биологическими закономерностями воспалительной реакции, а также особенностями возбудителя болезни, зависят от формы, стадии, локализации и распространенности патологического процесса. Туберкулез относят к хроническим гранулематозным заболеваниям, для которых характерно одинаковое построение гранулем, состоящих из эпителиоидных клеток, гигантских клеток Пирогова-Лангханса и лимфоцитов [Струков А.И., Кауфман О.Я., 1989]. В основе воспаления лежат фазы экссудации, альтерации и пролиферации, однако они не всегда четко выражены и не всегда сохраняется их последовательность. Туберкулезные бугорки могут быть экссудативными (преимущественно лимфоцитарные), продуктивными (эпителиоидно-гигантоклеточные), некротическими, что зависит от вирулентности МБТ, а также от особенностей иммунной реактивности инфицированного макроорганизма [Пузик В.И. и др., 1973; Ерохин В.В., Земскова З.С., 2003]. Степень выраженности различных фаз воспаления также зависит от характера ткани, в которой развивается патологический процесс. Так, экссудация и альтерация будут более резко выражены в рыхлых тканях, и менее – в плотных [Хоменко А.Г., 1996].

Для оценки влияния вариантов генов NRAMP1, VDR, IL1B, IL12B, IL1RN на изменчивость признаков болезни, определяемых рентгенологическими методами, проведен поиск ассоциаций генетических маркеров с наличием деструкции в легочной ткани при туберкулезе и  с объемом поражения легкого. При этом пользовались определенным алгоритмом сравнения (рис. 5).

Рис. 5  Алгоритм сравнения групп больных туберкулезом и здоровых индивидов

Рис. 5. Алгоритм сравнения групп больных туберкулезом и здоровых индивидов.

Выборка больных вторичными формами туберкулеза легких была разделена на две группы в зависимости от наличия деструкции легочной ткани: первую составили 184 больных с экссудативно-некротическим и пролиферативно-некротическим типом воспалительной реакции (инфильтративный туберкулез в фазе распада, диссеминированный туберкулез в фазе распада, казеозная пневмония, фиброзно-кавернозный туберкулез легких); во вторую отнесены 52 больных туберкулезом с отсутствием  некроза ткани легкого (диссеминированный туберкулез легких в фазе инфильтрации, инфильтративный туберкулез без распада, очаговый туберкулез, туберкулома).

При сравнении распределений генотипов и частот аллелей исследуемых полиморфизмов в этих группах выявлены статистически значимые отличия. Так, частота аллелей и генотипов полиморфизма 469+14G/C гена NRAMP1 в выборке больных с экссудативно-некротическим и пролиферативно-некротическим типом воспалительной реакции отличалась от соответствующих значений, у больных с пролиферативным и экссудативным типом воспалительной реакции: у больных деструктивным туберкулезом легких частота аллеля  469+14C была выше (табл. 19).

Таблица 19

Частота аллелей и генотипов полиморфизма  469+14G/C гена NRAMP1 у больных туберкулезом с различным типом воспалительной реакции ткани легкого

Группы больных туберкулезом

Гено-типы

N

Сравнение генотипов

р

Аллели 

Сравнение аллелей

р

Больные туберкулезом с деструкцией легочной ткани

GG

GC

CC

108

60

5

0,048

G=0,798

0,027

Больные туберкулезом без деструкции легочной ткани

GG

GC

CC

39

8

1

G=0,896

Примечание. N – численность генотипов; р – достигнутый уровень значимости

Ассоциация 469+14G/C полиморфизма NRAMP1 гена, возможно, обусловлена функциональной значимостью белкового продукта гена. Белок, NRAMP1 участвует в процессе фагоцитоза и таким образом обеспечивает защиту организма от внутриклеточных микробных агентов. Вероятно, 469+14C аллель снижает функциональную активность NRAMP1, влияя на течение возникшего заболевания и обусловливая развитие деструктивных процессов при вторичном туберкулезе легких. Показано, что у японцев формирование деструкции при туберкулезе также связано с изменчивостью гена NRAMP1, ассоциацию проявил полиморфизм D543N [Abe T. et al., 2003].

При сравнении больных туберкулезом с деструкцией и без таковой со здоровыми, выявлены ассоциации аллеля 274T гена NRAMP1, +3953А2 гена IL1B, 1188С гена IL12B и аллеля А2 VNTR полиморфизма гена IL1RN с распадом ткани легкого (табл. 20). Полиморфные варианты IL1B и IL1RN регулируют эффект IL-1β и таким образом участвуют в моделировании иммунного ответа [Tarlow J.K. et al., 1993]. Обнаружено, что макрофаги больных туберкулезом отличает пониженная способность секретировать ИЛ-1β [Селедцова Г.В. и др., 1991]. Причем при деструктивном процессе наблюдалось более выраженное снижение продукции ИЛ-1, чем при отсутствии некроза легочной ткани [Хонина Н.А. и др., 2000].

Показано, что экспрессия мРНК IL-1β, индуцированная МБТ выше у субьектов  IL(+3953)А1+ и ниже – у индивидов с IL(+3953)А1- гаплотипом. Также известно, что А2 аллель IL1RN приводит к повышению продукции мРНК и секреции белка IL-1RN [Wilkinson R.J. et al., 1999].

Учитывая близкое расположение IL1B и IL1RN на хромосоме 2, предположили, что гены, кодирующие эти белки, наследуются не независимо друг от друга, то есть между локусами имеется неравновесие по сцеплению. С целью подтверждения или опровержения данной гипотезы, между IL1B и IL1RN в выборке больных деструктивным туберкулезом были произведены расчеты неравновесия по сцеплению.

Таблица 20

Статистические показатели для сравнения частот генотипов и аллелей в группах больных туберкулезом с деструкцией и без деструкции ткани легкого со

здоровыми индивидами

Поли-морфизм

Наличие деструкции

Гено-тип

N

Частота аллеля у больных

Сравнение со здоровыми

генотипов

аллелей

1

2

3

4

5

6

7

NRAMP1

274C/T

+

CC

CT

TT

96

74

11

С=0,735

р=0,013

р=0,005

-

CC

CT

TT

29

17

1

С=0,798

р=0,671

р=0,506

IL1B

+3953

A1/А2

+

A1A1

A1A2

A2A2

100

63

21

А1=0,715

р=0,022

р=0,008

_

A1A1

A1A2

A2A2

26

20

1

А1=0,766

р=0,378

р=0,497

IL12B

1188A/С

+

AA

AC

CC

94

67

12

А=0,737

р=0,012

р=0,013

_

AA

AC

CC

31

15

1

А=0,819

р=0,750

р=0,986

Продолжение таблицы 20

1

2

3

4

5

6

7

IL1RN

VNTR

+

A1A1

A1A2

A2A2

другие

93

60

20

9

А1=0,690

А2=0,283

А3=0,030

р=0,056

р=0,017

_

A1A1

A1A2

A2A2

другие

29

18

2

2

А1=0,765

А2=0,216

А3=0,020

р=0,262

р=0,684

Примечание. Обозначения см. табл. 19

Показано наличие неравновесия по сцеплению между генами, причем +3953А1 аллель IL1B и А1 аллельVNTR полиморфизма  IL1RN оказались в фазе отталкивания, мера неравновесия для них составила –0,033 (р=0,009). Известно, что неравновесие по сцеплению возникает между неаллельными генами, расположенными на одной хромосоме столь близко, что частота кроссинговера приближается к нулю. Также гаметическое неравновесие может наблюдаться между генами, локализованными на разных хромосомах, что является результатом действия факторов популяционной динамики, например, естественного отбора [Животовский Л.А., 1984].

При сравнении частоты гаплотипа IL1RN*A1A1/IL1B*A1A1 в группах больных туберкулезом и здоровых индивидов найдено, что статистически чаще это сочетание встречается в контрольной выборке (χ2=9,10, р=0,003). Причем риск заболеть туберкулезом у носителей этого гаплотипа равен 0,50 (0,31–0,79). Таким образом, у русских жителей г. Томска гаплотип IL1RN*A1A1/IL1B*A1A1 имеет протективный эффект в отношении заболевания туберкулезом.

Для оценки тяжести туберкулезного процесса определяют распространенность патологического образования в пораженном органе. Выборку больных вторичным туберкулезом легких разделили на три группы в зависимости от объема поражения. Первую группу составили 68 больных с ограниченным по протяженности туберкулезным процессом (1-2 сегмента). Во вторую группу вошли 37 пациентов, у которых туберкулез локализовался в пределах одной доли. Третью группу составили 115 больных с распространенной формой заболевания (объем поражения – больше доли).  

При сравнении этих групп найдены ассоциации генетических маркеров с распространенностью специфического процесса при туберкулезе (табл. 21). В группе больных ТБ с объемом поражения ткани легкого более доли статистически значимо чаще, чем в выборке пациентов с туберкулезом с поражением легкого менее доли, регистрировали индивидов, обладающих гомозиготным по аллелею 469+14С гена NRAMP1 и гетерозиготным генотипом (р=0,043). Таким образом, можно говорить о вкладе 469+14С аллеля гена NRAMP1 не только в формирование деструкции при туберкулезе, но и в увеличение зоны  поражения. Хотя полиморфизм 469+14G/С гена NRAMP1 не проявил связь с туберкулезом, его «мутантный» аллель негативно влиял на течение возникшего заболевания, обусловливая распад ткани легкого и увеличивая объем поражения. Противоположным действием на течение туберкулезного процесса обладал полиморфизм B/b гена VDR. Аллель b этого маркера ассоциирован с ограниченным по распространенности вторичным туберкулезом (р=0,021).

Кроме того, с объемом поражения ткани легкого при вторичном туберкулезе проявили ассоциацию полиморфизмы  +3953А1/А2 IL1B, 1188А/С IL12B  и полиморфизм VNTR IL1RN. Различалась частота генотипов и аллелей  в группе контроля и в группах больных туберкулезом разным по площади поражения ткани легкого (табл. 22).

Таблица 21

Частота аллелей и генотипов в группах больных туберкулезом с разным объемом поражения легочной ткани

Полимор-физм

Гено-типы

N

(%)

Объем поражения легкого*

Более доли

Доля

Менее доли

NRAMP1

469+14

G/C

GG

GC

CC

60 (56,6)

41 (38,7)

5 (4,7)

Более доли

-

р=0,016

GG

GC

CC

26 (70,3)

11 (29,7)

0 (0)

Доля

р=0,043

-

р=0,875

GG

GC

CC

47 (72,3)

17 (26,2)

1 (1,5)

Менее доли

р=0,707

-

VDR

B/b

BB

Bb

bb

22 (20)

63 (57,3)

25 (22,7)

Более доли

-

р=0,895

р=0,021

BB

Bb

bb

7 (18,9)

22 (59,5)

8 (21,6)

Доля

р=0,973

-