37675

ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ И ХАРАКТЕРИСТИК ЭЛЕКТРОННЫХ ЛАМП

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Важнейшей характеристикой диода является зависимость силы тока текущего через лампу анодного тока от разности потенциалов между катодом и анодом анодного напряжения. Анодный ток зависит от анодного напряжения и от температуры катода. При постоянной температуре катода анодный ток 1д возрастает с увеличением анодного напряжения IIа. Поскольку ме ханизм возникновения электрического тока в этом случае отличается от механизма возникновения тока в проводниках то зависимость анодного тока от анодного напряжения не описывается законом Ома.

Русский

2013-09-25

48.5 KB

15 чел.

Работа 19

ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ И ХАРАКТЕРИСТИК ЭЛЕКТРОННЫХ ЛАМП

Цель работы: Изучение принципа действия электронной лампы и снятие характеристик диода и триода; определение параметров триода в отсутствие сопротивления в цепи анода.

Приборы и принадлежности. Исследуемая лампа, выпрямитель, миллиамперметр, вольтметры.

Введение

Электронная лампа представляет собой стеклянный, металлический или керамический баллон с впаянными металлическими электродами. В баллоне создается разрежение воздуха до давления

порядка 10"7 мм рт. ст. (примерно 10~5 Па). Один из электродов лампы (катод) накаливается пропусканием по нему электрического тока (прямой накал) или с помощью подогревного устройства (косвенный накал) и является источником электронов, покидающих поверхность металлического электрода.

Явление испускания электронов нагретыми телами лежит в основе работы электронной лампы и называется термоэлектронной эмиссией.

Катод лампы обычно изготавливается в виде нити из тугоплавкого металла. При нагревании катода электроны эмиссии образуют вокруг него отрицательный пространственный заряд, так называемое электронное облако. Вблизи катода оно удерживается кулонов-скими силами, которые возникают между электронным облаком и положительно заряженным в результате эмиссии электронов поверхностным слоем металла.

Второй электрод является анодом лампы. При положительном потенциале анода относительно катода электроны эмиссии движут

ся под действием электрического поля между катодом и анодом, и в лампе возникает электрический ток.

Присутствие пространственного заряда приводит к такому перераспределению потенциала между катодом и' анодом, которое оказывает тормозящее действие на электроны. С возрастанием положительного потенциала анода плотность электронного облака постепенно уменьшается и при некотором напряжении между катодом и анодом обращается в ноль. При этом движение электронов определяется электрическим полем, зависящим только от разности потенциалов между катодом и анодом и конфигурации электродов лампы.

Диод. Простейшей электронной лампой является диод (двух электродная лампа). Для того, чтобы диод пропускал электрический ток, катод должен иметь отрицательный, а анод - положительный потенциал. Перемена знака потенциала анода позволяет "запереть" лампу, т.е. прекратить прохождение тока через нее. Односторонняя проводимость диода используется для выпрямления переменного тока.

Важнейшей характеристикой диода является зависимость силы тока, текущего через лампу (анодного тока), от разности потенциалов между катодом и анодом (анодного напряжения). Ее называют вольтамперной или анодной характеристикой диода (ВАХ).

Анодный ток зависит от анодного напряжения и от температуры катода. При постоянной температуре катода анодный ток 1д

\ возрастает с увеличением анодного напряжения IIа. Поскольку ме-

/ ханизм возникновения электрического тока в этом случае отличается от механизма возникновения тока в проводниках, то зависимость анодного тока от анодного напряжения не описывается законом Ома.

На рис. 1 представлена типичная вольтамперная характеристика диода. Для участка кривой аЬс характерно нелинейное возрастание анодного тока, на участке ей анодный ток почти не изменяется при увеличении анодного напряжения. Это объясняется тем, что при некотором анодном напряжении подавляющее число электронов

эмиссии достигает анода, и лишь незначительная их часть рассеивается, не достигнув анода.

Максимальное значение анодного тока при данной температуре катода называется током насыщения лампы. Сила тока насыщения /„ численно равна заряду всех электронов, испускаемых катодом е единицу времени:

где п - число электронов, испускаемых катодом в единиц; времени,

е величина заряда электрона.

Рис.1. Вольтамперная характеристика диода

Плотность тока насыщения у'0 зависит от температуры катода

и работы выхода электрона из металла. Эта зависимость выражается формулой Ричардсона- Дэшмана:

'',    (1)

где В - эмиссионная постоянная, одинаковая для всех металлов; Т - абсолютная температура катода;

К - постоянная Больцмана; А - работа выхода электрона из металла. Таким образом, увеличение напряжения накала вызывает повышение температуры катода, и, следовательно, возрастание анодного тока при всех значениях анодного напряжения, в том числе и тока насыщения.

Зависимость анодного тока от анодного напряжения на участке кривой аЬ (см. рис.1) приблизительно может быть описана законом Богуславского- Ленгмюра, называемым "законом трех вторых":

(2)

где В' - коэффициент, зависящий от формы и взаимного расположения катода и анода при прочих одинаковых условиях.

Семейством анодных характеристик диода (ВАХ) является совокупность графиков, изображающих зависимости анодного тока /а от анодного напряжения V а при различных фиксированных на-

пряжениях накала       т.е.

/,=/(*/,)   при   1/„=соп81.

Триод. Это электронная лампа с тремя электродами (катод, анод, сетка). Сетка расположена между катодом и анодом вблизи катода. При этом между сеткой и катодом создается сильное элек-

трическое поле. Поэтому влияние потенциала сетки на анодный ток более значительно, чем влияние потенциала анода.

Назначением сетки является управление анодным током лампы (отсюда название сетки • управляющая или управляющий электрод). При положительном потенциале сетки усиливается ускоряющее электрическое поле между катодом и анодом, и анодный ток увеличивается, а при отрицательном - это поле ослабляется, и анодный ток уменьшается по сравнению с током лампы при нулевом потенциале сетки. При некотором отрицательном потенциале сетки ток через лампу прекращается, т.е. лампа оказывается "запертой".

Минимальное по абсолютной величине и отрицательное по знаку напряжение между сеткой и катодом, при котором ток через лампу не течет, называется напряжением запирания.

При постоянном напряжении накала катода анодный ток в триоде зависит от разности потенциалов Ца между катодом и анодом (анодного напряжения) и напряжения между сеткой и катодом (сеточного напряжения) Vс, т.е. является функцией двух переменных:

 

Зависимость анодного тока от анодного напряжения при фиксированном значении сеточного напряжения и неизменном напряжении накала катода называется анодной характеристикой триода (рис.2, а):

4

Зависимость анодного тока от сеточного напряжения при фиксированном значении анодного напряжения и неизменном напряжении накала катода называется анодно-сеточной характеристикой триода (рис.2, б):

при    

Важнейшими параметрами триода являются: внутреннее сопротивление Я(, крутизна анодно-сеточной характеристики § и коэффициент усиления лампы ц . Эти параметры зависят от со-

противления в цепи анода. В данной работе сопротивление в цепи анода отсутствует. Такой режим и параметры, соответствующие ему, называются статическими.

Выясним смысл перечисленных параметров триода, для чего рассмотрим зависимость анодного тока от анодного и сеточного напряжения при постоянном напряжении накала катода.

Полный дифференциал анодного тока:

Индексы при частных производных означают, что в первом слагаемом дифференцирование производится при 11с=соп51 , а во

втором - при  

Внутреннее дифференциальное сопротивление К,  лампы

определяется из соотношения:

 

(4)

и показывает, на сколько вольт надо изменить анодное напряжение при неизменном сеточном, чтобы анодный ток изменился на единицу.

Рис.2. Анодная (а) и анодно-сеточная (б) характеристики триода

Величина

(5)

называется крутизной ан одно-сеточной характеристики; она

показывает скорость изменения анодного тока при изменении потенциала сетки, когда анодное напряжение постоянно. Отношение

(6)

позволяет сравнить влияние приращений анодного и сеточного напряжений на анодный ток и называется коэффициентом усиления лампы. Из формул (4), (5) и (6) видно, что

(7).

Приведенные параметры триода определяются по измеренным анодным и анодно-сеточньш характеристикам.

На рис.3 представлено семейство анодных характеристик триода.

Кривые 1 и 2 сняты при близких значениях сеточных напряжений 11Л и VС2. Для определения параметров триода на графике выбирается некоторое значение анодного тока в пределах прямолинейной части характеристик I и II (точка А). Через эту точку проводится прямая, параллельная оси абсцисс, пересекающая кривые 1 и 2 (точки В, С), а через точку С проводится прямая, параллельная оси ординат, до пересечения с кривой 2 (точка В).

Характеристический треугольник ВСВ содержит все данные, необходимые для определения параметра триода:

Как указывалось выше, параметры триода можно определить и по анодно-сеточным характеристикам, представленным на рис, 4. Из рис.4 следует, что

 

(9)

 

Чтобы иметь возможность сравнивать значения параметров, вычисленных по формулам (8) и (9), необходимо выбирать на рис.3 и 4 близкие режимы работы.

 

                            

 


 

А также другие работы, которые могут Вас заинтересовать

30921. Водный баланс 33.5 KB
  Водный баланс односолевой баланс обеспечивается совокупностью процессов поступления воды и электролитов в организм распределения их во внутренней среде и выделения из организма. Водный баланс равенство объемов выделяющейся из организма и поступающей за сутки воды. Общее количество воды в организме 4470 массы тела примерно 3842 литра. Уменьшение воды: а с возрастом б у женщин в при ожирении Н2О в организме образует водные пространства: 1.
30922. Особенности организации и функционирования спинного мозга 37 KB
  Особенности организации и функционирования спинного мозга Спинной мозг Самое древнее образование ЦНС подчиняется всем вышележащим отделам ЦНС. Центры спинного мозга не обладают автоматией дыхание. Для спинного мозга характерно сегментарное строение. Дорсальные корешки спинного мозга образованы чувствительными отростками афферентных нейронов вентральные корешки образованы двигательными отростками мотонейронов и преганглионарными волокнами вегетативной нервной системы.
30923. Ретикулярная формация 35.5 KB
  Нисходящее тормозящее влияние на спинной мозг 2. Восходящее активирующее влияние на кору больших полушарий. Нисходящее ретикулоспинальное влияние РФ: Слабое одностороннее раздражение торможение на той же стороне. Восходящее ретикулокортикальное влияние РФ: Особенности восходящего влияния РФ: 1.
30924. Кора больших полушарий 41.5 KB
  Нейроны коры не имеют непосредственной связи с внешней или внутренней средой т. Методы изучения функций коры больших полушарий: 1. Человек аненцефал врожденное отсутствие коры БП. Отсутствие коры больших полушарий у человека несовместимо с жизнью.
30925. Межполушарные взаимоотношения 27.5 KB
  Абстрактное мышление и сознание связаны с левым полушарием а конкретно чувственное мышление с правым полушарием. А Правое полушарие осуществляет обработку всей поступившей информации одновременно синтетически по принципу дедукции при этом лучше воспринимаются пространственные и относительные признаки предмета; Б Левое полушарие проводит обработку поступившей информации последовательно аналитически по принципу индукции лучше воспринимаются абсолютные признаки предмета и временные отношения. А Правое полушарие обуславливает более...
30926. Анализаторы 60 KB
  Суживающаяся воронка слой фоторецепторов 130 млн. По горизонтали в каждом слое различные свойства рецепторов в сетчатке палочки и колбочки; в свою очередь колбочки подразделяются на воспринимающие красный зеленый и фиолетовый цвет. Адаптация рецепторов. Некоторые рецепторы кроме обычной чувствительной иннервации по которой сигналы от рецепторов поступают в мозг получают эфферентные волокна.
30927. Зрительный анализатор 43 KB
  Строение и функции оптической системы глаза. Изза этого происходит преломление световых лучей внутри глаза. Преломляющая сила для здорового глаза для рассмотрении на далеких расстояниях составляет 59 D а при рассмотрении близких предметов 705 D. Обеспечивает приспособление глаза к ясному видению предметов расположенных на различном расстоянии.
30928. Топология. Функциональный анализ. Учебник 6.26 MB
  Слово «топология» относят ныне к двум разделам математики. И изначально для каждого из них имелись свои определения при слове «топология». Одну топологию, родоначальником которой был Пуанкаре, называли долгое время комбинаторной, за другой (у истоков ее были исследования Кантора) закрепилось название общей или теоретико-множественной
30929. Гідрогазодинаміка. Курс лекцій 5.25 MB
  Метою вивчення дисципліни ”гідрогазодинаміка” є засвоєння студентами понять і законів гідравліки і газодинаміки та застосування їх надалі у процесі вивчення спеціальних дисциплін та проведення необхідних інженерних розрахунків. Предмет ”Гідрогазодинаміка” базується на дисциплінах ”Вища математика”, ”Фізика”, ”Теоретична механіка”, ”Прикладна механіка”, ”Термодинаміка”