37693

Что такое комбинационный сумматор и где сумматоры используются

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Параллельные многоразрядные сумматоры предназначены для одновременного суммирования двух многоразрядных чисел и характеризуются различными способами передачи сигналов переноса от младших разрядов сумматора к старшим. Принципы построения и работы сумматора вытекают из правил сложения двоичных цифр. Схема сумматора также является регулярной и широко используется в ЭВМ.1 Таблица истинности комбинационного полусумматора Входы Выходы i bi Si Pi 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 Логические зависимости: 1.

Русский

2013-09-25

84.33 KB

32 чел.

  1.  Что такое комбинационный сумматор и где  сумматоры используются?

По времени подачи операндов:

  1.  комбинационные сумматоры - сумматоры на логических элементах, которые действительно каждый раз складывают слагаемые и бит переноса

Комбинационные сумматоры предназначены для выполнения арифметических операций сложения и вычитания над одноразрядными и многоразрядными числами (операндами). Многоразрядный сумматор состоит из одноразрядных, реализующих сложение одноразрядных чисел.

Комбинационные сумматоры благодаря высокому быстродействию применяют в различных устройствах обработки цифровой информации. В частности, на их основе строятся устройства перемножения чисел.

Параллельные многоразрядные сумматоры предназначены для одновременного суммирования двух многоразрядных чисел и характеризуются различными способами передачи сигналов переноса от младших разрядов сумматора к старшим.

Различают параллельные комбинационные сумматоры с последовательным, одновременным и комбинированным переносом. Выбор типа переноса между разрядами суммирующего устройства определяется требованиями к быстродействию.

Принципы построения и работы сумматора вытекают из правил сложения двоичных цифр. Схема сумматора также является регулярной и широко используется в ЭВМ. При сложении одноразрядных двоичных цифр можно выявить закономерности в построении и многоразрядных сумматоров.

Сначала рассмотрим сумматор, обеспечивающий сложение двух двоичных цифр а1 и b1, считая, что переносы из предыдущего разряда не поступают. Этой логике отвечает сложение младших разрядов двоичных чисел. Процесс сложения описывается таблицей истинности (табл. 1.1) и логическими зависимостями (1.2), где Si - функция одноразрядной суммы и рi - функция формирования переноса. Перенос формируется в том случае, когда а1 =1 и b1=1.

Таблица 1.1

Таблица истинности комбинационного полусумматора

Входы

Выходы

ai

bi

Si

Pi

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

 Логические зависимости:

(1.2)

Зависимости (1.2) соответствуют логике работы самого младшего разряда любого сумматора.

Рис.1.2. Структурная схема многоразрядного комбинационного сумматора

  1.  Приведите уравнения, описывающие работу сумматора.

  1.  В чём состоит отличие полусумматора от полного сумматора?

полусумматоры, характеризующиеся наличием двух входов, на которые подаются одноимённые разряды двух чисел, и двух выходов: на одном реализуется арифметическая сумма в данном разряде, а на другом — перенос в следующий (старший разряд);

полные сумматоры, характеризующиеся наличием трёх входов, на которые подаются одноимённые разряды двух складываемых чисел и перенос из предыдущего (более младшего) разряда, и двумя выходами: на одном реализуется арифметическая сумма в данном разряде, а на другом — перенос в следующий (более старший разряд). Такие сумматоры изначально ориентированы только на показательные позиционные системы счисления.

Полусумматор — логическая схема имеющая два входа и два выхода. Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S,C, где S — это бит суммы, а C — бит переноса. Однако, как можно заметить, для построения схемы двоичного сумматора необходимо иметь элемент, который суммирует три бита A,B и C, где C — бит переноса из предыдущего разряда, таким элементом является полный двоичный сумматор, который как правило состоит из двух полусумматоров.

Полусумматор (рис. 3) имеет два входа a и b для двух слагаемых и два выхода: S — сумма, P — перенос. Обозначением полусумматора служат буквы HS (half sum — полусумма). Работу его отражает таблица истинности 2 (табл. 2), а соответствующие уравнения имеют вид:

(5)

Рис. 3

Таблица 2

a

b

P

S

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

Из уравнений (5) следует, что для реализации полусумматора требуется один элемент “исключающее ИЛИ” и один двухвходовый вентиль И (рис. 3б).

Полный одноразрядный двоичный сумматор

Он (рис. 4) имеет три входа: a, b — для двух слагаемых и p — для переноса из предыдущего (более младшего) разряда и два выхода: S — сумма, P — перенос в следующий (более старший) разряд. Обозначением полного двоичного сумматора служат буквы SM. Работу его отражает таблица истинности 3 (табл. 3).

Рис. 4

Таблица 3

№ наб.

a

b

p

P

S

0

0

0

0

0

0

1

0

0

1

0

1

2

0

1

0

0

1

3

0

1

1

1

0

4

1

0

0

0

1

5

1

0

1

1

0

6

1

1

0

1

0

7

1

1

1

1

1

Отметим два момента. Первый: в табл. 2 и 3 выходные сигналы P и S не случайно расположены именно в такой последовательности. Это подчеркивает, что PS рассматривается как двухразрядное двоичное число, например, 1 + 1 = 210 = 102 , то есть P = 1, а S = 0 или 1 + 1 + 1 = 310 = 112, то есть P = 1, а S = 1. Второй: выходные сигналы P и S полного двоичного сумматора относятся к классу самодвойственных функций алгебры логики. Самодвойственными называют функции, инвертирующие своё значение при инвертировании всех переменных, от которых они зависят. Обратите внимание, что P и S для четвертьсумматора и полусумматора не являются самодвойственными функциями!

Уравнения, описывающие работу полного двоичного сумматора, представленные в совершенной дизъюнктивной нормальной форме (СДНФ), имеют вид:

(6)

Уравнение для переноса может быть минимизировано:

P = ab + ap + bp.     (7)

При практическом проектированиии сумматора уравнения (6) и (7) могут быть преобразованы к виду, удобному для реализации на заданных логических элементах с некоторыми ограничениями (по числу логических входов и др.) и удовлетворяющему предъявляемым к сумматору требованиям по быстродействию.

Например, преобразуем уравнения (6) следующим образом:

(8)

Из выражений (8) следует, что полный двоичный сумматор может быть реализован на двух полусумматорах и одном двухвходовом элементе ИЛИ. Соответствующая схема приведена на рис. 5.

Рис. 5

Полусумматор — это логическая цепь, которая вырабатывает сигналы суммы (S) и переноса (С) при сложении двух двоичных чисел a и b.

Из таблицы получим:

S = a¬b + ¬ab
C = ab 

Приведем к виду, удобному для реализации на элементах «ИЛИ-НЕ» (производители интегральных микросхем обычно выпускают несколько логических элементов на одной микросхеме, в частности, широко используется элемент «ИЛИ-НЕ», содержащий в себе несколько элементов OR и несколько элементов NOT):

S = a¬b + ¬ab = ab + ¬a) + ba + ¬b) = ¬¬(ab + ¬a)) + ¬¬(ba + ¬b)) = ¬(¬a + ¬(¬b + ¬a)) + ¬(¬b + ¬(¬a + ¬b))
C = ab = ¬¬(ab) = ¬(¬a + ¬b)

a

b

S

C

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

Исходя из полученных формул, составим схему полусумматора:

Поскольку полусумматор имеет широкое применение и его выпускают в виде отдельной микросхемы, он имеет собственное обозначение:

Составляя дизъюнктивную нормальную форму для полусумматора, мы получили следующие булевы функции:

S = a  b
C = ab 

Следовательно, перенос происходит с помощью функции AND, а выработка сигнала суммы производится элементом XOR. На рисунке показана схема полусумматора, составленная из этих элементов.

Сумматор, в отличие от полусумматора должен воспринимать 3 входных сигнала: 2 слагаемых и сигнал переноса с предыдущего разряда. Сумматором называется операционный узел ЭВМ, выполняющий операцию арифметического сложения двух чисел. Чтобы понять сущность работы комбинационного сумматора, рассмотрим примеры суммирования двух одноразрядных двоичных чисел:

Из приведенных примеров (1–4) видно, что если отсутствует перенос из младшего разряда, то перенос в старший разряд может быть только в одном случае, когда оба числа равны единице. Если же имеется перенос из младшего разряда, то перенос в старший разряд будет всегда, кроме одного случая, когда оба слагаемых равны нулю.

Составим таблицу функционирования:

ai

bi

Ci

Si

Ci+1

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1

Схема сумматора может быть реализована на двух полусумматорах, соединенных как указано на схеме. В этой схеме выделим промежуточные сигналы pi, gi, ri. Введем эти сигналы в новую таблицу функционирования. Соответствие работы этой схемы и таблицы функционирования можно проверить перебором всех возможных вариантов.

  1.  От чего зависит быстродействие сумматора?

Быстродействие сумматора при сложении двух n-разрядных чисел характеризуется временем суммирования, которое в наихудшем случае равно
tS=(n-1)tP+tiS
где tis, tP - задержки формирования одноразрядным сумматором суммы и переноса соответственно. Следовательно, сумматоры с последовательным переносом обладают низким быстродействием. С целью повышения быстродействия (сокращения времени сложения) применяются сумматоры с одновременным переносом.

Параллельный сумматор в простейшем случае представляет собой n одноразрядных сумматоров, последовательно (от младших разрядов к старшим) соединённых цепями переноса. Однако такая схема сумматора характеризуется сравнительно невысоким быстродействием, так как формирование сигналов суммы и переноса в каждом i-ом разряде производится лишь после того, как поступит сигнал переноса с (i-1)-го разряда.Таким образом, быстродействие сумматора определяется временем распространения сигнала по цепи переноса. Уменьшение этого времени — основная задача при построении параллельных сумматоров.

Для уменьшения времени распространения сигнала переноса применяют: конструктивные решения, когда используют в цепи переноса наиболее быстродействующие элементы; тщательно выполняют монтаж без длинных проводников и паразитных ёмкостных составляющих нагрузки и (наиболее часто) структурные методы ускорения прохождения сигнала переноса.


 

А также другие работы, которые могут Вас заинтересовать

80259. Формы организации общественного производства. Деньги 89 KB
  Деньги: сущность функции. Современные деньги. Обмен осуществляется через рынок деньги путём купли продажи и только после этого продукция попадает в производительное или личное потребление.
80260. Розвиток національних економік країн Європейської цивілізації в системі світового господарства під впливом науково-технічної революції (друга половина ХХ ст.) 111.5 KB
  Розвиток національних економік країн Європейської цивілізації в системі світового господарства під впливом науковотехнічної революції друга половина ХХ ст. Економіка країн світу в роки другої світової війни. Економіка країн світу в роки другої світової війни. У роки війни в більшості країн господарство занепало.
80261. Світове господарство та основні напрямки економічної думки на етапі інформаційно-технологічної революції ( кінецьXX - початок XXI ст.) 82 KB
  Динаміка світового господарського розвитку другої половини ХХ початку ХХІ ст. Динаміка світового господарського розвитку другої половини ХХ початку ХХІ ст. для економічно розвинутих країн характеризується якісно новим етапом економічного розвитку. Найважливішим фактором економічного розвитку є науковотехнічний прогрес.
80262. Економічний розвиток України в умовах радянської економічної системи та його трактування в економічній думці 134 KB
  Економічний розвиток України в умовах радянської економічної системи та його трактування в економічній думці 1. Соціальноекономічний стан Західної України в 20-30х роках ХХ ст. Господарство України в роки Другої світової війни та післявоєнної відбудови. Перша світова війна мала руйнівний вплив на економіку України.
80263. Формування засад ринкового господарства в Україні (90-ті роки ХХ ст.) 46.5 KB
  Участь України в світовому господарстві. Проблеми соціальноекономічного реформування української економіки в перші роки незалежності Проголошення незалежності України відкрило нову еру в історії нашої країни. Верховна Рада України затвердила Основи національної економічної політикиrdquo;. У цьому документі передбачалася структурна перебудова господарства України.
80264. Особливості розвитку ринкового господарства й основні напрямки економічної думки в Україні (друга половина ХІХ - початок ХХ ст.) 82.5 KB
  Особливості розвитку ринкового господарства й основні напрямки економічної думки в Україні друга половина ХІХ початок ХХ ст. Промисловий переворот в Україні. Суть індустріалізації в Україні. Загальні умови і основні напрямки розвитку економічної думки в Україні наприкінці ХІХ початку ХХ ст.
80265. Господарство та економічна думка в період державно-монополістичного розвитку суспільств Європейської цивілізації (перша половина ХХ ст.) 97.5 KB
  Обновлялися основні галузі економіки: хімічна електрична приладобудівна автомобільна радіотехнічна. Одним з найбільших недоліків її післявоєнної економіки була залежність від імпорту сільськогосподарської продукції та промислової сировини. Німеччина втратила зовнішні ринки через розвал економіки звузилися її внутрішні ринки. Катастрофічне становище в основних галузях економіки було причиною краху кредитнофінансової системи Німеччини.
80266. ПІДГОТОВКА ПІД-ПРИЛАДУ МОДЕЛЮВАННЯ ЗМІНИ ТЕМПЕРАТУРИ - SIMULATED TEMPERATURE 681.5 KB
  Підготовка під приладу Моделювання зміни температури Simulted Temperture. Віртуальний прилад що моделює зміну температури: а контрольна панель; б блоксхема приладу. Vi для моделювання зміни температури починається з контрольної панелі на яку слід вивести девять задавачів зміни температури обєднавши їх у одномірний масив рисунок 7.
80267. Основні функції для підготовки віртуального приладу дослідження температури 322.5 KB
  Основні функції для підготовки віртуального приладу дослідження температури Для виведення функції Rdio Button на контрольну панель Controls ModernClssic Boolen 12 Boolen Rdio Button. Меню для виведення функції Rdio Button на контрольну панель Вигляд функції Rdio Button яку названо Шкала температур на контрольній і функціональній панелі показано на рисунку 7.8 Функція Rdio Button яку названо Шкала температур на контрольній а і функціональній б панелі ЛІТЕРАТУРА 1 Большая советская енциклопедія Т3 стр.