37612

Проведение экспериментальных работ при исследовании переходных процессов в электрических цепях

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

На экране осциллографа получаем изображение зависимости напряжения и тока конденсатора от времени.Зарисовываем осциллограммы тока и напряжения на конденсаторе: Рассчитываем по осциллограмме постоянные времени разряда и заряда конденсатора по кривой uсt. На экране осциллографа получаем изображения зависимости тока и напряжения катушки от времени. Зарисовываем осциллограммы тока и напряжения катушки: Рассчитываем по осциллограмме постоянные времени при подключении и отключении катушки по кривой it.

Русский

2013-09-24

115 KB

0 чел.

Цель работы: Научиться проведению экспериментальных работ при исследовании переходных процессов в электрических цепях.

Задачи работы:

1. Освоить навыки получения осциллограмм в цепях RC, RL, RCL;

2. Научиться определять опытным путём постоянную времени и декремент затухания в исследуемых переходных процессах.

  1.  Закрепить навыки работы с электронным осциллографом.

Порядок выполнения работы:

Экспериментальная часть

1. Собираем  цепь  (рис.1).

2.Отключаем индуктивную катушку с помощью переключателя SA. На экране осциллографа получаем изображение зависимости напряжения и тока конденсатора от времени.

       3.Зарисовываем  осциллограммы тока и напряжения на конденсаторе:

 

Рассчитываем по осциллограмме постоянные времени разряда и заряда конденсатора по кривой uс(t).

Заряд:

uс(t) = U0(1 - e-t/τ);

uс(t1)/uс(t2) = U0(1 - e-t1/τ )/ U0(1 - e-(t1+Δt)/τ)= e Δt/τ;

τз = |Δt/ln(u(t1)/u(t2))|‌.‌

τз = |(4 – 1,1)/ln(4/9)| = 1,43 мс.

Разряд:

uс(t)= U0e-t/τ ;

uс(t3)/uс(t4) = U0e –t3/τ/U0e-(t3+Δt)/τ = e Δt/τ;

τр = |Δt/ln(u(t3)/u(t4))|;

τр = |(11 – 10)/ln(10/1,2)| = 0,47 мс.

‍‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌4. Подключаем  катушку индуктивности. На экране осциллографа получаем изображения зависимости тока и напряжения катушки от времени.

5. Зарисовываем осциллограммы тока и напряжения катушки:

Рассчитываем по осциллограмме постоянные времени при подключении и отключении катушки по кривой i(t).

Подключение:

i(t) = I0(1 - e-t/τ);

i(t1)/i(t2) = I0(1 - e-t1/τ )/ I0(1 - e-(t1+Δt)/τ)= e Δt/τ;

τп = |Δt/ln(i(t1)/i(t2))|‌.‌

τп = |(0,8 – 0,1)/ln(14,3/30,9)| = 0,32 мс.

Отключение:

i(t) = I0e-t/τ;

i(t1)/i(t2) = I0e-t1/τ/I0e-(t1+Δt)/τ= e Δt/τ;

τо = |Δt/ln(i(t1)/i(t2))|‌.‌

τо = |(10 – 10,4)/ln(32,9/12,9)|= 0,43 мс.

6. Подключаем катушку и конденсатор. На экране осциллографа получаем изображение тока и напряжения на конденсаторе и на катушке.

7. Зарисовываем осциллограммы тока и напряжений:

Определяем параметры колебательного процесса по кривой i(t):

i(t)/i(t+T) = eδT;

= (ln(i(t)/i(t+T)))/T = (ln(60/16))/0,002 = 660,88 с-1;

ω = 2π/T = 2*3,14/0,002 = 3140 с-1.

Расчетная часть

1. Рассчитываем  постоянные времени разряда и заряда конденсатора, начальные значения тока и напряжение конденсатора по известному напряжению источника U и параметрам цепи R1,R2,R0 и С:

τз = τр =  RC;

τз = (R1 + R2 + R0)C = 339*4*10-6 = 1,3 мс;

iз нач = U/( R1 + R2 + R0) = 10/(200 + 51 + 68 + 7) = 32 мА;

uсз нач= 0.

τр = (R2 + R0)C = 139*4*10-6 = 0,5 мс.

iр нач = U/( R2 + R0) = 10/(119 + 7) = 80 мА;

uср нач = U = 10 В.

Сравнивая результаты расчёта с результатами, полученными в п. 3, мы видим, что они сходятся.

2. Рассчитываем  постоянные времени подключения и отключения катушки, начальные значения тока и напряжения катушки по известному напряжению источника и параметрам цепи:

τп = τо =  L/R;

τп = L/(R1 + R2 + RK + R0) =

= 0,0245/(200 + 119 + 13 + 7) = 0,36 мс;

iп нач = 0;

uк п нач= U = 10 В.

τо = L/(R2 + RK + R0) = 0,0245/(119 + 13 + 7) = 0,45 мс.

iо нач = U/( R1 + R2 + RK + R0) = 10/(119 + 13 + 7) = 30 мА;

uк о нач = iо нач(R2 + R0) =  0,03*(119 + 7) = 3,78 В.

Сравнивая результаты расчёта с результатами, полученными в п. 5, мы видим, что они сходятся.

Рисуем  график  переходного процесса:

3. Рассчитываем корни характеристического уравнения для переходных процессов по данным параметрам цепи в п. 6:

p1,2 = -R/2L ± ((R/2L)2 – 1/LC)1/2, Rкр = 2(L/C)1/2 = 49,5 Ом.

Подключение:

R = R1 + Rк + R0 = 200 + 13 + 7 = 220 Ом > Rкр, процесс апериодический.

p1,2 = -4489,796 ± 3155,025

p1 = -7644,821; p2 = -1334,771.

i(t) = (U/L(p1 – p2))(ep1t – ep2t) =  0,0647(e-7644,821t – e1334,771t) A.

Замыкание:

R = Rк + R0 = 13 + 7 = 20 Ом < Rкр, процесс колебательный.

p1,2 = -408,163 ± j3168,199 = -δ ± jω.

i(t) = U/(ωL)e-δtsin(ωt + π) = 0,129e-408.163t sin(3168,199t + π) A.

 

Строим график тока: 

Сравнивая результаты расчёта с экспериментальными данными по п. 5, мы видим, что они сходятся.


 

А также другие работы, которые могут Вас заинтересовать

19078. Вольтфарадные характеристики структур с квантовыми ямами 662 KB
  Лекция 7. Вольтфарадные характеристики структур с квантовыми ямами Для контроля параметров квантоворазмерных структур состава структуры положения квантовых ям в структуре глубины квантовой ямы концентрации носителей заряда в яме и т.д. широко используются такие
19079. Двумерный электронный газ. Квантовый эффект Холла. Осцилляция Шубникова де Гааза 147 KB
  Лекция 8. Двумерный электронный газ. Квантовый эффект Холла. Осцилляция Шубникова де Гааза. Квантовый эффект Холла В отличие от классического квантовый эффект Холла наблюдается в проводниках толщина которых чрезвычайно мала и сравнима с межатомным расстоянием.
19080. Оптические методы исследования наноструктур. Основы фотолюминесценции Фотолюминесценция квантово-размерных структур 141.5 KB
  Лекция 9 Оптические методы исследования наноструктур. Основы фотолюминесценции Фотолюминесценция квантоворазмерных структур 1. Понятия. При взаимодействии электромагнитного излучения с веществом возникает излучение отличающееся по направлению распростране
19081. Проектирование БД «Школа». Создание таблиц. Проектирование модели реальной БД на примере создания БД «Школа» 94.55 MB
  Мы будем создавать работающую БД со всеми основными объектами: таблицами, формами, запросами и отчетами, используя всем нам хорошо знакомую предметную область – школу. Школа – это сложная структура со множеством объектов. Перечислим эти объекты: ученики, учителя, классы, администрация, изучаемые предметы, оценки по этим предметам, библиотека, столовая, кружки, родительский комитет, зарплата учителей, школьная мебель и оборудование, ремонт помещений
19082. Теория автоэлектронной эмиссии 221 KB
  ЛЕКЦИЯ 1011 Теория автоэлектронной эмиссии. АВТОЭЛЕКТРОННАЯ ЭМИССИЯ Под электронной эмиссией понимается испускание электронов как правило в вакуум из твердого тела или какойлибо другой среды. Тело из которого испускаются электроны называется катод. Электроны
19083. Принципы сканирующей зондовой микроскопии. Сканирующий туннельный микроскоп. Атомно-силовой микроскоп 440 KB
  ТЕМА 1213 Принципы сканирующей зондовой микроскопии. Сканирующий туннельный микроскоп Атомносиловой микроскоп Сравнительная характеристика различных методов микроскопического исследования поверхности твердых тел Мет...
19084. Электронная микроскопия 465 KB
  Лекция 14. Электронная микроскопия ЭЛЕКТРОННЫЙ МИКРОСКОП прибор который позволяет получать сильно увеличенное изображение объектов используя для их освещения электроны. Электронный микроскоп ЭМ дает возможность видеть детали слишком мелкие чтобы их мог разреш...
19085. Нанотрубки и родственные структуры 309.5 KB
  Лекция 15. Нанотрубки и родственные структуры. Историческая справка Первооткрыватели Углеродные наноструктуры: фуллерены нанотрубки графен 1985 г. Открытие фуллеренов С60 Авторы: H.W.Kroto J.R.Heath S.C.O'Brien R.F.Curl R.E.Smalley Организации: Rice Quantum Inst. and Departments of Chemistry and Electrical...
19086. Применения наноструктур 2.59 MB
  Лекция 16. Применения наноструктур. Настоящая лекция посвящена рассмотрению конкретных примеров применении различных наноструктур. СВЕТОИЗЛУЧАЮЩИЕ НАНОТРУБКИ В ТЕЛИВИЗОРАХ И ДИСПЛЕЯХ. Углеродным нанотрубкам уже найдено немало применений в том числе в качестве эл...