37693

Что такое комбинационный сумматор и где сумматоры используются

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Параллельные многоразрядные сумматоры предназначены для одновременного суммирования двух многоразрядных чисел и характеризуются различными способами передачи сигналов переноса от младших разрядов сумматора к старшим. Принципы построения и работы сумматора вытекают из правил сложения двоичных цифр. Схема сумматора также является регулярной и широко используется в ЭВМ.1 Таблица истинности комбинационного полусумматора Входы Выходы i bi Si Pi 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 Логические зависимости: 1.

Русский

2013-09-25

84.33 KB

25 чел.

  1.  Что такое комбинационный сумматор и где  сумматоры используются?

По времени подачи операндов:

  1.  комбинационные сумматоры - сумматоры на логических элементах, которые действительно каждый раз складывают слагаемые и бит переноса

Комбинационные сумматоры предназначены для выполнения арифметических операций сложения и вычитания над одноразрядными и многоразрядными числами (операндами). Многоразрядный сумматор состоит из одноразрядных, реализующих сложение одноразрядных чисел.

Комбинационные сумматоры благодаря высокому быстродействию применяют в различных устройствах обработки цифровой информации. В частности, на их основе строятся устройства перемножения чисел.

Параллельные многоразрядные сумматоры предназначены для одновременного суммирования двух многоразрядных чисел и характеризуются различными способами передачи сигналов переноса от младших разрядов сумматора к старшим.

Различают параллельные комбинационные сумматоры с последовательным, одновременным и комбинированным переносом. Выбор типа переноса между разрядами суммирующего устройства определяется требованиями к быстродействию.

Принципы построения и работы сумматора вытекают из правил сложения двоичных цифр. Схема сумматора также является регулярной и широко используется в ЭВМ. При сложении одноразрядных двоичных цифр можно выявить закономерности в построении и многоразрядных сумматоров.

Сначала рассмотрим сумматор, обеспечивающий сложение двух двоичных цифр а1 и b1, считая, что переносы из предыдущего разряда не поступают. Этой логике отвечает сложение младших разрядов двоичных чисел. Процесс сложения описывается таблицей истинности (табл. 1.1) и логическими зависимостями (1.2), где Si - функция одноразрядной суммы и рi - функция формирования переноса. Перенос формируется в том случае, когда а1 =1 и b1=1.

Таблица 1.1

Таблица истинности комбинационного полусумматора

Входы

Выходы

ai

bi

Si

Pi

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

 Логические зависимости:

(1.2)

Зависимости (1.2) соответствуют логике работы самого младшего разряда любого сумматора.

Рис.1.2. Структурная схема многоразрядного комбинационного сумматора

  1.  Приведите уравнения, описывающие работу сумматора.

  1.  В чём состоит отличие полусумматора от полного сумматора?

полусумматоры, характеризующиеся наличием двух входов, на которые подаются одноимённые разряды двух чисел, и двух выходов: на одном реализуется арифметическая сумма в данном разряде, а на другом — перенос в следующий (старший разряд);

полные сумматоры, характеризующиеся наличием трёх входов, на которые подаются одноимённые разряды двух складываемых чисел и перенос из предыдущего (более младшего) разряда, и двумя выходами: на одном реализуется арифметическая сумма в данном разряде, а на другом — перенос в следующий (более старший разряд). Такие сумматоры изначально ориентированы только на показательные позиционные системы счисления.

Полусумматор — логическая схема имеющая два входа и два выхода. Полусумматор используется для построения двоичных сумматоров. Полусумматор позволяет вычислять сумму A+B, где A и B — это разряды двоичного числа, при этом результатом будут два бита S,C, где S — это бит суммы, а C — бит переноса. Однако, как можно заметить, для построения схемы двоичного сумматора необходимо иметь элемент, который суммирует три бита A,B и C, где C — бит переноса из предыдущего разряда, таким элементом является полный двоичный сумматор, который как правило состоит из двух полусумматоров.

Полусумматор (рис. 3) имеет два входа a и b для двух слагаемых и два выхода: S — сумма, P — перенос. Обозначением полусумматора служат буквы HS (half sum — полусумма). Работу его отражает таблица истинности 2 (табл. 2), а соответствующие уравнения имеют вид:

(5)

Рис. 3

Таблица 2

a

b

P

S

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

0

Из уравнений (5) следует, что для реализации полусумматора требуется один элемент “исключающее ИЛИ” и один двухвходовый вентиль И (рис. 3б).

Полный одноразрядный двоичный сумматор

Он (рис. 4) имеет три входа: a, b — для двух слагаемых и p — для переноса из предыдущего (более младшего) разряда и два выхода: S — сумма, P — перенос в следующий (более старший) разряд. Обозначением полного двоичного сумматора служат буквы SM. Работу его отражает таблица истинности 3 (табл. 3).

Рис. 4

Таблица 3

№ наб.

a

b

p

P

S

0

0

0

0

0

0

1

0

0

1

0

1

2

0

1

0

0

1

3

0

1

1

1

0

4

1

0

0

0

1

5

1

0

1

1

0

6

1

1

0

1

0

7

1

1

1

1

1

Отметим два момента. Первый: в табл. 2 и 3 выходные сигналы P и S не случайно расположены именно в такой последовательности. Это подчеркивает, что PS рассматривается как двухразрядное двоичное число, например, 1 + 1 = 210 = 102 , то есть P = 1, а S = 0 или 1 + 1 + 1 = 310 = 112, то есть P = 1, а S = 1. Второй: выходные сигналы P и S полного двоичного сумматора относятся к классу самодвойственных функций алгебры логики. Самодвойственными называют функции, инвертирующие своё значение при инвертировании всех переменных, от которых они зависят. Обратите внимание, что P и S для четвертьсумматора и полусумматора не являются самодвойственными функциями!

Уравнения, описывающие работу полного двоичного сумматора, представленные в совершенной дизъюнктивной нормальной форме (СДНФ), имеют вид:

(6)

Уравнение для переноса может быть минимизировано:

P = ab + ap + bp.     (7)

При практическом проектированиии сумматора уравнения (6) и (7) могут быть преобразованы к виду, удобному для реализации на заданных логических элементах с некоторыми ограничениями (по числу логических входов и др.) и удовлетворяющему предъявляемым к сумматору требованиям по быстродействию.

Например, преобразуем уравнения (6) следующим образом:

(8)

Из выражений (8) следует, что полный двоичный сумматор может быть реализован на двух полусумматорах и одном двухвходовом элементе ИЛИ. Соответствующая схема приведена на рис. 5.

Рис. 5

Полусумматор — это логическая цепь, которая вырабатывает сигналы суммы (S) и переноса (С) при сложении двух двоичных чисел a и b.

Из таблицы получим:

S = a¬b + ¬ab
C = ab 

Приведем к виду, удобному для реализации на элементах «ИЛИ-НЕ» (производители интегральных микросхем обычно выпускают несколько логических элементов на одной микросхеме, в частности, широко используется элемент «ИЛИ-НЕ», содержащий в себе несколько элементов OR и несколько элементов NOT):

S = a¬b + ¬ab = ab + ¬a) + ba + ¬b) = ¬¬(ab + ¬a)) + ¬¬(ba + ¬b)) = ¬(¬a + ¬(¬b + ¬a)) + ¬(¬b + ¬(¬a + ¬b))
C = ab = ¬¬(ab) = ¬(¬a + ¬b)

a

b

S

C

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

1

Исходя из полученных формул, составим схему полусумматора:

Поскольку полусумматор имеет широкое применение и его выпускают в виде отдельной микросхемы, он имеет собственное обозначение:

Составляя дизъюнктивную нормальную форму для полусумматора, мы получили следующие булевы функции:

S = a  b
C = ab 

Следовательно, перенос происходит с помощью функции AND, а выработка сигнала суммы производится элементом XOR. На рисунке показана схема полусумматора, составленная из этих элементов.

Сумматор, в отличие от полусумматора должен воспринимать 3 входных сигнала: 2 слагаемых и сигнал переноса с предыдущего разряда. Сумматором называется операционный узел ЭВМ, выполняющий операцию арифметического сложения двух чисел. Чтобы понять сущность работы комбинационного сумматора, рассмотрим примеры суммирования двух одноразрядных двоичных чисел:

Из приведенных примеров (1–4) видно, что если отсутствует перенос из младшего разряда, то перенос в старший разряд может быть только в одном случае, когда оба числа равны единице. Если же имеется перенос из младшего разряда, то перенос в старший разряд будет всегда, кроме одного случая, когда оба слагаемых равны нулю.

Составим таблицу функционирования:

ai

bi

Ci

Si

Ci+1

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1

Схема сумматора может быть реализована на двух полусумматорах, соединенных как указано на схеме. В этой схеме выделим промежуточные сигналы pi, gi, ri. Введем эти сигналы в новую таблицу функционирования. Соответствие работы этой схемы и таблицы функционирования можно проверить перебором всех возможных вариантов.

  1.  От чего зависит быстродействие сумматора?

Быстродействие сумматора при сложении двух n-разрядных чисел характеризуется временем суммирования, которое в наихудшем случае равно
tS=(n-1)tP+tiS
где tis, tP - задержки формирования одноразрядным сумматором суммы и переноса соответственно. Следовательно, сумматоры с последовательным переносом обладают низким быстродействием. С целью повышения быстродействия (сокращения времени сложения) применяются сумматоры с одновременным переносом.

Параллельный сумматор в простейшем случае представляет собой n одноразрядных сумматоров, последовательно (от младших разрядов к старшим) соединённых цепями переноса. Однако такая схема сумматора характеризуется сравнительно невысоким быстродействием, так как формирование сигналов суммы и переноса в каждом i-ом разряде производится лишь после того, как поступит сигнал переноса с (i-1)-го разряда.Таким образом, быстродействие сумматора определяется временем распространения сигнала по цепи переноса. Уменьшение этого времени — основная задача при построении параллельных сумматоров.

Для уменьшения времени распространения сигнала переноса применяют: конструктивные решения, когда используют в цепи переноса наиболее быстродействующие элементы; тщательно выполняют монтаж без длинных проводников и паразитных ёмкостных составляющих нагрузки и (наиболее часто) структурные методы ускорения прохождения сигнала переноса.


 

А также другие работы, которые могут Вас заинтересовать

36854. Объединение (консолидация) данных 85 KB
  Проведите консолидацию данных показателей выпуска молочной продукции за несколько лет в одной таблице. На листе 1 создайте таблицу Выпуск молочной продукции за 2006 год в литрах рис. Выпуск молочной продукции за 2006 год На листе 2 создайте Выпуск молочной продукции за 2007 год рис. Выпуск молочной продукции за 2007 год На листе 3 создайте Прайслист продукции молочного комбината рис.
36855. Построение двоичных счетчиков 49.5 KB
  Цель лабораторной работы: исследовать основные способы построения двоичных счетчиков. Задание: снять временные диаграммы определить таблицы состояний и особенности работы счетчиков. Порядок выполнения: включить персональную ЭВМ запустить на выполнение программный пакет EWB и далее следовать порядку работы в пакете. В отчете приводится наименование и номер лабораторной работы цель работы программа работы с указанием всех необходимых экспериментов полученных результатов их объяснения и выводов.
36856. КОМПЬЮТЕРНАЯ СИСТЕМА PROJECT EXPERT. ФОРМИРОВАНИЕ ОТЧЕТА ПО ПРОЕКТУ 41.5 KB
  ФОРМИРОВАНИЕ ОТЧЕТА ПО ПРОЕКТУ Цель: изучить систему команд Project Expert генерирования стандартных отчетных бухгалтерских документов и компоновки отчета по проекту. Сформировать бухгалтерский баланс отчет о прибылях и убытках движении денежных средств использовании прибыли. Оформить отчет. Теоретическое введение В процессе расчетов Project Expert автоматически генерирует стандартные отчетные бухгалтерские документы: бухгалтерский баланс; отчет о прибылях и убытках; отчет о движении денежных средств; отчет об использовании...
36857. Чрезвычайные ситуации. Действия в ЧС 215.59 KB
  Поражающий фактор источника ЧС — составляющая опасного явления или процесса физического, химического или биологического (бактериального) характера, вызываемого источником ЧС и приводящего к поражению людей, сельскохозяйственных животных и растений, хозяйственных и иных объектов, элементов окружающей природной среды.
36858. Построение двумерных графиков 396 KB
  plotxy[xcpycpcption] x массив абсцисс; y массив ординат; xcp ycp cptionподписи осей X Y и графика соответственно. Затем воспользуемся функцией plotxy для построения кривой и выведем с ее же помощью подписи координатных осей ’X’ ’Y’ а также имя графика ’plot function y=sincosx’ Листинг 4. Построение графика функции y = sincosx с помощью функции plot x=2pi:0.
36859. РАБОТА СО СВОДНЫМИ ТАБЛИЦАМИ В MS EXCEL 88.5 KB
  РАБОТА СО СВОДНЫМИ ТАБЛИЦАМИ В MS EXCEL Цель работы: рассмотреть возможности обработки больших массивов данных средствами MS Excel научиться создавать сводные таблицы и управлять данными. Установите курсор в диапазоне ячеек содержащих значения заголовки строк и столбцов В любую заполненную данными ячейку таблицы Чтобы создать сводную таблицу на вкладке Вставка в группе Таблицы выберите раздел Сводная таблица а затем пункт Сводная таблица. На экран будет выведено диалоговое окно Создание сводной таблицы. На отдельном листе будет...
36860. Функция plot2d 690.5 KB
  Функция plot2d plot2d[logflg]xy’[key1=vlue1key2=vlue2. Следует отметить что вовсе не обязательно использовать полную форму записи функции plot2d со всеми ее параметрами. В простейшем случае к ней можно обратиться кратко как и к функции plot. Создавать массив Y необязательно следует лишь в качестве аргумента функции plot2d указать математическое выражение функции.
36861. Форматирование графиков функций 724 KB
  Visibility отображение графика переключатель принимающий значения on и off. Figure nme имя графика это последовательность символов которые выводятся в строке заголовка графического окна. По умолчанию графическому окну присваивается имя Scilb Grphic d где d это порядковый номер графика Figure id.
36862. Word: Работа с таблицами 80 KB
  Выполните подготовительные действия для работы с таблицами: – выполните команду меню Таблица и в меню этой команды установите команду Отображать сетку если в этой строке установлена команда Скрыть сетку то выделите эту строку и нажмите на левую кнопку мыши после чего там появится команда Отображать сетку; – выведите на экран панель инструментов Таблицы и границы что проще всего сделать нажатием на кнопку Панель границ на Стандартной панели инструментов но можно также или использовать контекстное меню в области панелей...